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Optimization for Machine Learning

Stochastic Variance Reduced Gradient 
Methods

Lecturer: Robert M. Gower 
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References for this class

M. Schmidt, N. Le Roux, F. Bach (2016), 
Mathematical Programming Minimizing 
Finite Sums with the Stochastic Average 
Gradient.

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. 
Bach, R. M. G. Towards closing the gap 
between the theory and practice of SVRG, 
Neurips 2019.

RMG, P. Richtárik and Francis Bach (2018)
Stochastic quasi-gradient methods: 
variance reduction via Jacobian sketching

EXE:   variance_reduced_exe    +     convergence_prob_exe
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A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms
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Issue with variance of SGD 
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Complexity / Convergence

Theorem

This stops SGD from
 naturally converging

Where did this term 
come from ?
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Proof:  
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Proof:  

Taking expectation conditioned on respect to

quasi strong conv

Proof follows by expanding recurrence and summing up
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SGD initially fast, slow later

Noise of SGD appearing
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Can we get best of both?

Today we learn about
Methods like this one
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Stochastic variance reduced 
methods 
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Instead of using directly
Use                to update estimate 

Good 
estimate

Converges 
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We would like gradient estimate such that:
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Build an Estimate of the Gradient

Instead of using directly
Use                to update estimate 

Good 
estimate

Converges 
in L2

We would like gradient estimate such that:

Solves SGD problem



26
High Level Proof when                             :  

quasi strong conv

Taking expectation conditioned on respect to



27
High Level Proof when                             :  

quasi strong conv
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High Level Proof when                             :  

quasi strong conv

Taking expectation conditioned on respect to
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Cancel out

Controlled Stochastic Reformulation

Use covariates to control the variance

Controlled Stochastic Reformulation

Use covariates to control the variance

Original finite 
sum problem

Original finite 
sum problem

Controlled Stochastic Reformulation
Covariate functions:Covariate functions:
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Variance reduction as SGD 
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Variance reduction as SGD 

By design we have that

How to choose         ?How to choose         ?



38

Noise of covariate estimate  



39

Noise of covariate estimate  



40

Noise of covariate estimate  



41

Noise of covariate estimate  



42

Noise of covariate estimate  
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Use snapshot: Use snapshot: 

Choosing the covariate as a 
linear approximation 

We would like: Expensive to
compute for all i

Reference point. 
Rarely update

Expensive to
compute for all i

But update frequently 
enough to control noise
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SVRG: Stochastic Variance reduced 
method gradient

Reference pointReference point

SampleSample

Grad. estimateGrad. estimate

Johnson & Zhang, 2013 NIPS
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free-SVRG: Stochastic Variance 
Reduced Gradients Jonhson & Zhang

 NIPS 2013 
Sebbouh, et. al 2019 
Neurips 2019

Tune inner loop size mMost iterates cost O(1)
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free-SVRG: Stochastic Variance 
Reduced Gradients Jonhson & Zhang

 NIPS 2013 
Sebbouh, et. al 2019 
Neurips 2019

Adding 
indices in 
k and t

Adding 
indices in 
t and s

Tune inner loop size mMost iterates cost O(1)

Reference point is an 
average of inner iterates
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SAGA: Stochastic Average Gradient

SampleSample
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Defazio,  Bach, & Lacoste-Julien, 2014 NIPs
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SAGA: Stochastic Average Gradient

SampleSample

Grad. estimateGrad. estimate

Store grad.Store grad.

Defazio,  Bach, & Lacoste-Julien, 2014 NIPs
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SAGA: Stochastic Average Gradient

Stores a           matrixNo inner loop, rolling update
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SAG: Stochastic Average Gradient 
(Biased version)

SampleSample

Grad. estimateGrad. estimate

Store grad.Store grad.

M. Schmidt, N. Le Roux, F. Bach (2016), Math prog
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SAG: Stochastic Average Gradient

Stores a           matrixVery easy to implement
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SAG: Stochastic Average Gradient

Stores a           matrixVery easy to implement

EXE: Introduce a variable                          .    .  Re-write the SAG 
algorithm so G is updated efficiently at each iteration. 
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The Stochastic Average Gradient
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The Stochastic Average Gradient

How to prove this converges? Is this the only option?
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Stochastic Gradient Descent 
α =0.5
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Convergence Theorems
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Smoothness + convexity 

Strong Convexity 

Assumptions for Convergence
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Convergence SAG

Theorem SAG

  A practical convergence 
result!

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.

Because of biased gradients, difficult proof 
that relies on computer assisted steps
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Convergence SAGA

Theorem SAGA

  An even more practical 
convergence result!

A. Defazio,  F. Bach and J. Lacoste-Julien (2014)
NIPS, SAGA: A Fast Incremental Gradient Method 
With Support for Non-Strongly Convex Composite 
Objectives.

Much easier prove due to unbiased estimate
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free-SVRG: Stochastic Variance 
Reduced Gradients Jonhson & Zhang

 NIPS 2013 
Sebbouh, et. al 2019 
Neurips 2019

Adding 
indices in 
k and t

Adding 
indices in 
k and t

Tune inner loop size mMost iterates cost O(1)
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Reduced Gradients Jonhson & Zhang

 NIPS 2013 
Sebbouh, et. al 2019 
Neurips 2019

Adding 
indices in 
k and t

Adding 
indices in 
k and t

Tune inner loop size mMost iterates cost O(1)
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Convergence Theorem for SVRG

Theorem Theorem 

Sebbouh, Gazagnadou, Jelassi, Bach, G, 2019 
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Convergence Theorem for SVRG

Theorem Theorem 

Free to choose the number
 of inner iterates m 

Sebbouh, Gazagnadou, Jelassi, Bach, G, 2019 
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Convergence Theorem for SVRG

Theorem Theorem 

Free to choose the number
 of inner iterates m 

CorollaryCorollary

Sebbouh, Gazagnadou, Jelassi, Bach, G, 2019 
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SGD 

Comparisons in total complexity for 
strongly convex

Gradient descent

Approximate solution

SVRG/SAGA/SAG

Variance reduction faster than GD when

How did I get these 
complexity results from 

the convergence 
results?

Section 1.3.5, R.M. Gower, Ph.d thesis: Sketch and 
Project: Randomized Iterative Methods for Linear Systems 
and Inverting Matrices University of Edinburgh, 2016
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Finite Sum Training Problem 

Practicals implementation of SAG 
for Linear Classifiers

L2 regularizor + 
linear hypothesis
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Finite Sum Training Problem 

Practicals implementation of SAG 
for Linear Classifiers

L2 regularizor + 
linear hypothesis

Only store real number

Nonlinear 
in w

Linear 
in w

Stoch. gradient estimate

Full gradient estimate

Reduce 
Storage 
to O(n)



87

Proving Convergence 
of SVRG 
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Proof:

  Unbiased estimatorTaking expectation with respect to j

Need to 
bound this!
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Smoothness Consequences I
Smoothness 

EXE: Lemma 1 

Proof:



90

Smoothness 

Smoothness Consequences II

EXE: Lemma 2 

Proof:
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Smoothness 

Smoothness Consequences II

EXE: Lemma 2 

Proof:
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Smoothness 

Smoothness Consequences II

EXE: Lemma 2 

Proof:

Lemma 1
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EXE: Lemma 3 

Bounding gradient estimate

Proof:  
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EXE: Lemma 3 

Bounding gradient estimate

Proof:  

Lemma 2
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Proof:

  Unbiased estimatorTaking expectation with respect to j

Need to 
bound this!

Lemma 3 
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Proof:

Taking expectation with respect to j

Taking expectation and iterating from t = 0, … , m-1 

  Unbiased estimator

Rest on the board
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Take for home Variance 
Reduction

● Variance reduced methods use only one stochastic gradient 
per iteration and converge linearly on strongly convex functions
 

● Choice of fixed stepsize possible
 

● SAGA only needs to know the smoothness parameter to work, but 
requires storing n past stochastic gradients

● SVRG only has O(d) storage, but requires full gradient 
computations every so often. Has an extra “number of inner 
iterations” parameter to tune
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