
Optimization for Machine Learning
Introduction into supervised learning, 

stochastic gradient descent analysis and 
tricks

Lecturer: Robert M. Gower 

28th of April to 5th of May 2020, Cornell mini-lecture series, online



Outline of my three classes

● 04/27/20  Intro to empirical risk problem and stochastic 
gradient descent (SGD)

● 04/29/20  SGD for convex optimization. Theory and variants

● 05/05/20  SGD with momentum and tricks



Part I: An Introduction 
to Supervised Learning



References classes today

Convex Optimization, 
Stephen Boyd

Pages 67 to 79

Understanding Machine 
Learning: From Theory to 
Algorithms

Chapter 2
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Find mapping  h that assigns the “correct” target to each input 

Is There a Cat in the Photo?

Yes

No

x: Input/Feature y: Output/Target
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Linear Regression for Height

The Training 
Algorithm
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Linear Regression for Height

The Training 
Algorithm

Age

Height

Other options 
aside from linear?

Sex = 0



Parametrizing the Hypothesis
H
e
i
g
h
t

Age

Linear:

Polinomial:

Age

H
e
i
g
h
t

Neural Net:
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Loss Functions
Why a 
Squared
Loss?

Loss Functions

The Training Problem

Typically a 
convex function
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Choosing the Loss Function

Quadratic Loss

Binary Loss

Hinge Loss

EXE: Plot the binary and hinge loss function in when           

y=1 in all 
figures
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The Training Problem

Is a notion of Loss enough? 

What happens when we do not have enough data?
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Regularizor Functions

General Training Problem

Regularization

Exe:

Goodness of fit, 
fidelity term ...etc

Penalizes 
complexity

Controls tradeoff 
between fit and 
complexity



Overfitting and Model Complexity

Fitting kth order polynomial 



Overfitting and Model Complexity

Fitting kth order polynomial 

For λ big enough, 
the solution is a 2nd 
order polynomial



Linear hypothesis

Exe: Ridge Regression

Ridge Regression 

L2 loss

L2 regularizor



Linear hypothesis

Exe: Support Vector Machines

SVM with soft margin

Hinge loss

L2 regularizor



Linear hypothesis

Exe: Logistic Regression

Logistic Regression

Logistic loss

L2 regularizor
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The Machine Learners Job



Part II: Optimizing 
Empirical Risk
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A Datum Function

Finite Sum Training Problem 

Re-writing as Sum of Terms

Can we use this 
sum structure?
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The Training Problem



Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Logistic Regression
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A Logistic Regression 
problem using the 
fourclass labelled data 
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(n, d)= (862,2) 

Can we prove 
that this always 
works?
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universal optimization 
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  Optimal point

Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Convex and 
smooth training 
problems

No! There is no 
universal optimization 
method. The “no free 
lunch” of Optimization 

Specialize

Logistic Regression



Optimization is hard (in general)

Need 
assumptions!



Optimization is hard (in general)

Need 
assumptions!



Main assumption
Nice property

All stationary points are 
global minima

Lemma: Convexity => Nice property 

PROOF: 



Data science methods most used 
(Kaggle 2017 survey)

Convex 
Optimization 

problems



Part III: Stochastic 
Gradient Descent
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The Training Problem
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Is it possible to design a method that 
uses only the gradient of a single 
data function         at each iteration?
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single 
data function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then

   
 

EXE: 
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Stochastic Gradient Descent

  Optimal point
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GD vs Stochastic Gradient Descent

Optimal point  

Gradient Descent

Need Assumptions
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GD vs Stochastic Gradient Descent

Optimal point  

Gradient Descent Stochastic Gradient 
Descent

 Why does this happen? Need Assumptions



Assumption: Strong convexity

Hinge loss + L2

Quadratic lower bound

EXE:



Example: SVM with soft marginExample: SVM with soft margin

Assumption: Strong convexity

Not an Example: Neural networks, dictionary learning, 
And more
Not an Example: Neural networks, dictionary learning, 
And more
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Assumption: Smoothness

EXE: Using that

Show that



Smoothness: Examples

Convex quadratics:

Logistic:

Proof is an 
exercise!

Trigonometric:



Important consequences of 
Smoothness



Smoothness: Convex 
counter-example

Does not fit. 
Not smooth

Non-smooth can be 
solver with proximal SGD 
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Strongly quasi-convexity 

Assumptions for Convergence

Each f
i
 is convex and L

i
 smooth

Definition: Gradient Noise
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Assumptions for Convergence

EXE:  Calculate the L
i 
’s and L

max
 for
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Complexity / Convergence

Theorem

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. 
Richtarik, ICML 2019, arXiv:1901.09401
SGD: General Analysis and Improved Rates.
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Stochastic Gradient Descent 
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Stochastic Gradient Descent 
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2) Try 
averaging 
the points

1) Start with 
big steps and 
end with 
smaller steps
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Stochastic Gradient Descent 
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2) Try 
averaging 
the points

1) Start with 
big steps and 
end with 
smaller steps
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SGD shrinking stepsize

Shrinking 
Stepsize 



99
SGD shrinking stepsize

Shrinking 
Stepsize How should we 

 sample j ?

Does this converge?
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Complexity / Convergence
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Complexity / Convergence

Theorem for switching to shrinking stepsizes
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Stochastic Gradient Descent with 
switch to decreasing stepsizes

Switch 
point
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Stochastic Gradient Descent with 
switch to decreasing stepsizes

Switch 
point

Noisy iterates. 
Take 
averages?
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SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging
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SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging

This is not efficient. 
How to make this 
efficient?



109
Stochastic Gradient Descent 
Averaging the last few iterates
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Stochastic Gradient Descent 
Averaging the last few iterates

Averaging starts 
here



Part III.2: Stochastic 
Gradient Descent for 

Sparse Data
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Sparse Examples: 
encoding of categorical 
variables (hot one encoding), 
word2vec, recommendation 
systems ...etc
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Rescaling 
O(d)

Addition sparse 
vector O(s)

Sparse Examples: 
encoding of categorical 
variables (hot one encoding), 
word2vec, recommendation 
systems ...etc
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SGD step

Lazy SGD updates for Sparse Data

EXE: 



116

SGD step

Lazy SGD updates for Sparse Data

EXE: 



117

SGD step

Lazy SGD updates for Sparse Data

EXE: 



118

SGD step

Lazy SGD updates for Sparse Data

EXE: 



119

SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step

Lazy SGD updates for Sparse Data

O(1) scaling + 
O(s) sparse add = 
O(s) update

EXE: 



Part IV: Momentum and 
gradient descent



Back to Gradient Descent

Step size/
 Learning rate



Local rate of changeLocal rate of change

GD motivated through local rate of change



Max local rateMax local rate

Local rate of changeLocal rate of change

GD motivated through local rate of change

GD is the “steepest descent”



Local motivation not good for global

Solution

Get’s stuck in “flat” valleys



Local motivation not good for global

Solution

Get’s stuck in “flat” valleys Give momentum to keep going



Heavey Ball Method:Heavey Ball Method:

Adding Momentum to GD 

Adds “Inertia” to update, 
like friction for a heavy ball 

Additional momentum
 parameter ≈ 0.99 
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GD with momentum (GDm):GD with momentum (GDm):

Adds “Momentum” 
to update



Equivalent Momentum formulation
GD with momentum:GD with momentum:



Equivalent Momentum formulation
GD with momentum:GD with momentum:



Equivalent Momentum formulation
GD with momentum:GD with momentum:



Equivalent Momentum formulation
GD with momentum:GD with momentum:



Equivalent Momentum formulation
GD with momentum:GD with momentum:



Heavey Ball Method:Heavey Ball Method:

Equivalent Momentum formulation
GD with momentum:GD with momentum:
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Heavey Ball Method:Heavey Ball Method:

Equivalent Iterate Averaging 
formulation

Adds “Inertia” to update

Iterate Averaging:Iterate Averaging:

Additional sequence 
of variables

Averaging of 
variables

New parameters
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Define:Define:

Equivalent Iterate Averaging 
formulation

Iterate Averaging:Iterate Averaging:



Part IV.2: Convergence 
of Momentum with 
gradient descent
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Convergence of Gradient Descent with 
Momentum

Theorem Theorem 

stepsize

CorollaryCorollary

Polyak 1964

Optimal iteration complexity
 for this function class
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Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof: Convergence of Heavy Ball. Two 
time steps

Depends on two times steps
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Proof: Convergence of Heavy Ball

EXE on Eigenvalues: EXE on Eigenvalues: 



Proof: Convergence of Heavy Ball

EXE on Eigenvalues: EXE on Eigenvalues: 



Part V: Momentum with 
SGD



Stochastic Heavey Ball Method:Stochastic Heavey Ball Method:

Adding Momentum to SGD

SGD with momentum:SGD with momentum:

Sampled i.i.d
  

Rumelhart, Hinton, 
Geoffrey, Ronald, 
1986, Nature

Iterate Averaging:Iterate Averaging:



SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html



SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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variance reduction since
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Momentum as exponentiated average:Momentum as exponentiated average:

SGDm and Averaging 

Acts like an approximate 
variance reduction since

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

This is why momentum
 works well with SGD
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Stochastic Gradient Descent with 
momentum

SGDm =
 SGD with 
momentum
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Stochastic Gradient Descent with 
momentum vs GD

Can we prove momentum 
always works? Difficult: Recent 2019 results only



Convergence of Gradient Descent with 
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Does momentum make 
SGD converge faster?

Not clear, recently same 
rate as SGD + averaging
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Convergence of Gradient Descent with 
Momentum

Does momentum make 
SGD converge faster?

Not clear, recently same 
rate as SGD + averaging

Sebbouth, Defazio, 
RMG, online soon, 
2020

Results use iterate averaging
 to crack the proof!



Part V: Test error and 
Validation
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Generalization
We have been solving:

But we already know these labels
We want our model to correctly label
 unseen data. We want to generalize
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The statistical learning problem:
Minimize the expected loss over an unknown expectation 
The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Generalization
We have been solving:

We would like to solve:

But we already know these labels
We want our model to correctly label
 unseen data. We want to generalize
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Validation Error
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Validation Error
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Validation Error
Train set Validation set



195

Validation Error
Train set Validation set

Use to train
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Validation Error
Train set Validation set

Use to train

Use to validate
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Stochastic Gradient Descent with 
momentum vs GD on validation set

This why SGD is popular in ML
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The statistical learning problem:
Minimize the expected loss over an unknown expectation 
The statistical learning problem:
Minimize the expected loss over an unknown expectation 

More reason why ML likes SGD
We have been solving:

But we want to solve:

SGD can be applied to the
 statistical learning problem!

But we already know these labels
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Why Machine Learners like SGD
The statistical learning problem:
Minimize the expected loss over an unknown expectation 
The statistical learning problem:
Minimize the expected loss over an unknown expectation 
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