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1 Probability measures

Let Ω be a finite set of something we are interested in. For instances, say we are interested
in the result of tossing a coin n times. Let H be “heads” and T be “tails”. In this case
Ω = {H,T}n. In particular, we would like to be able to answer questions such as “what is
the chance that all n tosses are head”? Or “what is the chance there are an even number
of tails”? That is, we would like to assign a probability to subsets of Ω.

To this end we define a probability measure P with

P : C ⊂ Ω 7→ P [C] ∈ [0, 1].

This probability map satisfies the following axioms

• Total probability law P [Ω] = 1.

• Countably Additive For sets Ci ⊂ Ω that are disjoint we have that

∩ni=1Ci = ∅ =⇒ P [∪ni=1Ci] =
n∑

i=1

P [C] .

With this rule we can calculate the probability of the union of two sets. Indeed let
C,B ⊂ Ω and note that

B ∪ C = (B \ C)
⋃
C.

Furthermore since
B = (B \ C)

⋃
(B ∩ C),

we have by taking the probability that

P [B] = P [B \ C] + P [B ∩ C]

and consequently

P [B ∪ C] = P [B \ C] + P [C] = P [B] + P [C]− P [B ∩ C] .

1



Remark 1.1. This definition of a probability measure is only possible because Ω is a
finite set. If Ω had infinitely many elements, then the probability measure is not defined
over all subsets of Ω, but rather a collection of subset known as a σ–algebra.

2 Discrete Random Variables

Our finite set Ω can be anything from results of coin tosses to different types of fruits.
But dealing with such strange objects makes it hard. It is much easier to deal with real
numbers. In particular, if we want to do some measurements or calculations based on the
outcome of an experiment that gives ω ∈ Ω we need numbers. Because of this, we often
deal with real functions over Ω. Let

X : Ω 7→ R
ω ∈ Ω 7→ X(ω),

be this real valued function. We further suppose that X has a discrete number of output
given by

X(Ω) = {x1, . . . , xn}.
Now we would like to know the probability of each output occurring, say

P [X = xi] = pi, for i = 1, . . . , n.

First note that P [X = xi] is well defined because

{X = xi}
def
= {ω ∈ Ω : X(ω) = xi} = X−1(xi),

is a subset of Ω. That is {X = xi} is the set of all elements in Ω such that X maps them
to xi. Though awkward, often the curly brackets in {X = xi} are dropped, and we use
X = xi instead. With or with no brackets, bare in mind that this X = xi denotes a set of
points in Ω. For short hand, we write P [X = xi] = pi as simply xi ∼ pi.

We refer to this X as a random variable because it takes on real values (thus the variable
part) and we are unsure of its value (thus the random part).

To better illustrate this definition of random variable, consider the following example.

Example with sequence of coin tosses. Random variables are used to model uncer-
tainty. For instance, consider a sequence of n coin tosses where Ω = {H, T}n where H
is “Heads” and T is “Tails”. Say we want to measure “the number of Heads observed”.
We could use a random variable X for this. Let X be a function with image {0, . . . , n}.
Now let us say that this is a biased coin that returns H with probability q and T with
probability 1− q. In this case X is a random variable with

P [X = i] =

(
n

i

)
qi(1− q)n−i for i = 1, . . . , n.
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Using our previous notation this means that i ∼
(
n
i

)
qi(1 − q)n−i. That is the outcome i

will appear with probability
(
n
i

)
qi(1− q)n−i.

Joint and conditional probability. Given two random variables X and Y we use
P [X = xi and Y = yj ] to denote the joint probability of both X = xi and Y = yj occurring.
Said in another way, it is the probability of an element in X−1(xi) ∩ Y −1(yj) occurring.
Consequently we have that∑

i

P [X = xi and Y = yj ] = P [Y = yj ] . (1)

This last equation can be derived using

P [Y = yj ] = P [∪i{X = xi}, Y = yj ] =
n∑

i=1

P [X = xi, Y = yj ]

where we used that {X = xi} and {X = xj} are disjoint for i 6= j. Indeed, since if
ω ∈ {X = xi} ∩ {X = xj} then X(ω) = xi and X(Ω) = xj , which is only possible if
xi = xj .

Conditional probability. We define the conditional probability of X = xi given Y = yj
as

P [X = xi |Y = yj ] =
P [X = xi and Y = yj ]

P [Y = yj ]
, (2)

if P [Y = yj ] 6= 0, otherwise P [X = xi |Y = yj ] = 0. Intuitively, this conditional probability
is the probability of X = xi occurring given that we have observed Y = yj occurring.

Independence We say X and Y are independent if

P [X = xi and Y = yj ] = P [X = xi]P [Y = yj ] , for all i, j ∈ {1, . . . , n}.

Expectation. We define the expectation of X as the average of the elements in the image
of X as weighted by their probability of occurring

E [X]
def
=

n∑
i=1

xiP [X = xi] .

It is now straightforward to show that expectation is a Linear operator. That is, let X and
Y be two random variables and let α, β ∈ R. It follows that

E [αX + βY ] = αE [X] + βE [Y ] .

Exe: Prove this!
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Conditional Expectation. Let X and Y be two random variables. We define the
conditional expectation of X on Y = yj as

E [X | Y = yj ]
def
=

n∑
i=1

xiP [X = xi | Y = yj ] . (3)

In other words, it is the expected value of X but given that Y = yj has occurred. We can
extend this definition to define the following random variable

E [X | Y ] : yi 7→ E [X | Y = yi] .

That is E [X | Y ] is a function that takes elements from the domain of Y and maps to R.

Ex. 1 — . Show that E [· | Y ] is a linear operator. That is, let X,Y and Z be random
variables and let α, β ∈ R. Show that

E [αX + βY | Z] = αE [X | Z] + βE [Y | Z]

Answer (Ex. 1) — Note that P [αX + βY = αxi + βyj ] =

E [αX + βY | Z] =
∑
j,k

(αxj + βyk)P [X = xj , Y = yk | Z]

= α
∑
j,k

xjP [X = xi, Y = yk | Z] + β
∑
j,k

ykP [X = xj , Y = yk | Z] .

Now by the definition of conditional probability∑
j,k

xjP [X = xj , Y = yk | Z = zi] =
∑
j

xj
P [Z = zi]

∑
k

P [X = xj , Y = yk, Z = zi] (Using (2))

=
∑
j

xj
P [Z = zi]

P [X = xj , Z = zi] (Using (1))

=
∑
j

xjP [X = xj | Z = zi] .

Ex. 2 — Let X and Y be two random variables. Prove the following tower rule otherwise
known as the rule of total expectation:

E [E [X | Y ]] = E [X] (4)
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Answer (Ex. 2) —

E

[∑
i

xiP [X = xi | Y ]

]
=
∑
j

∑
i

xiP [X = xi | Y = yj ]P [Y = yj ]

=
∑
j

∑
i

xiP [X = xi, Y = yj ]

=
∑
i

xi
∑
j

P [X = xi, Y = yj ]

=
∑
i

xiP [X = xi] = E [X] .

Remark 2.1 (Modern definition of conditional expectation). The property (4) is what
inspired the modern definition for conditional expectation. Let

IA(x) =

{
1 if x ∈ A
0 otherwise.

We say that E [X | Y ] is the conditional expectation of X given Y if it is a random
variable defined over the same space as Y that satisfies

E [IAE [X | Y ]] = E [IAX] , ∀A ∈ {Y −1(B) : B ⊂ B},

where B is the Borel σ–algebraa. This definition generalizes to continuous random vari-
ables, and avoid some “dividing by zero” issues with our definition of conditional proba-
bility (2).

aThe Borel σ–algebra, denoted by B, is the collection of all open sets (a, b) ⊂ R, complements of open
sets, and finite unions of open sets. Since (−∞, ∞) is also an open set, we have that R ∈ B and its
complement ∅ ∈ B.

Ex. 3 — Let X and Y be two independent random variables. Let Z = XY be their
product. Show that

E [Z | Y ] = E [X]Y, (5)

and consequently
E [Z] = E [X]E [Y ] .
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Answer (Ex. 3) — From the definition (3) we have

E [Z | Y = yj ] =
∑
i,k

xiykP [Z = xiyk | Y = yj ]

=
∑

xi 6=0,yk 6=0

xiyk
P [XY = xiyk, Y = yj ]

P [Y = yj ]
Definition (2)

=
∑
xi 6=0

xiyj
P [XY = xiyj , Y = yj ]

P [Y = yj ]
(Since P [XY = xiyk, Y = yj ] = 0 if k 6= i)

=
∑
xi 6=0

xiyj
P [X = xi, Y = yj ]

P [Y = yj ]

=
∑
xi 6=0

xiyjP [X = xi] = yjE [X] . (6)

Consequently using (4) we have that

E [Z] = E [E [Z | Y ]] = E [Y E [X]] = E [Y ]E [X] .

3 Random Vectors and their convergence

Random vectors. A random vector v = (V1, . . . , Vn)> is a column vector1 of random
variables that share the same domain (indeed the same probability space). That is, v is a
vector valued map taking inputs from say ω ∈ Ω and returning v(ω) = (V1(ω), . . . , Vn(ω)) ∈
Rn.

The definitions and properties we established in the previous section carry over verbatim
to random vectors. For instance, let v and w be two independent random vectors, that is
for w, v ∈ Rn we have that

P [v = v and w = v] = P [v = v]P [w = w] .

In the case we have that
E [〈v,w〉 | w] = 〈E [v] ,w〉 . (7)

This follows from (5) since

E [〈v,w〉 | w] = E

[
n∑

i=1

ViWi | w

]
=

n∑
i=1

E [ViWi | w]

=
n∑

i=1

E [Vi]Wi = 〈E [v] ,w〉 . (Using (5))

To warm up and practice using the random vectors, we now solve the following exercise.

1There is now a long standing tradition in optimization that all vectors and gradients are column vectors.
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Ex. 4 — Let xt be a sequence of random vectors such that

E [xt] = 0 ∈ Rn

for t = 1, . . . , T and
E
[
‖xt‖2

]
≤ B,

where B > 0. Let α > 0, y0 = 0 ∈ Rn and yt defined recursively by

yt+1 = yt − αxt,

for t = 1, . . . , T. Show that
E
[
‖yt+1‖2

]
t+ 1

≤ α2B. (8)

Answer (Ex. 4) — Take squared norm we have that

‖yt+1‖2 = ‖yt − αxt‖2

= ‖yt‖2 − 2α
〈
yt, xt

〉
+ α2‖xt‖2

Taking expectation conditioned on yt and using (7) we have that

E
[
‖yt+1‖2 | yt

]
= ‖yt‖2 − 2α

〈
yt,E

[
xt
]〉

+ α2E
[
‖xt‖2

]
≤ ‖yt‖2 + α2B.

Taking expectation again

E
[
‖yt+1‖2

]
= E

[
E
[
‖yt+1‖2 | yt

]]
(Using (4) )

≤ E
[
‖yt‖2

]
+ α2B.

Unrolling the recurrence now gives

E
[
‖yt+1‖2

]
≤ (t+ 1)α2B.

3.1 Convergence of random variables

So far in the course you have seen gradient descent. Soon we will see stochastic methods
such as stochastic gradient descent. In stochastic methods, all the iterates xt are random
vectors. We would like these iterates to converge to a minimizer x∗ of our given optimization
problem. Because the xt’s are random we always prove convergence in expectation or
probability. In particular, we will focus on two forms of convergence. Let ρ ∈ [0, 1) and
let f : Rn → R+. We say that the function values converge in expectation at a linear rate
ρ if

E
[
f(xt+1)− f(x∗)

]
≤ (1− ρ)E

[
f(xt)− f(x∗)

]
. (9)
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We say that the iterates converge in L2 at a linear rate ρ if

E
[
‖xt+1 − x∗‖2

]
≤ (1− ρ)E

[
‖xt − x∗‖2

]
. (10)

Both (9) and (10) are referred to as linear rates of convergence since, if we unroll the
recurrence and take natural logarithms on both sides of (10), for example, we have that

log
(
E
[
‖xt − x∗‖2

])
≤ t log(1− ρ) + log

(
‖x0 − x∗‖2

)
.

And so in log scale the iterates converge linearly and proportional to t.
Yet another commonly used form of convergence of random variables is convergence in

probability, where by, given any δ > 0 we have that

lim
t→∞

P
[
‖xt − x∗‖2 > δ

]
= 0. (11)

Some important questions we need to consider are: 1) Which of these forms of con-
vergence is the “strongest”? 2) What about the variance? and 3) how do these forms of
convergence translate to an iteration complexity?

We answer the first question in the following lemma.

Lemma 3.1. The convergence in L2 (10) implies the convergence in expectation of the
iterates as can be seen through the equality

E
[∥∥xt − x∗∥∥2] =

∥∥E [xt − x∗] ∥∥2 + E
[∥∥xt − x∗ − E

[
xt − x∗

] ∥∥2] . (12)

Furthermore (10) implies convergence in probability.

Proof. Let (xt − x∗)k be a sequence of random vectors that converges to zero according
to (10). The convergence in expectation follows from the equality∥∥E [xt − x∗] ∥∥2 =

∥∥E [xt − x∗] ∥∥2 + E
[
‖xt − x∗‖2

]
− E

[
‖xt − x∗‖2

]
= E

[
‖xt − x∗‖2

]
−
(
E
[
‖xt − x∗‖2

]
− 2E

[〈
xt − x∗,E

[
xt − x∗

]〉]
+
∥∥E [xt − x∗] ∥∥2)

= E
[∥∥xt − x∗∥∥2]− E

[∥∥xt − x∗ − E
[
xt − x∗

] ∥∥2] . (13)

Indeed, since E
[∥∥xt − x∗ − E

[
xt − x∗

] ∥∥2] ≥ 0 we have that

∥∥E [xt − x∗] ∥∥2 ≤ E
[∥∥xt − x∗∥∥2] (10)

≤ (1− ρ)t‖x0 − x∗‖2.

Consequently the norm of the expected error converges with rate
√

1− ρ. Finally, let δ > 0.
Using Markov’s inequality we have

P(‖xt − x∗‖2 ≥ δ) ≤
E
[
‖xt − x∗‖2

]
δ

(10)

≤ (1− ρ)k

δ
‖x0 − x∗‖2. (14)

Thus P(‖xt − x∗‖2 ≥ δ‖x0 − x∗‖2)→ 0 as t→∞.
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Iteration Complexity Given ε how many iterations t are needed before E
[
f(xt)− f(x∗)

]
<

ε or E
[
‖xt − x∗‖2

]
< ε. ? We answer this next in the following exercises.

Ex. 5 — Consider a sequence (αt)t ∈ R+ that converge to zero according to

αt ≤
C

t
,

where C > 0. Given an ε > 0, show that

t ≥ C

ε
⇒ αt < ε.

We refer to this result as a O(1/ε) iteration complexity.

Answer (Ex. 6) — Follows since

αt ≤ C
1

t
≤ C

ε

C
= ε.

Ex. 6 — Using that
1

1− ρ
log

(
1

ρ

)
≥ 1, (15)

prove the following lemma.

Lemma 3.2. Consider the sequence (αk)k ∈ R+ of positive scalars that converges to
zero according to

αk ≤ ρk α0, (16)

where ρ ∈ [0, 1). For a given 1 > ε > 0 we have that

k ≥ 1

1− ρ
log

(
1

ε

)
⇒ αk ≤ ε α0. (17)

We refer to this as a O(log(1/ε)) iteration complexity.

Following the introduction, we can write αt def
= E

[
f(xt)− f(x∗)

]
or αt def

= E
[
‖xt − x∗‖2

]
.

The type of convergence (16) is known as linear convergence at a rate of ρk.

Answer (Ex. 6) — Proof. First note that if ρ = 0 the result follows trivially. Assuming
ρ ∈ (0, 1), rearranging (16) and applying the logarithm to both sides gives

log

(
α0

αk

)
≥ k log

(
1

ρ

)
. (18)
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Now using (15) and assuming that

k ≥ 1

1− ρ
log

(
1

ε

)
, (19)

we have that

log

(
α0

αk

)
(18)

≥ k log

(
1

ρ

)
(19)

≥ 1

1− ρ
log

(
1

ρ

)
log

(
1

ε

)
(15)

≥ log

(
1

ε

)
Applying exponentials to the above inequality gives (17).
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