Exercise List: Proving convergence of the Stochastic Gradient Descent and Coordinate Descent on the Ridge Regression Problem.

Robert M. Gower \& Francis Bach \& Nidham Gazagnadou

November 8, 2019

Introduction

Consider the task of learning a rule that maps the feature vector $x \in \mathbb{R}^{d}$ to outputs $y \in \mathbb{R}$. Furthermore you are given a set of labelled observations $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$. We restrict ourselves to linear mappings. That is, we need to find $w \in \mathbb{R}^{d}$ such that

$$
\begin{equation*}
x_{i}^{\top} w \approx y_{i}, \quad \text { for } i=1, \ldots, n . \tag{1}
\end{equation*}
$$

That is the hypothesis function is parametrized by w and is given by $h_{w}: x \mapsto w^{\top} x .{ }^{1}$ To choose a w such that each $x_{i}^{\top} w$ is close to y_{i}, we use the squared loss $\ell(y)=y^{2} / 2$ and the squared regularizor. That is, we minimize

$$
\begin{equation*}
w^{*}=\arg \min _{w} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \tag{2}
\end{equation*}
$$

where $\lambda>0$ is the regularization parameter. We now have a complete training problem (2) ${ }^{2}$.

Using the matrix notation

$$
\begin{equation*}
X \stackrel{\text { def }}{=}\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}, \quad \text { and } \quad y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

we can re-write the objective function in (2) as

$$
\begin{equation*}
f(w) \stackrel{\text { def }}{=} \frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} . \tag{4}
\end{equation*}
$$

First we introduce some necessary notation.

[^0]Notation: For every $x, w, \in \mathbb{R}^{d}$ let $\langle x, w\rangle \xlongequal{\text { def }} x^{\top} y$ and let $\|x\|_{2}=\sqrt{\langle x, x\rangle}$. Let $A \in \mathbb{R}^{d \times d}$ be a matrix and let $\sigma_{\min }(A)$ and $\sigma_{\max }(A)$ be the smallest and largest singular values of A defined by

$$
\begin{equation*}
\sigma_{\min }(A) \stackrel{\text { def }}{=} \min _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \quad \text { and } \quad \sigma_{\max }(A) \stackrel{\text { def }}{=} \max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} . \tag{5}
\end{equation*}
$$

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the largest singular value of A can be defined instead as

$$
\begin{equation*}
\sigma_{\max }(A)=\max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\langle A x, x\rangle_{2}}{\|x\|_{2}^{2}}=\max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} . \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\langle A x, x\rangle}{\|x\|_{2}^{2}} \leq \sigma_{\max }(A), \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\|A x\|_{2}}{\|x\|_{2}} \leq \sigma_{\max }(A), \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} \tag{8}
\end{equation*}
$$

We will now solve the following ridge regression problem

$$
\begin{equation*}
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\left(\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \stackrel{\text { def }}{=} f(w)\right), \tag{9}
\end{equation*}
$$

using stochastic gradient descent and stochastic coordinate descent.

Exercise 1 : Stochastic Gradient Descent (SGD)

Some more notation: Let $\|A\|_{F}^{2} \stackrel{\text { def }}{=} \operatorname{Tr}\left(A^{\top} A\right)$ denote the Frobenius norm of A. Let

$$
\begin{equation*}
A \xlongequal{\text { def }} \frac{1}{n} X X^{\top}+\lambda I \in \mathbb{R}^{d \times d} \text { and } b \stackrel{\text { def }}{=} \frac{1}{n} X y . \tag{10}
\end{equation*}
$$

We can exploit the separability of the objective function (2) to design a stochastic gradient method. For this, first we re-write the problem $A w=b$ as different linear least squares problem

$$
\begin{equation*}
\hat{w}^{*}=\arg \min _{w} \frac{1}{2}\|A w-b\|_{2}^{2}=\quad \arg \min _{w} \sum_{i=1}^{d} \frac{1}{2}\left(A_{i}: w-b_{i}\right)^{2} \quad \stackrel{\text { def }}{=} \quad \arg \min _{w} \sum_{i=1}^{d} p_{i} f_{i}(w) \tag{11}
\end{equation*}
$$

where $f_{i}(w)=\frac{1}{2 p_{i}}\left(A_{i}: w-b_{i}\right)^{2}, A_{i}$ denotes the i th row of A, b_{i} denotes the i th element of b and $p_{i}=\frac{\left\|A_{i}:\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for $i=1, \ldots, d$. Note that $\sum_{i=1}^{d} p_{i}=1$ thus the p_{i} 's are probabilities.

From a given $w^{0} \in \mathbb{R}^{d}$, consider the iterates

$$
\begin{equation*}
w^{t+1}=w^{t}-\alpha \nabla f_{j}\left(w^{t}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{\|A\|_{F}^{2}} \tag{13}
\end{equation*}
$$

and j is a random index chosen from $\{1, \ldots, d\}$ sampled with probability p_{j}. In other words, $\mathbb{P}(j=i)=p_{i}=\frac{\left\|A_{i}\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for all $i \in\{1, \ldots, d\}$.
Ex. 1 - Show that the solution \hat{w}^{*} to (11) and the solution to w^{*} to (9) are equal.

Ex. 2 - Show that

$$
\begin{equation*}
\nabla f_{j}(w)=\frac{1}{p_{j}} A_{j:}^{\top} A_{j:}\left(w-w^{*}\right) \tag{14}
\end{equation*}
$$

and that

$$
\mathbb{E}_{j \sim p}\left[\nabla f_{j}(w)\right] \stackrel{\text { def }}{=} \sum_{i=1}^{d} p_{i} \nabla f_{i}(w)=A^{\top} A\left(w-w^{*}\right)
$$

thus $\nabla f_{j}(w)$ is an unbiased estimator of the full gradient of the objective function in (11). This justifies applying the stochastic gradient method.

$$
\begin{equation*}
\Pi_{j} \Pi_{j}=\Pi_{j} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-\Pi_{j}\right)\left(I-\Pi_{j}\right)=I-\Pi_{j} . \tag{16}
\end{equation*}
$$

In other words, Π_{j} is a projection operator which projects orthogonally onto Range $\left(A_{j}\right)$. Furthermore, if $j \sim p_{j}$ verify that

$$
\begin{equation*}
\mathbb{E}\left[\Pi_{j}\right]=\sum_{i=1}^{d} p_{i} \Pi_{i}=\frac{A^{\top} A}{\|A\|_{F}^{2}} \tag{17}
\end{equation*}
$$

Ex. 4 - Show the following equality ruling the squared norm of the distance to the solution

$$
\begin{equation*}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2}=\left\|w^{t}-w^{*}\right\|_{2}^{2}-\left\langle\frac{A_{j:}^{\top} A_{j:}}{\left\|A_{j:}:\right\|_{2}^{2}}\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle . \tag{18}
\end{equation*}
$$

Ex. 5 - Using previous answer and analogous techniques from the course, show that the iterates (12) converge according to

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq\left(1-\frac{\sigma_{\min }(A)^{2}}{\|A\|_{F}^{2}}\right) \mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \tag{19}
\end{equation*}
$$

BONUS

Exercise 2: Stochastic Coordinate Descent (CD)

Consider the minimization problem

$$
\begin{equation*}
w^{*}=\arg \min _{x \in \mathbb{R}^{d}}\left(f(w) \stackrel{\text { def }}{=} \frac{1}{2} w^{\top} A w-w^{\top} b\right), \tag{20}
\end{equation*}
$$

where $A \in \mathbb{R}^{d \times d}$ is a symmetric positive definite matrix, and $w, b \in \mathbb{R}^{d}$.
Ex. 6 - First show that, using the notation (10), solving (20) is equivalent to solving (9).

Ex. 7 - Show that

$$
\begin{equation*}
\frac{\partial f(w)}{\partial w_{i}}=A_{i:}: w-b_{i} \tag{21}
\end{equation*}
$$

where A_{i} is the i th row of A. Furthermore note that $w^{*}=A^{-1} b$, thus

$$
\begin{equation*}
\frac{\partial f(w)}{\partial w_{i}}=e_{i}^{\top}(A w-b)=e_{i}^{\top} A\left(w-w^{*}\right) . \tag{22}
\end{equation*}
$$

Ex. 8 - Question 2.3: Consider a step of the stochastic coordinate descent method

$$
\begin{equation*}
w^{k+1}=w^{k}-\alpha_{i} \frac{\partial f\left(w^{k}\right)}{\partial x_{i}} e_{i}, \tag{23}
\end{equation*}
$$

where $e_{i} \in \mathbb{R}^{d}$ is the i th unit coordinate vector, $\alpha_{i}=\frac{1}{A_{i i}}$, and $i \in\{1, \ldots, d\}$ is sampled i.i.d at each step according to $i \sim p_{i}$ where $p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)}$. Let $\|x\|_{A}^{2} \stackrel{\text { def }}{=} x^{\top} A x$.

First, prove that

$$
\begin{equation*}
\left\|w^{k+1}-w^{*}\right\|_{A}^{2}=\left\langle\left(I-\Pi_{i}^{\top}\right) A\left(I-\Pi_{i}\right)\left(w^{k}-w^{*}\right), w^{k}-w^{*}\right\rangle . \tag{24}
\end{equation*}
$$

Ex. 9 - Question 2.4: Let $r^{k} \stackrel{\text { def }}{=} A^{1 / 2}\left(w^{k}-w^{*}\right)$. Deduce from (24) that

$$
\begin{equation*}
\left\|r^{k+1}\right\|_{2}^{2}=\left\|r^{k}\right\|_{2}^{2}-\left\langle\frac{A^{1 / 2} e_{i} e_{i}^{\top} A^{1 / 2}}{A_{i i}} r^{k}, r^{k}\right\rangle \tag{26}
\end{equation*}
$$

Ex. 10 - Finally, prove the convergence of the iterates of CD (23) converge according to

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{k+1}-w^{*}\right\|_{A}^{2}\right] \leq\left(1-\frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\right) \mathbb{E}\left[\left\|w^{k}-w^{*}\right\|_{A}^{2}\right] \tag{28}
\end{equation*}
$$

thus (23) converges to the solution.
Hint: Since A is symmetric positive definite you can use that

$$
\lambda_{\min }(A)=\inf _{x \in \mathbb{R}^{d}, x \neq 0} \frac{x^{\top} A x}{\|x\|_{2}^{2}}
$$

You will need to use that $x^{\top} A x \geq \lambda_{\min }(A)\|x\|_{2}^{2}$ at some point.

Ex. 11 - Question 2.6: When is this stochastic coordinate descent method faster than the stochastic gradient method (14) or gradient descent? Note that each iteration of SGD and CD costs $O(d)$ floating point operations while an iteration of the GD method costs $O\left(d^{2}\right)$ floating point operations (assuming that A has been previously calculated and stored). What happens if d is very big? What if $\operatorname{Tr}(A)$ is very large? Discuss this.

References

[1] R. M. Gower and P. Richtárik. "Stochastic Dual Ascent for Solving Linear Systems". In: arXiv:1512.06890 (2015).
[2] T. Strohmer and R. Vershynin. "A Randomized Kaczmarz Algorithm with Exponential Convergence". In: Journal of Fourier Analysis and Applications 15.2 (2009), pp. 262278.

[^0]: ${ }^{1}$ We need only consider a linear mapping as opposed to the more general affine mapping $x_{i} \mapsto w^{\top} x_{i}+\beta$, because the zero order term $\beta \in \mathbb{R}$ can be incorporated by defining a new feature vectors $\hat{x}_{i}=\left[x_{1}, 1\right]$ and new variable $\hat{w}=[w, \beta]$ so that $\hat{x}_{i}^{\top} \hat{w}=x_{i}^{\top} w+\beta$
 ${ }^{2}$ Excluding the issue of selection λ using something like crossvalidation https://en.wikipedia.org/ wiki/Cross-validation_(statistics)

