Optimization for Machine Learning

Stochastic Variance Reduced Gradient Methods

Lecturer: Robert M. Gower

$28^{\text {th }}$ of April to $5^{\text {th }}$ of May 2020, Cornell mini-lecture series, online

References for this class

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, R. M. G. Towards closing the gap between the theory and practice of SVRG, Neurips 2019.

M. Schmidt, N. Le Roux, F. Bach (2016), Mathematical Programming Minimizing Finite Sums with the Stochastic Average Gradient.

RMG, P. Richtárik and Francis Bach (2018)
Stochastic quasi-gradient methods: variance reduction via Jacobian sketching

EXE: variance_reduced_exe + convergence_prob_exe

Optimization Sum of Terms

A Datum Function

$$
f_{i}(w):=\ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w) & =\frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(h_{w}\left(x^{i}\right), y^{i}\right)+\lambda R(w)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
\end{aligned}
$$

Finite Sum Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=: f(w)
$$

Complexity / Convergence

Theorem

If f is μ-str. convex, f_{i} is convex, L_{i}-smooth, $\alpha \in\left[0, \frac{1}{2 L_{\text {max }}}\right]$ then the iterates of the SGD satisfy

$$
\left.\sigma^{2}:=\mathbb{E}_{j}\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)^{t}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \alpha}{\mu} \sigma^{2}
$$

Complexity / Convergence

Theorem

If f is μ-str. convex, f_{i} is convex, L_{i}-smooth, $\alpha \in\left[0, \frac{1}{2 L_{\text {max }}}\right]$ then the iterates of the SGD satisfy

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
\left.\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)^{t}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \sigma}{\mu} \sigma^{2}\right)
$$

This stops SGD from naturally converging

Complexity / Convergence

Theorem

If f is μ-str. convex, f_{i} is convex, L_{i}-smooth, $\alpha \in\left[0, \frac{1}{2 L_{\text {max }}}\right]$ then the iterates of the SGD satisfy

$$
\sigma^{2}:=\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)^{t}\left\|w^{0}-w^{*}\right\|_{2}^{2}+\frac{2 \sigma}{\mu}\left(\sigma^{2}\right)
$$

Where did this term come from?

This stops SGD from naturally converging

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] & =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \\
& \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

quasi strong conv

$$
\leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha\left(\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]\right.
$$

Proof:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\text { quasi strong conv } \longrightarrow \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right)
$$

$$
\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)-\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

f_{i} is cvx and
$L_{\text {max }}-$ smooth

Proof:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\text { quasi strong conv } \longrightarrow \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right)
$$

$$
\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)-\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

```
fi is cvx and
L max -smooth
```

$$
\leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}
$$

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\text { quasi strong conv } \longrightarrow \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right)
$$

$$
\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)-\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$$
\begin{aligned}
& f_{i} \text { is } \mathrm{cvx} \text { and } \\
& L_{\text {max }}-\text { smooth }
\end{aligned}
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \alpha^{2} \sigma^{2}
$$

$$
\alpha \leq \frac{1}{2 L_{\max }} \longrightarrow \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \alpha^{2} \sigma^{2}
$$

Proof:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\alpha \nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f_{j}\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2}\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\alpha^{2} \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right]
$$

$$
\text { quasi strong conv } \longrightarrow \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \alpha\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\alpha \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right)
$$

$$
\mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)\right\|_{2}^{2}\right] \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{t}\right)-\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{j}\left(w^{*}\right)\right\|_{2}^{2}\right]
$$

$\leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2}$
$\mathbb{E}_{j}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f(w)-f\left(w^{*}\right)\right)+2 \alpha^{2} \sigma^{2}$
$\alpha \leq \frac{1}{2 L_{\max }} \longrightarrow \leq(1-\alpha \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}+2 \alpha^{2} \sigma^{2}$
Proof follows by expanding recurrence and summing up

SGD initially fast, slow later

Convergence plot

Can we get best of both?

Stochastic variance reduced methods

Build an Estimate of the Gradient

\int Instead of using directly $\nabla f_{j}\left(w^{t}\right) \approx \nabla f\left(w^{t}\right)$ Use $\nabla f_{j}\left(w^{t}\right)$ to update estimate $g_{t} \approx \nabla f\left(w^{t}\right)$

$$
w^{t+1}=w^{t}-\gamma g^{t}
$$

We would like gradient estimate such that:

Good

 estimateConverges in L2

$$
g^{t} \approx \nabla f\left(w^{t}\right)
$$

$$
\mathbb{E}_{t}\left\|g^{t}\right\|_{2}^{2}
$$

$$
w^{t} \rightarrow w^{*}
$$

Build an Estimate of the Gradient

\int Instead of using directly $\nabla f_{j}\left(w^{t}\right) \approx \nabla f\left(w^{t}\right)$ Use $\nabla f_{j}\left(w^{t}\right)$ to update estimate $g_{t} \approx \nabla f\left(w^{t}\right)$

$$
w^{t+1}=w^{t}-\gamma g^{t}
$$

We would like gradient estimate such that:

Good
 estimate

$$
g^{t} \approx \nabla f\left(w^{t}\right)
$$

Converges in L2

$$
\mathbb{E}_{t}\left\|g^{t}\right\|_{2}^{2}
$$

$$
w^{t} \rightarrow w^{*}
$$

Build an Estimate of the Gradient

$?$Instead of using directly $\nabla f_{j}\left(w^{t}\right) \approx \nabla f\left(w^{t}\right)$ Use $\nabla f_{j}\left(w^{t}\right)$ to update estimate $g_{t} \approx \nabla f\left(w^{t}\right)$

$$
w^{t+1}=w^{t}-\gamma g^{t}
$$

We would like gradient estimate such that:

Typically unbiased $\mathbf{E}\left[g^{t}\right]=\nabla f\left(w^{t}\right)$

Good
estimate

$$
g^{t} \approx \nabla f\left(w^{t}\right)
$$

Converges in L2

$$
\mathbb{E}_{t}\left\|g^{t}\right\|_{2}^{2}
$$

$$
\begin{equation*}
w^{t} \rightarrow w^{*} \tag{0}
\end{equation*}
$$

Build an Estimate of the Gradient

?Instead of using directly $\nabla f_{j}\left(w^{t}\right) \approx \nabla f\left(w^{t}\right)$ Use $\nabla f_{j}\left(w^{t}\right)$ to update estimate $g_{t} \approx \nabla f\left(w^{t}\right)$

$$
w^{t+1}=w^{t}-\gamma g^{t}
$$

We would like gradient estimate such that:

Typically unbiased $\mathbf{E}\left[g^{t}\right]=\nabla f\left(w^{t}\right)$

Good estimate

$$
g^{t} \approx \nabla f\left(w^{t}\right)
$$

$$
\mathbb{E}_{t}\left\|g^{t}\right\|_{2}^{2}
$$

$$
\overrightarrow{w^{t} \rightarrow w^{*}}
$$

High Level Proof when $\mathbf{E}\left[g^{t}\right]=\nabla f\left(w^{t}\right)$:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to $w^{t} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$
$\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{t}\left[\left\|g^{t}\right\|_{2}^{2}\right]$
quasi strong conv
$(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{t}\left[\left\|g^{t}\right\|_{2}^{2}\right]$

High Level Proof when $\mathbf{E}\left[g^{t}\right]=\nabla f\left(w^{t}\right)$:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to $w^{t} \quad \mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)$

$$
\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{t}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

quasi strong conv

$$
(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{t}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

Converge to 0 as $w^{t} \rightarrow w^{*}$

High Level Proof when $\mathbf{E}\left[g^{t}\right]=\nabla f\left(w^{t}\right)$:

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|w^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, w^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation conditioned on respect to w^{t}

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\nabla f(w)
$$

$$
\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(w^{t}\right), w^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{t}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

quasi strong conv

$$
(1-\gamma \mu)\left\|w^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{t}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

Converge to 0 as $w^{t} \rightarrow w^{*}$

What exactly should g^{t} be?

Controlled Stochastic Reformulation

Covariate functions:

$$
z_{i}: w \mapsto z_{i}(w) \in \mathbb{R}, \quad \text { for } i=1, \ldots, n
$$

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=\mathbb{E}\left[f_{i}(w)\right]=\mathbb{E}\left[f_{i}(w)\right]-\mathbb{E}\left[z_{i}(w)\right]+\mathbb{E}\left[z_{i}(w)\right] \\
i \\
i \sim \frac{1}{n}
\end{gathered}
$$

Controlled Stochastic Reformulation

Covariate functions:

$$
z_{i}: w \mapsto z_{i}(w) \in \mathbb{R}, \quad \text { for } i=1, \ldots, n
$$

Cancel out

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=\mathbb{E}\left[f_{i}(w)\right]=\mathbb{E}\left[f_{i}(w)\right]-\mathbb{E}\left[z_{i}(w)\right]+\mathbb{E}\left[z_{i}(w)\right] \\
i \sim \frac{1}{n}
\end{gathered}
$$

Controlled Stochastic Reformulation

Covariate functions:

$$
z_{i}: w \mapsto z_{i}(w) \in \mathbb{R}, \quad \text { for } i=1, \ldots, n
$$

Cancel out

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=\mathbb{E}\left[f_{i}(w)\right]=\mathbb{E}\left[f_{i}(w)\right]-\mathbb{E}\left[z_{i}(w)\right]+\mathbb{E}\left[z_{i}(w)\right] \\
& i \sim \frac{1}{n}=\mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
\end{aligned}
$$

Controlled Stochastic Reformulation

Covariate functions:

$$
z_{i}: w \mapsto z_{i}(w) \in \mathbb{R}, \quad \text { for } i=1, \ldots, n
$$

Cancel out

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)=\mathbb{E}\left[f_{i}(w)\right] & =\mathbb{E}\left[f_{i}(w)\right]-\mathbb{E}\left[z_{i}(w)\right]+\mathbb{E}\left[z_{i}(w)\right] \\
i & \sim \frac{1}{n}
\end{aligned}=\mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
$$

Original finite

 sum problem$\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$

Controlled Stochastic Reformulation

$$
\min _{w \in \mathbb{R}^{d}} \mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
$$

Use covariates to control the variance

Variance reduction as SGD

$$
\min _{w \in \mathbb{R}^{d}} \mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
$$

Variance reduction as SGD

$$
\min _{w \in \mathbb{R}^{d}} \mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
$$

$$
\begin{gathered}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{gathered}
$$

Variance reduction as SGD

$$
\min _{w \in \mathbb{R}^{d}} \mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
$$

$$
\left.\begin{array}{c}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{array}\right] .
$$

Variance reduction as SGD

$\min _{w \in \mathbb{R}^{d}} \mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]$

Variance reduction as SGD

$$
\min _{w \in \mathbb{R}^{d}} \mathbb{E}\left[f_{i}(w)-z_{i}(w)+\mathbb{E}\left[z_{i}(w)\right]\right]
$$

How to choose $z_{i}(w)$?

Noise of covariate estimate

$$
\begin{gathered}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{gathered}
$$

$$
\begin{aligned}
\mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right] & =\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)\right]\right\|^{2}\right] \\
& =\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]+\nabla f(w)\right\|^{2}\right] \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]\right\|^{2}+2\|\nabla f(w)\|^{2}\right. \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)\right\|^{2}+2\|\nabla f(w)\|^{2}\right.
\end{aligned}
$$

Noise of covariate estimate

$$
\begin{gathered}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{gathered}
$$

$$
\left.\begin{array}{rl}
\mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right] & =\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)\right]\right\|^{2}\right] \\
\|a+b\|^{2} \leq \\
2\|a\|^{2}+2\|b\|^{2}
\end{array}\right)=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]+\nabla f(w)\right\|^{2}\right] \quad \begin{aligned}
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]\right\|^{2}+2\|\nabla f(w)\|^{2}\right. \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)\right\|^{2}+2\|\nabla f(w)\|^{2}\right.
\end{aligned}
$$

Noise of covariate estimate

$$
\begin{gathered}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right]=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)\right]\right\|^{2}\right] \\
& \begin{array}{c}
\|a+b\|^{2} \leq \\
2\|a\|^{2}+2\|b\|^{2}
\end{array}=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]+\nabla f(w)\right\|^{2}\right] \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]\right\|^{2}+2\|\nabla f(w)\|^{2}\right. \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)\right\|^{2}+2\|\nabla f(w)\|^{2}\right.
\end{aligned}
$$

```
    E [|X - E[X]||}\mp@subsup{|}{}{2}]\leq\mathbb{E}[|X\mp@subsup{|}{}{2
where X:= \nabla\mp@subsup{f}{i}{}(w)-\nabla\mp@subsup{z}{i}{}(w)
```


Noise of covariate estimate

$$
\begin{gathered}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right]=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)\right]\right\|^{2}\right] \\
&\|a+b\|^{2} \leq \\
& 2\|a\|^{2}+2\|b\|^{2}=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]+\nabla f(w)\right\|^{2}\right] \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]\right\|^{2}+2\|\nabla f(w)\|^{2}\right. \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)\right\|^{2}+2\|\nabla f(w)\|^{2}\right.
\end{aligned}
$$

```
    E[|X - E[X]|\mp@subsup{|}{}{2}]\leq\mathbb{E}[|X|\mp@subsup{|}{}{2}
    where }X:=\nabla\mp@subsup{f}{i}{}(w)-\nabla\mp@subsup{z}{i}{}(w
```

Converge to 0 as $w^{t} \rightarrow w^{*}$

Noise of covariate estimate

$$
\begin{gathered}
\text { Sample } i \sim \frac{1}{n} \\
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right]=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)\right]\right\|^{2}\right] \\
&\|a+b\|^{2} \leq \\
& 2\|a\|^{2}+2\|b\|^{2}=\mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]+\nabla f(w)\right\|^{2}\right] \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)-\nabla f(w)\right]\right\|^{2}+2\|\nabla f(w)\|^{2}\right. \\
& \leq 2 \mathbb{E}_{i}\left[\left\|\nabla f_{i}(w)-\nabla z_{i}(w)\right\|^{2}+2\|\nabla f(w)\|^{2}\right.
\end{aligned}
$$

$\mathbb{E}\left[\|X-E[X]\|^{2}\right] \leq \mathbb{E}\left[\|X\|^{2}\right.$ where $X:=\nabla f_{i}(w)-\nabla z_{i}(w)$

Converge to 0 as $w^{t} \rightarrow w^{*}$

Choosing the covariate as a
 linear approximation

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

Choosing the covariate as a
 linear approximation

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

Choosing the covariate as a

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

\square

Expensive to compute for all i

Choosing the covariate as a

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

Expensive to compute for all i

$$
\text { Use snapshot: } \quad \nabla z_{i}(w)=\nabla f_{i}(\tilde{w})
$$

Reference point. Rarely update

Choosing the covariate as a
 linear approximation

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

Expensive to compute for all i

Use snapshot:
 $$
\nabla z_{i}(w)=\nabla f_{i}(\tilde{w})
$$

If $f_{i}(w)$ is $L_{\text {max }}-$ smooth
Reference point. Rarely update
$\left\|\nabla f_{i}(w)-\nabla f_{i}(\tilde{w})\right\| \leq L_{\max }\|w-\tilde{w}\|$

Choosing the covariate as a

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

Expensive to compute for all i

$$
\text { Use snapshot: } \quad \nabla z_{i}(w)=\nabla f_{i}(\tilde{w})
$$

If $f_{i}(w)$ is $L_{\text {max }}-$ smooth

Reference point. Rarely update

$$
\mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right] \leq \mathbb{E}_{i}\left[\|w-\tilde{w}\|^{2}+2\|\nabla f(w)\|^{2}\right.
$$

Choosing the covariate as a
 linear approximation

We would like:

$$
\nabla z_{i}(w) \approx \nabla f_{i}(w)
$$

Expensive to compute for all i

$$
\text { Use snapshot: } \quad \nabla z_{i}(w)=\nabla f_{i}(\tilde{w})
$$

Reference point. Rarely update

$$
\text { If } f_{i}(w) \text { is } L_{\max }-\text { smooth }
$$

$$
\mathbb{E}_{i}\left[\left\|g_{i}(w)\right\|^{2}\right] \leq \mathbb{E}_{i}\left[\|w-\tilde{w}\|^{2}+2\|\nabla f(w)\|^{2}\right.
$$

SVRG: Stochastic Variance reduced method gradient

$$
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
$$

Reference point

Sample

Grad. estimate

$$
\tilde{w} \in \mathbb{R}^{d}
$$

$$
\nabla f_{i}\left(w^{t}\right)
$$

i.i.d sample with prob $\frac{1}{n}$

$$
g_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})
$$

$$
\nabla z_{i}\left(w^{t}\right)=\nabla f_{i}(\tilde{w}) \quad \mathbb{E}\left[\nabla z_{i}\left(w^{t}\right)\right]
$$

free-SVRG: Stochastic Variance

Reduced Gradients

Set $\tilde{w}^{0}=0=x_{0}^{m}$, choose $\gamma>0, m \in \mathbb{N}$,

$$
\alpha_{t}>0 \text { with } \sum_{t=0}^{m-1} \alpha_{t}=1
$$

for $s=1,2, \ldots, T$

$$
\begin{aligned}
& x_{s}^{0}=x_{s-1}^{m} \\
& \text { for } t=0,1,2, \ldots, m-1 \\
& \quad \text { i.i.d sample } i \sim \frac{1}{n} \\
& \quad g^{t}=\nabla f_{i}\left(x_{s}^{t}\right)-\nabla f_{i}\left(\tilde{w}^{s-1}\right)+\nabla f\left(\tilde{w}^{s-1}\right) \\
& \quad x_{s}^{t+1}=x_{s}^{t}-\gamma g^{t} \\
& \tilde{w}^{s+1}=\sum_{t=0}^{m-1} \alpha_{t} x_{s}^{t}
\end{aligned}
$$

Output \tilde{w}^{T+1}

free-SVRG: Stochastic Variance

Set $\tilde{w}^{0}=0=x_{0}^{m}$, choose $\gamma>0, m \in \mathbb{N}$,

$$
\alpha_{t}>0 \text { with } \sum_{t=0}^{m-1} \alpha_{t}=1
$$

for $s=1,2, \ldots, T$

$$
\begin{aligned}
& x_{s}^{0}=x_{s-1}^{m} \\
& \text { for } t=0,1,2, \ldots, m-1
\end{aligned}
$$

Adding

$$
\begin{aligned}
& \text { i.i.d sample } i \sim \frac{1}{n} \\
& g^{t}=\nabla f_{i}\left(x_{s}^{t}\right)-\nabla f_{i}\left(\tilde{w}^{s-1}\right)+\nabla f\left(\tilde{w}^{s-1}\right) \\
& \longrightarrow x_{s}^{t+1}=x_{s}^{t}-\gamma g^{t} \\
& \tilde{w}^{s+1}=\sum_{t=0}^{m-1} \alpha_{t} x_{s}^{t}
\end{aligned}
$$

Output \tilde{w}^{T+1}

free-SVRG: Stochastic Variance

Set $\tilde{w}^{0}=0=x_{0}^{m}$, choose $\gamma>0, m \in \mathbb{N}$,

$$
\alpha_{t}>0 \text { with } \sum_{t=0}^{m-1} \alpha_{t}=1
$$

for $s=1,2, \ldots, T$

$$
\begin{aligned}
& x_{s}^{0}=x_{s-1}^{m} \\
& \text { for } t=0,1,2, \ldots, m-1
\end{aligned}
$$

$$
\text { i.i.d sample } i \sim \frac{1}{n}
$$

Adding

$$
g^{t}=\nabla f_{i}\left(x_{s}^{t}\right)-\nabla^{n} f_{i}\left(\tilde{w}^{s-1}\right)+\nabla f\left(\tilde{w}^{s-1}\right)
$$

indices in t and s

$$
\tilde{w}^{s+1}=\sum_{t=0}^{m-1} \alpha_{t} x_{s}^{t}
$$

Output \tilde{w}^{T+1}

Reference point is an average of inner iterates

SAGA: Stochastic Average Gradient

$$
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
$$

Sample
$\nabla f_{i}\left(w^{t}\right), \quad$ i.i.d sample with prob $\frac{1}{n}$

Grad. estimate

$$
g_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t}\right)-\nabla f_{i}\left(w^{t_{i}}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(w^{t_{j}}\right)
$$

Store grad.

$$
\nabla f_{i}\left(w^{t_{i}}\right)=\nabla f_{i}\left(w^{t}\right)
$$

SAGA: Stochastic Average Gradient

$$
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
$$

Sample

Grad. estimate

$$
\begin{gathered}
g_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t}\right)-\nabla f_{i}\left(w^{t_{i}}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(w^{t_{j}}\right) \\
\nabla z_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t_{i}}\right)
\end{gathered}
$$

Store grad.

$$
\nabla f_{i}\left(w^{t_{i}}\right)=\nabla f_{i}\left(w^{t}\right)
$$

SAGA: Stochastic Average Gradient

$$
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
$$

Sample

Grad. estimate

$$
\begin{array}{r}
g_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t}\right)-\nabla f_{i}\left(w^{t_{i}}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(w^{t_{j}}\right) \\
\nabla z_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t_{i}}\right) \quad \mathbb{E}\left[\nabla z_{i}\left(w^{t}\right)\right]
\end{array}
$$

Store grad.

$$
\nabla f_{i}\left(w^{t_{i}}\right)=\nabla f_{i}\left(w^{t}\right)
$$

SAGA: Stochastic Average Gradient

$$
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
$$

Sample

$\nabla f_{i}\left(w^{t}\right), \quad$ i.i.d sample with prob $\frac{1}{n}$

Grad. estimate

$$
g_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t}\right)-\nabla f_{i}\left(w^{t_{i}}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(w^{t_{j}}\right)
$$

$z_{i}(w)=f_{i}\left(w^{t_{i}}\right)+\left\langle\nabla f_{i}\left(w^{t_{i}}\right), w-w^{t_{i}}\right\rangle$

$$
\nabla z_{i}\left(w^{t}\right)=\nabla f_{i}\left(w^{t_{i}}\right)
$$

$$
\mathbb{E}\left[\nabla z_{i}\left(w^{t}\right)\right]
$$

Store grad.

$$
\nabla f_{i}\left(w^{t_{i}}\right)=\nabla f_{i}\left(w^{t}\right)
$$

SAGA: Stochastic Average Gradient

Set $w^{0}=0, g_{i}=\nabla f_{i}\left(w^{0}\right)$, for $i=1 \ldots, n$ Choose $\gamma>0$

$$
\text { for } t=0,1,2, \ldots, T-1
$$

$$
\text { sample } i \in\{1, \ldots, n\}
$$

$$
g^{t}=\nabla f_{i}\left(w^{t}\right)-g_{i}+\frac{1}{n} \sum_{j=1}^{n} g_{j}
$$

$$
w^{t+1}=w^{t}-\gamma g^{t}
$$

$$
g_{i}=\underset{T}{\nabla} f_{i}\left(w^{t}\right)
$$

Output w^{T}

SAG: Stochastic Average Gradient

$$
w^{t+1}=w^{t}-\gamma g_{i}\left(w^{t}\right)
$$

Sample
$\nabla f_{i}\left(w^{t}\right), \quad$ i.i.d sample with prob $\frac{1}{n}$

Grad. estimate

$$
g_{i}\left(w^{t}\right)=\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(w^{t_{j}}\right) \quad \mathbb{E}\left[g^{t}\right] \neq \nabla f\left(w^{t}\right)
$$

$g_{i}(w):=\nabla f_{i}(w)-\nabla w_{i}(w)+\mathbb{E}\left[\nabla z_{i}(w)\right]$

Store grad.

$$
\nabla f_{i}\left(w^{t_{i}}\right)=\nabla f_{i}\left(w^{t}\right)
$$

SAG: Stochastic Average Gradient

Set $w^{0}=0, g_{i}=\nabla f_{i}\left(w^{0}\right)$, for $i=1, \ldots, n$
Choose $\gamma>0$
for $t=0,1,2, \ldots, T-1$
sample $i \in\{1, \ldots, n\}$
$g_{i}=\nabla f_{i}\left(w^{t}\right) \quad$ (update grad)
$g^{t}=\frac{1}{n} \sum_{j=1}^{n} g_{j}$
$w^{t+1}=w^{t}-\gamma g^{t}$
Output w^{T}

Very easy to implement
Stores a $d \times n$ matrix

SAG: Stochastic Average Gradient

$$
\begin{aligned}
& \text { Set } w^{0}=0, g_{i}=\nabla f_{i}\left(w^{0}\right) \text {, for } i=1, \ldots, n \\
& \text { Choose } \gamma>0 \\
& \text { for } t=0,1,2, \ldots, T-1 \\
& \qquad \text { sample } i \in\{1, \ldots, n\} \\
& \qquad g_{i}=\nabla f_{i}\left(w^{t}\right) \quad \text { (update grad) } \\
& \qquad g^{t}=\frac{1}{n} \sum_{j=1}^{n} g_{j} \\
& \quad w^{t+1}=w^{t}-\gamma g^{t} \\
& \text { Output } w^{T}
\end{aligned}
$$

Very easy to implement

EXE: Introduce a variable $G=(1 / n) \sum_{j=r} g_{j}$. Re-write the SAG algorithm so G is updated efficiently at each iteration.

The Stochastic Average Gradient

The Stochastic Average Gradient

How to prove this converges? Is this the only option?

Stochastic Gradient Descent $a=0.5$

Convergence Theorems

Assumptions for Convergence

Strong Convexity

$$
f(w) \geq f(y)+\langle\nabla f(y), w-y\rangle+\frac{\mu}{2}\|w-y\|_{2}^{2}
$$

Smoothness + convexity

$$
\begin{aligned}
& f_{i}(w) \leq f_{i}(y)+\left\langle\nabla f_{i}(y), w-y\right\rangle+\frac{L_{i}}{2}\|w-y\|_{2}^{2} \\
& f_{i}(w) \geq f_{i}(y)+\left\langle\nabla f_{i}(y), w-y\right\rangle \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

$$
L_{\max }:=\max _{i=1, \ldots, n} L_{i}
$$

Convergence SAG

Theorem SAG

If $f(w)$ is μ-strongly convex, $f_{i}(w)$ is cvx \& $L_{\text {max }}$-smooth and $\alpha=1 /\left(16 L_{\max }\right)$ then

$$
\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq\left(1-\min \left\{\frac{1}{8 n}, \frac{\mu}{16 L_{\max }}\right\}\right)^{t} C_{0}
$$

where $C_{0}=\frac{3}{2}\left(f\left(w^{0}\right)-f\left(w^{*}\right)\right)+\frac{4 L_{\text {max }}}{n}\left\|w^{0}-w^{*}\right\|_{2}^{2} \geq 0$

A practical convergence result!

Because of biased gradients, difficult proof that relies on computer assisted steps

M. Schmidt, N. Le Roux, F. Bach (2016) Mathematical Programming
Minimizing Finite Sums with the Stochastic Average Gradient.

Convergence SAGA

Theorem SAGA

If $f(w)$ is μ-strongly convex, $f_{i}(w)$ is cvx \& $L_{\max }$-smooth and $\alpha=1 /\left(3 L_{\max }\right)$ then

$$
\mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \leq\left(1-\min \left\{\frac{1}{4 n}, \frac{\mu}{3 L_{\max }}\right\}\right)^{t} C_{0}
$$

where $C_{0}=\frac{2 n}{3 L_{\max }}\left(f\left(w^{0}\right)-f\left(w^{*}\right)\right)+\left\|w^{0}-w^{*}\right\|_{2}^{2} \geq 0$

An even more practical convergence result!

Much easier prove due to unbiased estimate
A. Defazio, F. Bach and J. Lacoste-Julien (2014) NIPS, SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives.

free-SVRG: Stochastic Variance

Set $\tilde{w}^{0}=0=x_{0}^{m}$, choose $\gamma>0, m \in \mathbb{N}$,

$$
\alpha_{t}>0 \text { with } \sum_{t=0}^{m-1} \alpha_{t}=1
$$

for $s=1,2, \ldots, T$

$$
\begin{aligned}
& x_{s}^{0}=x_{s-1}^{m} \\
& \text { for } t=0,1,2, \ldots, m-1 \\
& \quad \text { i.i.d sample } i \sim \frac{1}{n} \\
& \quad g^{t}=\nabla f_{i}\left(x_{s}^{t}\right)-\nabla f_{i}\left(\tilde{w}_{s-1}\right)+\nabla f\left(\tilde{w}_{s-1}\right) \\
& \longrightarrow x_{s}^{t+1}=x_{s}^{t}-\gamma g^{t} \\
& \tilde{w}^{s+1}=\sum_{t=0}^{m-1} \alpha_{t} x_{s}^{t}
\end{aligned}
$$

Output \tilde{w}^{T+1}

free-SVRG: Stochastic Variance

Set $\tilde{w}^{0}=0=x_{0}^{m}$, choose $\gamma>0, m \in \mathbb{N}$,

$$
\alpha_{t}>0 \text { with } \sum_{t=0}^{m-1} \alpha_{t}=1
$$

for $s=1,2, \ldots, T$

$$
\begin{aligned}
& x_{s}^{0}=x_{s-1}^{m} \\
& \text { for } t=0,1,2, \ldots, m-1
\end{aligned}
$$

$$
\text { i.i.d sample } i \sim \frac{1}{n}
$$

$$
g^{t}=\nabla f_{i}\left(x_{s}^{t}\right)-\nabla^{n} f_{i}\left(\tilde{w}_{s-1}\right)+\nabla f\left(\tilde{w}_{s-1}\right)
$$

$$
x_{s}^{t+1}=x_{s}^{t}-\gamma g^{t}
$$

$$
\tilde{w}^{s+1}=\sum_{t=0}^{m-1} \alpha_{t} x_{s}^{t}
$$

Output \tilde{w}^{T+1}

$$
\alpha_{k}=\frac{(1-\gamma \mu)^{m-1-t}}{\sum_{i=0}^{m-1}(1-\gamma \mu)^{m-1-i}}
$$

Convergence Theorem for SVRG

Theorem

If $f(w)$ is μ-strongly convex, $f_{i}(w)$ is $L_{\text {max }}$-smooth

$$
\Psi(x, \tilde{w}):=\left\|x-w^{*}\right\|^{2}+c n s t \times\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

where cnst $:=8 L_{\max } \gamma^{2} \sum_{i=1}^{m-1}(1-\gamma \mu)^{i}$

Convergence Theorem for SVRG

Theorem

If $f(w)$ is μ-strongly convex, $f_{i}(w)$ is $L_{\text {max }}$-smooth

$$
\Psi(x, \tilde{w}):=\left\|x-w^{*}\right\|^{2}+c n s t \times\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

If $\gamma \leq \frac{1}{6 L_{\text {max }}}$ then

$$
\mathbb{E}\left[\Psi\left(x_{s}^{m}, \tilde{w}_{s}\right)\right] \leq \max \left\{(1-\gamma \mu)^{m}, \frac{1}{2}\right\}^{t} \Psi\left(x_{0}^{0}, \tilde{w}_{0}\right)
$$

where cnst $:=8 L_{\max } \gamma^{2} \sum_{i=1}^{m-1}(1-\gamma \mu)^{i}$

Convergence Theorem for SVRG

Theorem

If $f(w)$ is μ-strongly convex, $f_{i}(w)$ is $L_{\text {max }}$-smooth

$$
\Psi(x, \tilde{w}):=\left\|x-w^{*}\right\|^{2}+c n s t \times\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

If $\gamma \leq \frac{1}{6 L_{\text {max }}}$ then

$$
\mathbb{E}\left[\Psi\left(x_{s}^{m}, \tilde{w}_{s}\right)\right] \leq \max \left\{(1-\gamma \mu)^{m}, \frac{1}{2}\right\}^{t} \Psi\left(x_{0}^{0}, \tilde{w}_{0}\right)
$$

where cnst $:=8 L_{\max } \gamma^{2} \sum_{i=1}^{m-1}(1-\gamma \mu)^{i}$
Free to choose the number of inner iterates m

Convergence Theorem for SVRG

Theorem

If $f(w)$ is μ-strongly convex, $f_{i}(w)$ is $L_{\text {max }}-$ smooth

$$
\begin{aligned}
& \qquad \begin{array}{l}
\Psi(x, \tilde{w}):=\left\|x-w^{*}\right\|^{2}+\text { cnst } \times\left(f(\tilde{w})-f\left(w^{*}\right)\right) \\
\text { If } \gamma \leq \frac{1}{6 L_{\max }} \text { then } \\
\mathbb{E}\left[\Psi\left(x_{s}^{m}, \tilde{w}_{s}\right)\right] \leq \max \left\{(1-\gamma \mu)^{m}, \frac{1}{2}\right\}^{t} \Psi\left(x_{0}^{0}, \tilde{w}_{0}\right) \\
\text { where } \text { cnst }:=8 L_{\max } \gamma^{2} \sum_{i=1}^{m-1}(1-\gamma \mu)^{i} \quad \begin{array}{c}
\text { Free to choose the number } \\
\text { of inner iterates } m
\end{array}
\end{array}
\end{aligned}
$$

Corollary If $\gamma=1 / 6 L_{\text {max }}$ and $m=n$

$$
t=O\left(\frac{6}{m} \frac{L_{\max }}{\mu}\right) \log \left(\frac{1}{\epsilon}\right) \quad \square \quad \frac{\mathbb{E}\left[\left\|x_{t}^{m}-w^{*}\right\|^{2}\right]}{\Psi\left(x_{0}^{0}, \tilde{w}^{0}\right)} \leq \epsilon
$$

Comparisons in total complexity for strongly convex

Approximate solution

$$
\mathbb{E}\left[f\left(w^{T}\right)\right]-f\left(w^{*}\right) \leq \epsilon \quad \text { or } \quad \mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq \epsilon
$$

SGD

$O\left(\frac{1}{\epsilon}\right)$

Variance reduction faster than GD when

$$
L \geq \mu+L_{\max } / n
$$

How did I get these complexity results from the convergence results?

Gradient descent

$$
O\left(\frac{n L}{\mu} \log \left(\frac{1}{\epsilon}\right)\right)
$$

SVRG/SAGA/SAG
$O\left(\left(n+\frac{L_{\max }}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)\right)$

Practicals implementation of SAG

Finite Sum Training Problem

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle w, x^{i}\right\rangle, y^{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

L2 regularizor + linear hypothesis

Practicals implementation of SAG

for Linear Classifiers

Finite Sum Training Problem
L2 regularizor + linear hypothesis

$$
\begin{aligned}
& \min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle w, x^{i}\right\rangle, y^{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \\
& \nabla f_{i}(w)=\ell^{\prime}\left(\left\langle w, x^{i}\right\rangle, y^{i}\right) x^{i}+\lambda w
\end{aligned}
$$

Practicals implementation of SAG

for Linear Classifiers

Finite Sum Training Problem
L2 regularizor + linear hypothesis

$$
\begin{array}{r}
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle w, x^{i}\right\rangle, y^{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \\
\nabla f_{i}(w)=\underbrace{\ell^{\prime}\left(\left\langle w, x^{i}\right\rangle, y^{i}\right) x^{i}+\underbrace{\lambda w}_{\substack{\text { Linear } \\
\text { in } w}}}_{\begin{array}{c}
\text { Nonlinear } \\
\text { in } w
\end{array}}
\end{array}
$$

Practicals implementation of SAG

 for Linear Classifiers

 for Linear Classifiers}

Finite Sum Training Problem
L2 regularizor + linear hypothesis

$$
\begin{array}{r}
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle w, x^{i}\right\rangle, y^{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \\
\nabla f_{i}(w)=\underbrace{\ell^{\prime}\left(\left\langle w, x^{i}\right\rangle, y^{i}\right) x^{i}+\underbrace{\lambda w}_{\begin{array}{c}
\text { Linear } \\
\text { in } w
\end{array}}}_{\begin{array}{c}
\text { Nonlinear } \\
\text { in } w
\end{array}}<\underbrace{\text { linear }}
\end{array}
$$

linear hypothesis

Reduce Storage to $O(n)$

$$
\beta_{i}=\ell^{\prime}\left(\left\langle w^{t_{i}}, x^{i}\right\rangle, y^{i}\right)
$$

Only store real number
Stoch. gradient estimate
Full gradient estimate

$$
\begin{gathered}
\nabla f_{i}\left(w^{t_{i}}\right)=\beta_{i} x^{i}+\lambda w^{t} \\
g^{t}=\frac{1}{n} \sum_{j=1}^{n} \beta_{j} x_{j}+\lambda w^{t}
\end{gathered}
$$

Proving Convergence of SVRG

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to j

Unbiased estimator

$$
\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right] \quad=\quad\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

$$
(1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

Need to bound this!

$$
\mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

Smoothness Consequences I

Smoothness

$$
f(w) \leq f(y)+\langle\nabla f(y), w-y\rangle+\frac{L}{2}\|w-y\|_{2}^{2}, \quad \text { for } i=1, \ldots, n
$$

EXE: Lemma 1

$$
f\left(y-\frac{1}{L} \nabla f(y)\right)-f(y) \leq-\frac{1}{2 L}\|\nabla f(y)\|_{2}^{2}, \quad \forall y
$$

Proof:

Substituting $w=y-\frac{1}{L} \nabla f(y)$ into the smoothness inequality gives

$$
\begin{aligned}
f\left(y-\frac{1}{L} \nabla f(y)\right)-f(y) & \leq\left\langle\nabla f(y),-\frac{1}{L} \nabla f(y)\right\rangle+\frac{L}{2}\left\|-\frac{1}{L} \nabla f(y)\right\|_{2}^{2} \\
& =-\frac{1}{2 L}\|\nabla f(y)\|_{2}^{2}
\end{aligned}
$$

Smoothness Consequences II

Smoothness

$$
f_{i}(w) \leq f_{i}(y)+\left\langle\nabla f_{i}(y), w-y\right\rangle+\frac{L_{i}}{2}\|w-y\|_{2}^{2}, \quad \text { for } i=1, \ldots, n
$$

EXE: Lemma 2

$$
\mathbb{E}\left[\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right] \leq 2 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)
$$

Proof: Let $g_{i}(w)=f_{i}(w)-f_{i}\left(w^{*}\right)-\left\langle\nabla f_{i}\left(w^{*}\right), w-w^{*}\right\rangle$ which is L_{i}-smooth.

Smoothness Consequences II

Smoothness

$$
f_{i}(w) \leq f_{i}(y)+\left\langle\nabla f_{i}(y), w-y\right\rangle+\frac{L_{i}}{2}\|w-y\|_{2}^{2}, \quad \text { for } i=1, \ldots, n
$$

EXE: Lemma 2

$$
\mathbb{E}\left[\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right] \leq 2 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)
$$

Proof: Let $g_{i}(w)=f_{i}(w)-f_{i}\left(w^{*}\right)-\left\langle\nabla f_{i}\left(w^{*}\right), w-w^{*}\right\rangle$ which is L_{i}-smooth.

Smoothness Consequences II

Smoothness

$$
f_{i}(w) \leq f_{i}(y)+\left\langle\nabla f_{i}(y), w-y\right\rangle+\frac{L_{i}}{2}\|w-y\|_{2}^{2}, \quad \text { for } i=1, \ldots, n
$$

EXE: Lemma 2

$$
\mathbb{E}\left[\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right] \leq 2 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)
$$

Proof: Let $g_{i}(w)=f_{i}(w)-f_{i}\left(w^{*}\right)-\left\langle\nabla f_{i}\left(w^{*}\right), w-w^{*}\right\rangle$ which is L_{i}-smooth.
Convexity of $f_{i}(w) \Rightarrow g_{i}(w) \geq 0$ for all w. From Lemma 1 we have

$$
g_{i}(w) \geq g_{i}(w)-g_{i}\left(w-\frac{1}{L_{i}} \nabla g_{i}(w)\right) \geq \frac{1}{2 L_{i}}\left\|\nabla g_{i}(w)\right\|_{2}^{2} \geq \frac{1}{2 L_{\max }}\left\|\nabla g_{i}(w)\right\|_{2}^{2}
$$

Inserting definition of $g_{i}(w)$ we have

$$
\frac{1}{2 L_{\max }}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq f_{i}(w)-f_{i}\left(w^{*}\right)-\left\langle\nabla f_{i}\left(w^{*}\right), w-w^{*}\right\rangle
$$

Result follows by taking expectation of i.

Bounding gradient estimate

$$
g^{t}=\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})
$$

EXE: Lemma 3

$$
\mathbb{E}\left[\left\|g^{t}\right\|_{2}^{2}\right] \leq 4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)\right)+4 L_{\max }\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

Proof: Hint: use $\|a+b\|_{2}^{2} \leq 2\|a\|_{2}^{2}+2\|b\|_{2}^{2}$ and Lemma 2

Bounding gradient estimate

$$
g^{t}=\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})
$$

EXE: Lemma 3

$$
\mathbb{E}\left[\left\|g^{t}\right\|_{2}^{2}\right] \leq 4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)\right)+4 L_{\max }\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

Proof: Hint: use $\|a+b\|_{2}^{2} \leq 2\|a\|_{2}^{2}+2\|b\|_{2}^{2}$ and Lemma 2

Bounding gradient estimate

$$
g^{t}=\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})
$$

EXE: Lemma 3

$$
\mathbb{E}\left[\left\|g^{t}\right\|_{2}^{2}\right] \leq 4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)\right)+4 L_{\max }\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

Proof: Hint: use $\|a+b\|_{2}^{2} \leq 2\|a\|_{2}^{2}+2\|b\|_{2}^{2}$ and Lemma 2

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] & =\mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)+\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})\right\|_{2}^{2}\right] \\
& \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})\right\|_{2}^{2}\right] \\
& \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})\right\|_{2}^{2}\right] \\
& =4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)+f(\tilde{w})-f\left(w^{*}\right)\right)
\end{aligned}
$$

Bounding gradient estimate

$$
g^{t}=\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})
$$

EXE: Lemma 3

$$
\mathbb{E}\left[\left\|g^{t}\right\|_{2}^{2}\right] \leq 4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)\right)+4 L_{\max }\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

Proof: Hint: use $\|a+b\|_{2}^{2} \leq 2\|a\|_{2}^{2}+2\|b\|_{2}^{2}$ and Lemma 2

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] & =\mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)+\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})\right\|_{2}^{2}\right] \\
& \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})\right\|_{2}^{2}\right] \\
& \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})\right\|_{2}^{2}\right] \\
& =4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)+f(\tilde{w})-f\left(w^{*}\right)\right)
\end{aligned}
$$

Bounding gradient estimate

$$
g^{t}=\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})
$$

EXE: Lemma 3

$$
\mathbb{E}\left[\left\|g^{t}\right\|_{2}^{2}\right] \leq 4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)\right)+4 L_{\max }\left(f(\tilde{w})-f\left(w^{*}\right)\right)
$$

Proof: Hint: use $\|a+b\|_{2}^{2} \leq 2\|a\|_{2}^{2}+2\|b\|_{2}^{2}$ and Lemma 2

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] & =\mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)+\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})\right\|_{2}^{2}\right] \\
& \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})+\nabla f(\tilde{w})\right\|_{2}^{2}\right] \\
& \leq 2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(x^{t}\right)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2}\right]+2 \mathbb{E}_{j}\left[\left\|\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})\right\|_{2}^{2}\right] \\
& =4 L_{\max }\left(f\left(x^{t}\right)-f\left(w^{*}\right)+f(\tilde{w})-f\left(w^{*}\right)\right)
\end{aligned}
$$

Lemma 2

Where we used in the first inequality that $\mathbb{E}\left[\|X-\mathbb{E} X\|_{2}^{2}\right] \leq \mathbb{E}\left[\|X\|_{2}^{2}\right]$ with $X=\nabla f_{i}\left(w^{*}\right)-\nabla f_{i}(\tilde{w})$ thus $\mathbb{E}[X]=-\nabla f(\tilde{w})$

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2} .
\end{aligned}
$$

Taking expectation with respect to j
Unbiased estimator
$\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]$ str. conv.

$$
(1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

Need to bound this!
$\mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]$

Lemma $3 g^{t}=\nabla f_{i}\left(x_{s}^{t}\right)-\nabla f_{i}\left(\tilde{w}_{s-1}\right)+\nabla f\left(\tilde{w}_{s-1}\right)$
$\mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] \leq 4 L_{\max }\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+4 L_{\max }\left(f\left(\tilde{w}_{s-1}\right)-f\left(w^{*}\right)\right)$

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to j

Unbiased estimator

$$
\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right] \quad=\quad\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]
$$

str. conv.

$$
\begin{array}{ll}
\leq & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] \\
\leq & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(1-2 \gamma L_{\max }\right)\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right) \\
& +4 \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
\end{array}
$$

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to j

Unbiased estimator

$\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right] \quad=\quad\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]$

$$
\begin{array}{ll}
\stackrel{\text { str. conv. }}{\leq} & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|\right. \\
\leq & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(1-2 \gamma L_{\max }\right)\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right) \\
& +4 \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
\end{array}
$$

Taking expectation and iterating from $t=0, \ldots, m-1$

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2} .
\end{aligned}
$$

Taking expectation with respect to j

Unbiased estimator

$\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right]=\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]$

$$
\begin{array}{ll}
\stackrel{\text { str. conv. }}{\leq} & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] \\
\leq & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(1-2 \gamma L_{\max }\right)\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right) \\
& +4 \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
\end{array}
$$

Taking expectation and iterating from $t=0, \ldots, m-1$
$\mathbb{E}_{j}\left[\left\|x_{s}^{m}-w^{*}\right\|_{2}^{2}\right] \leq(1-\mu \gamma)^{m}\left\|x_{s}^{0}-w^{*}\right\|_{2}^{2}$
$\alpha_{t}:=(1-\mu \gamma)^{m-1-t}$
$-2 \gamma\left(1-2 \gamma L_{\max }\right) S_{m} \sum_{t=0}^{m-1} \alpha_{t}\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)$
$+4 S_{m} \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)$

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to j

Unbiased estimator

$\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right] \quad=\quad\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]$

$$
\begin{array}{ll}
\stackrel{\text { str. conv. }}{\leq} & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] \\
\leq & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(1-2 \gamma L_{\max }\right)\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right) \\
& +4 \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
\end{array}
$$

Taking expectation and iterating from $t=0, \ldots, m-1$

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left\|x_{s}^{m}-w^{*}\right\|_{2}^{2}\right] \leq & (1-\mu \gamma)^{m}\left\|x_{s}^{0}-w^{*}\right\|_{2}^{2} \\
S_{m}:=\sum_{t=0}^{m-1} \alpha_{t} & \\
& -2 \gamma\left(1-2 \gamma L_{\max }\right) S_{m} \sum_{t=0}^{m-1} \alpha_{t}\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right) \\
& +4 S_{m} \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|x_{s}^{t}-w^{*}-\gamma g^{t}\right\|_{2}^{2} \\
& =\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle g^{t}, x_{s}^{t}-w^{*}\right\rangle+\gamma^{2}\left\|g^{t}\right\|_{2}^{2}
\end{aligned}
$$

Taking expectation with respect to j

Unbiased estimator

$\mathbb{E}_{j}\left[\left\|x_{s}^{t+1}-w^{*}\right\|_{2}^{2}\right] \quad=\quad\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left\langle\nabla f\left(x_{s}^{t}\right), x_{s}^{t}-w^{*}\right\rangle+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right]$

$$
\begin{array}{ll}
\stackrel{\text { str. conv. }}{\leq} & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)+\gamma^{2} \mathbb{E}_{j}\left[\left\|g^{t}\right\|_{2}^{2}\right] \\
\leq & (1-\mu \gamma)\left\|x_{s}^{t}-w^{*}\right\|_{2}^{2}-2 \gamma\left(1-2 \gamma L_{\max }\right)\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right) \\
& +4 \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
\end{array}
$$

Taking expectation and iterating from $t=0, \ldots, m-1$

$$
\begin{array}{cl}
\mathbb{E}_{j}\left[\left\|x_{s}^{m}-w^{*}\right\|_{2}^{2}\right] \leq(1-\mu \gamma)^{m}\left\|x_{s}^{0}-w^{*}\right\|_{2}^{2} & \alpha_{t}:=(1 \\
S_{m}:=\sum_{t=0}^{m-1} \alpha_{t} & -2 \gamma\left(1-2 \gamma L_{\max }\right) S_{m} \sum_{t=0}^{m-1} \alpha_{t}\left(f\left(x_{s}^{t}\right)-f\left(w^{*}\right)\right)
\end{array}
$$

$$
+4 S_{m} \gamma^{2} L_{\max }\left(f\left(w_{s-1}\right)-f\left(w^{*}\right)\right)
$$

Take for home Variance Reduction

- Variance reduced methods use only one stochastic gradient per iteration and converge linearly on strongly convex functions
- Choice of fixed stepsize possible
- SAGA only needs to know the smoothness parameter to work, but requires storing n past stochastic gradients
- SVRG only has $O(d)$ storage, but requires full gradient computations every so often. Has an extra "number of inner iterations" parameter to tune

