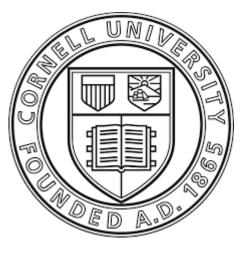
Optimization for Machine Learning Introduction into supervised learning, stochastic gradient descent analysis and tricks

Lecturer: Robert M. Gower



28th of April to 5th of May 2020, Cornell mini-lecture series, online

Outline of my three classes

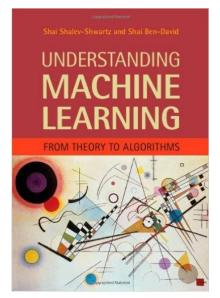
- 04/27/20 Intro to empirical risk problem and stochastic gradient descent (SGD)
- 04/29/20 SGD for convex optimization. Theory and variants
- 05/05/20 SGD with momentum and tricks

Part I: An Introduction to Supervised Learning

References classes today

Chapter 2

Understanding Machine Learning: From Theory to Algorithms



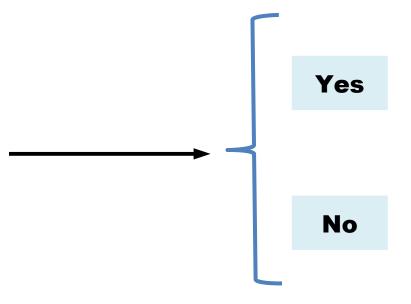
Pages 67 to 79

Convex Optimization, Stephen Boyd

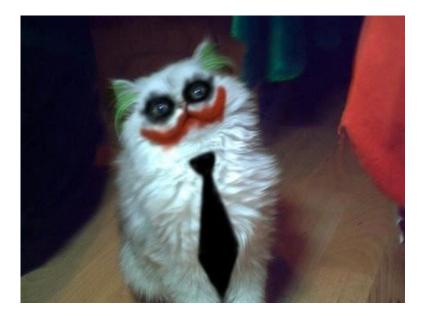
Stephen Boyd and Lieven Vandenberghe

Convex Optimization

CAMBRIDGE



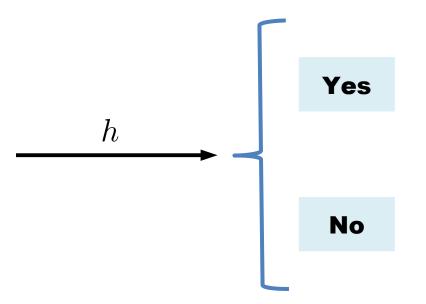
Yes



Yes

No

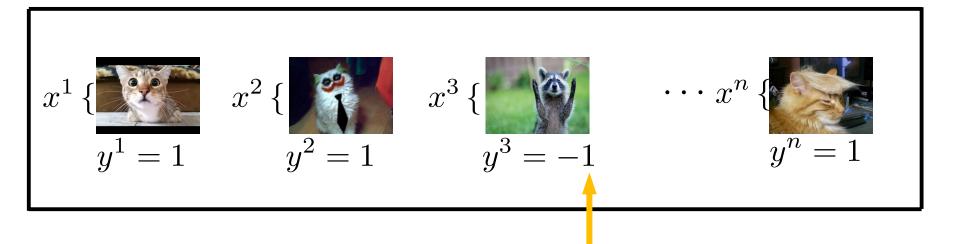
Yes

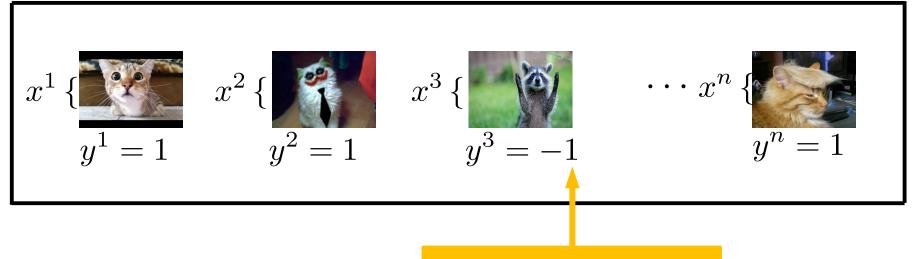


x: Input/Feature

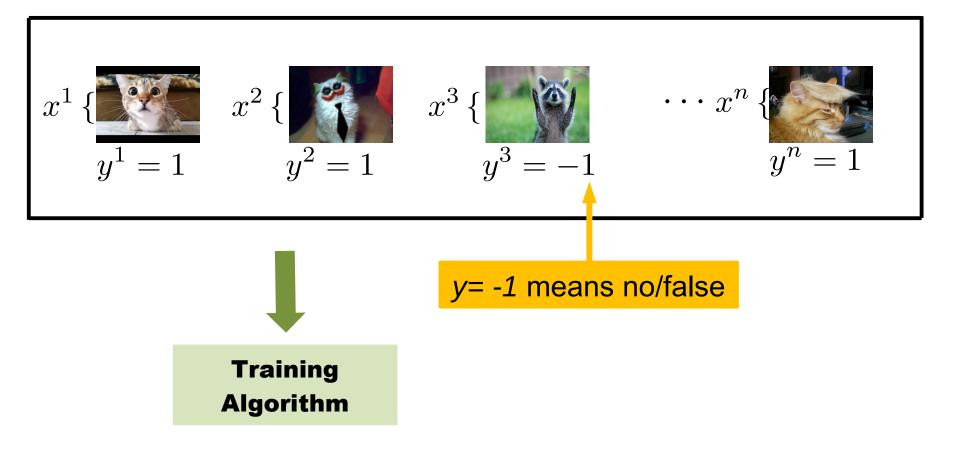
y: Output/Target

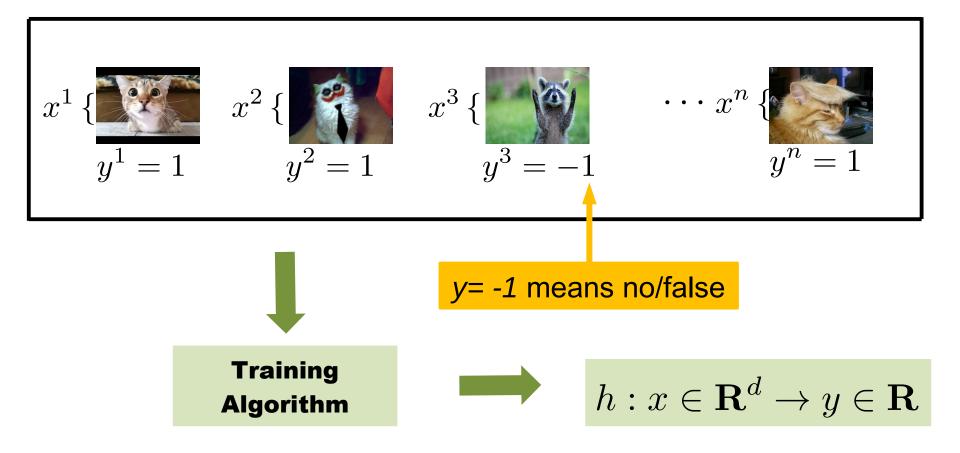
Find mapping *h* that assigns the "correct" target to each input $h: x \in \mathbf{R}^d \longrightarrow y \in \mathbf{R}$

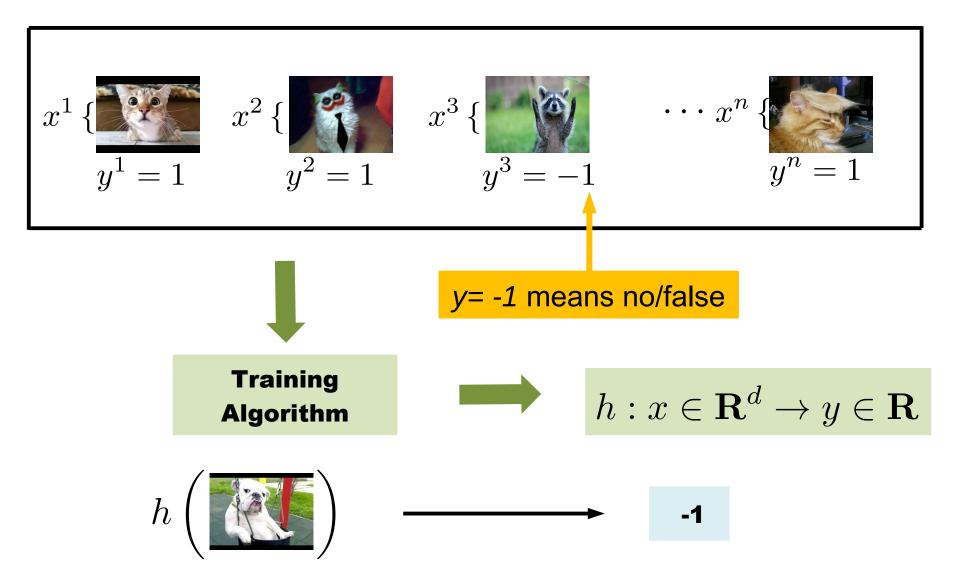


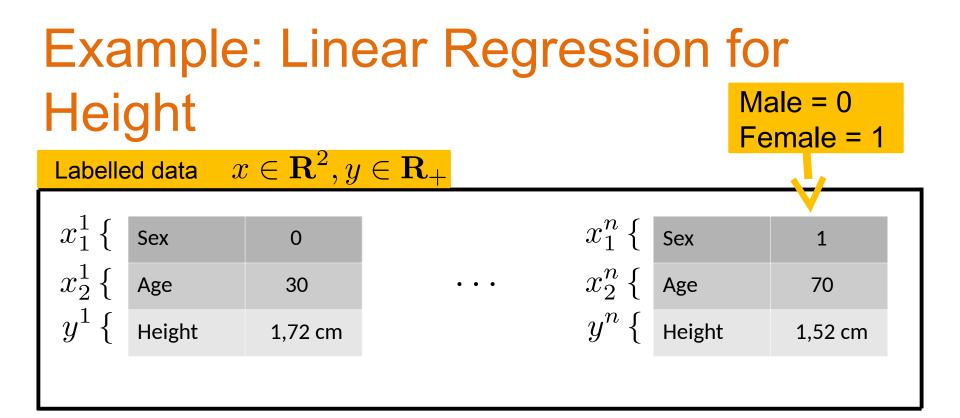


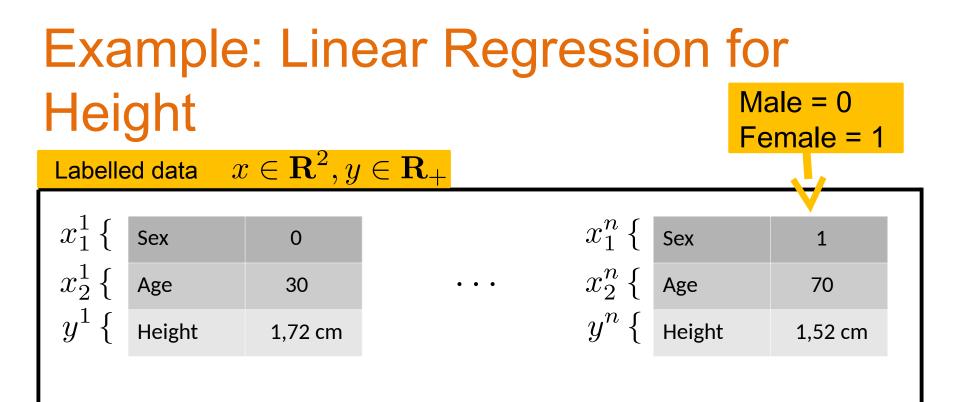
y= *-1* means no/false



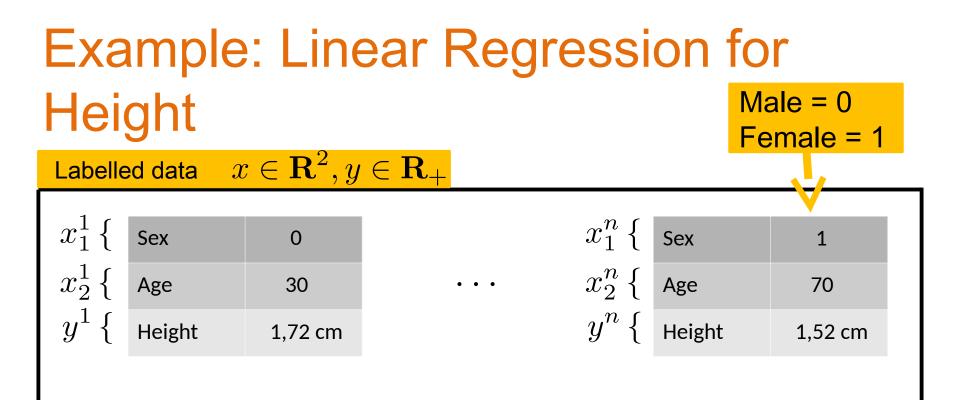








Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

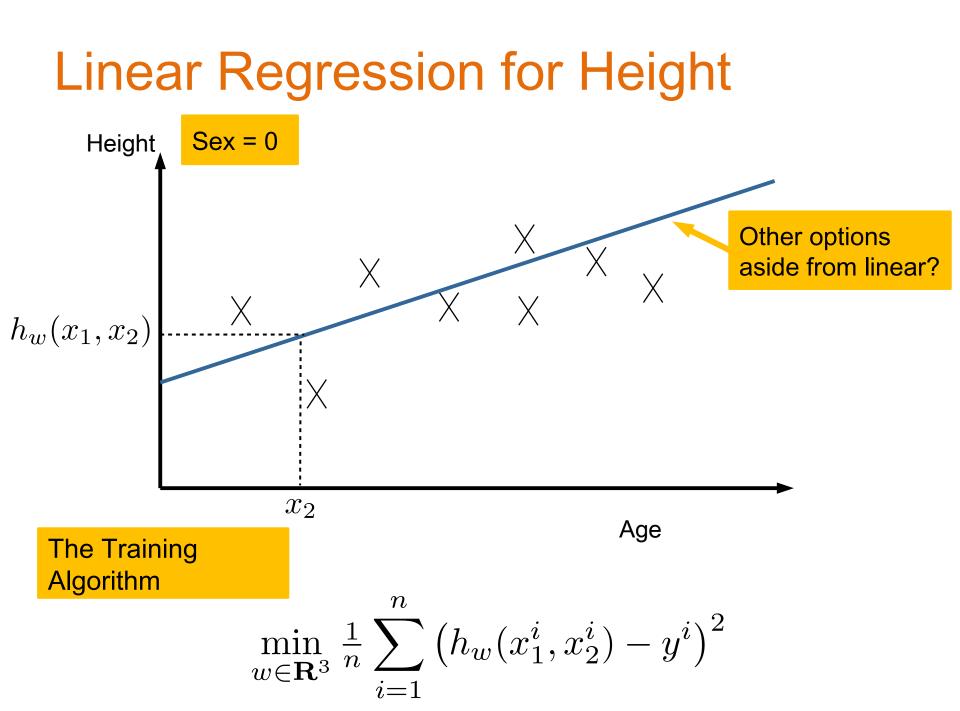


Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1w_1 + x_2w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

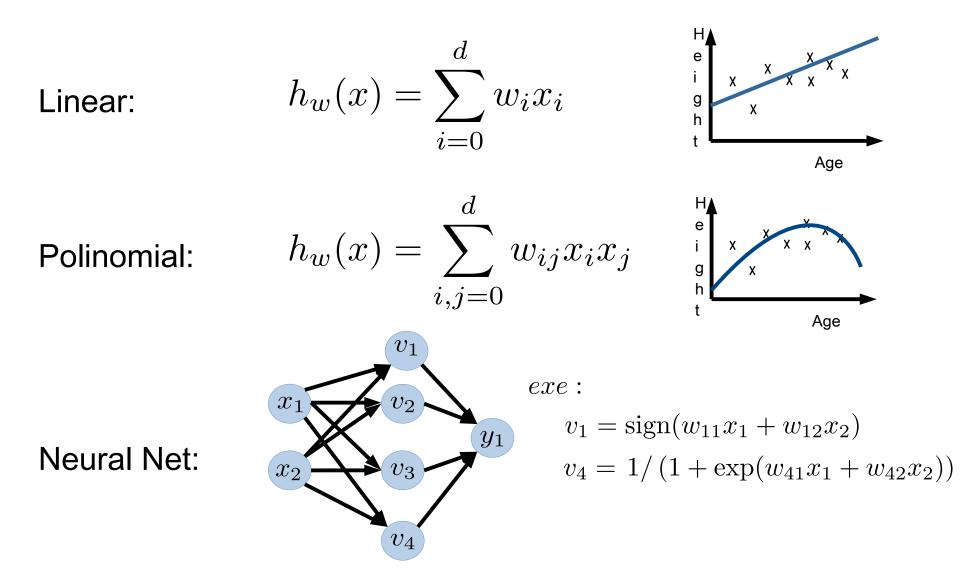
Example Training Problem: $\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^n \left(h_w(x_1^i, x_2^i) - y^i \right)^2$

Age

Linear Regression for Height Sex = 0Height Х Х $h_w(x_1, x_2)$ x_2 Age **The Training Algorithm** n $\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^{n} \left(h_w(x_1^i, x_2^i) - y^i \right)^2$ $\overline{i=1}$



Parametrizing the Hypothesis



$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \qquad \begin{array}{c} \text{Why a} \\ \text{Squared} \\ \text{Loss?} \end{array}$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \begin{array}{c} \text{Why a} \\ \text{Squared} \\ \text{Loss?} \end{array}$$

Let
$$y_h := h_w(x)$$

Loss Functions $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ $(y_h, y) \to \ell(y_h, y)$

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \begin{array}{c} \text{Why a} \\ \text{Squared} \\ \text{Loss?} \end{array}$$

Let
$$y_h := h_w(x)$$

Loss Functions $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ $(y_h, y) \to \ell(y_h, y)$ Typically a convex function

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

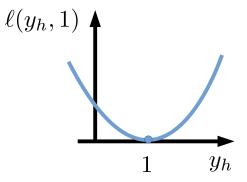
Choosing the Loss Function

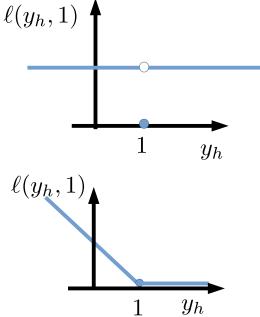
Quadratic Loss
$$\ell(y_h, y) = (y_h - y)^2$$

Let $y_h := h_w(x)$

Binary Loss
$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$





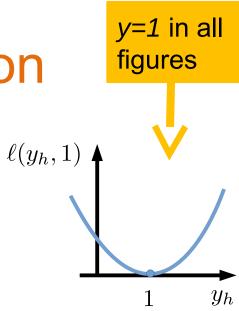
Choosing the Loss Function

Let
$$y_h := h_w(x)$$

Quadratic Loss
$$\ell(y_h, y) = (y_h - y)^2$$

Binary Loss
$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$



1

1

 y_h

 y_h

Choosing the Loss Function

Let
$$y_h := h_w(x)$$

Quadratic Loss
$$\ell(y_h, y) = (y_h - y)^2$$

Binary Loss
$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$
XE: Plot the binary and hinge loss function in when $y = -1$

y=1 in all

figures

1

 y_h

 $\ell(y_h,1)$ (

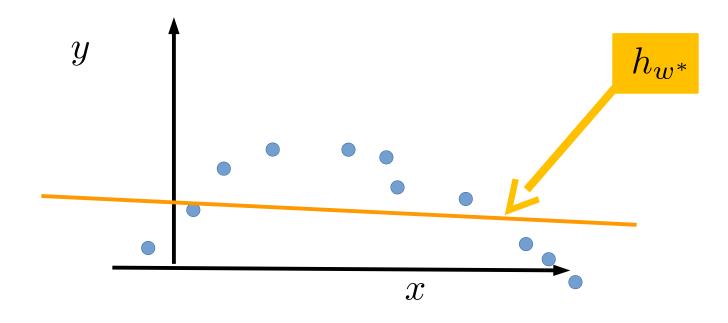
Is a notion of Loss enough?

What happens when we do not have enough data?

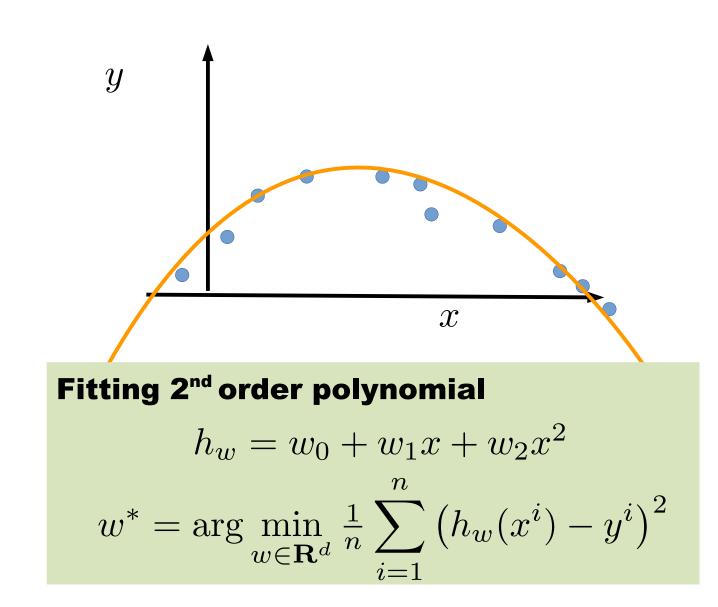
The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

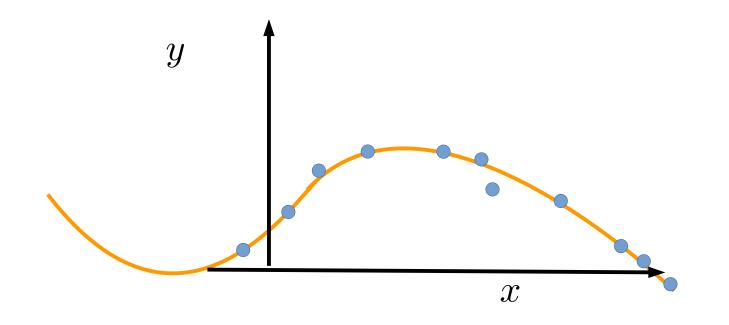
Is a notion of Loss enough?

What happens when we do not have enough data?

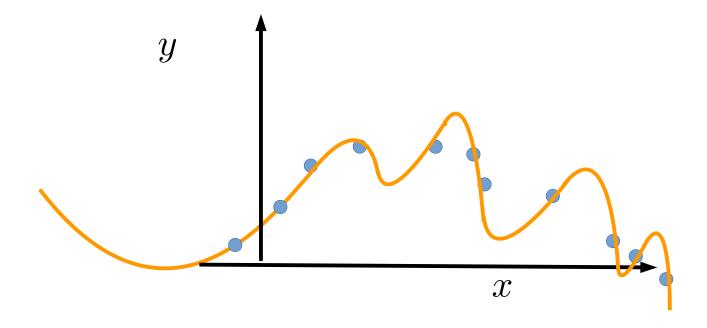


Fitting 1st order polynomial $h_w = \langle w, x \rangle$ $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$





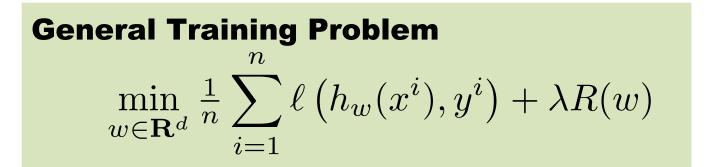
Fitting 3rd order polynomial $h_w = \sum_{i=0}^{3} w_i x^i$ $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left(h_w(x^i) - y^i \right)^2$



Fitting 9th order polynomial $h_w = \sum_{i=0}^9 w_i x^i$ $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

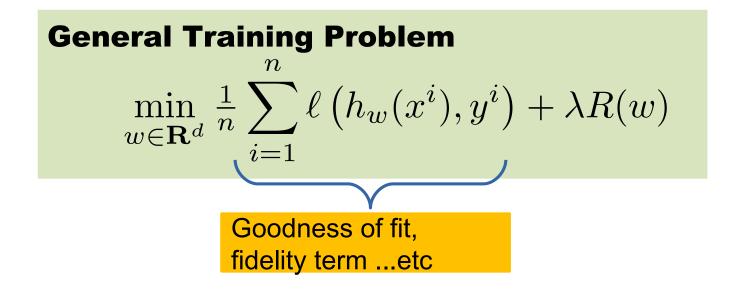
Regularization

Regularizor Functions



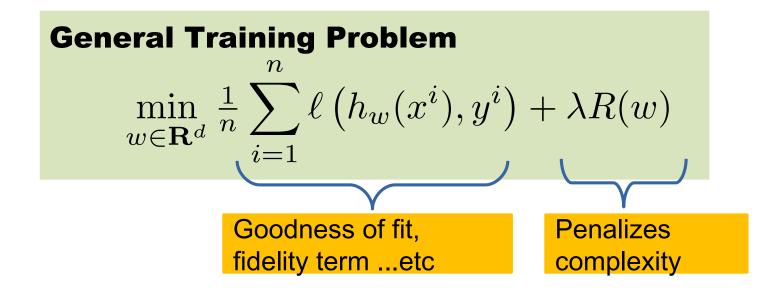
Regularization

Regularizor Functions



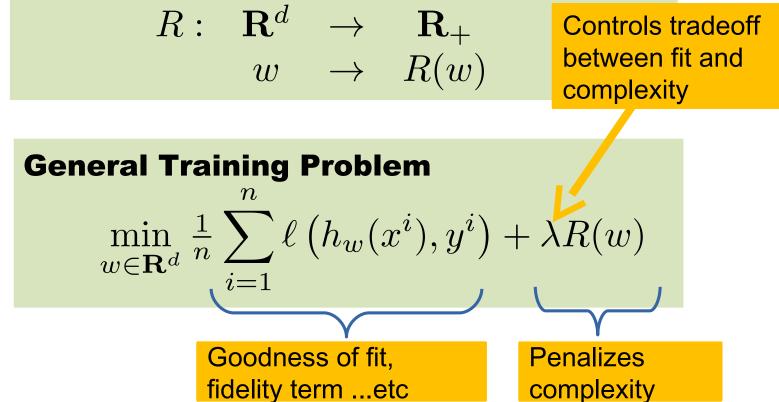
Regularization

Regularizor Functions



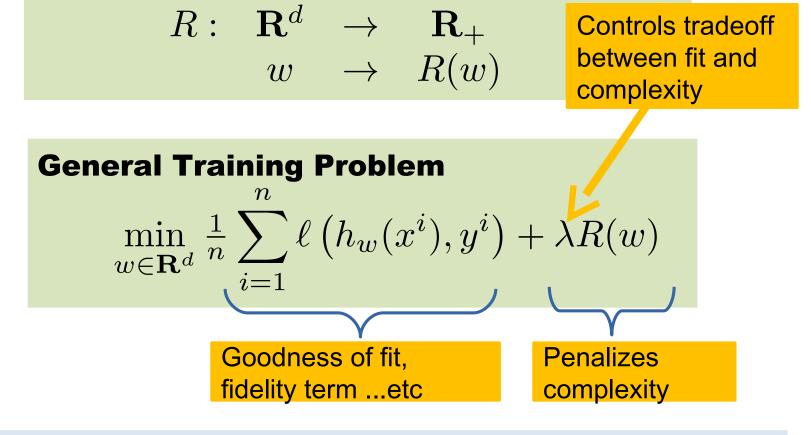
Regularization

Regularizor Functions



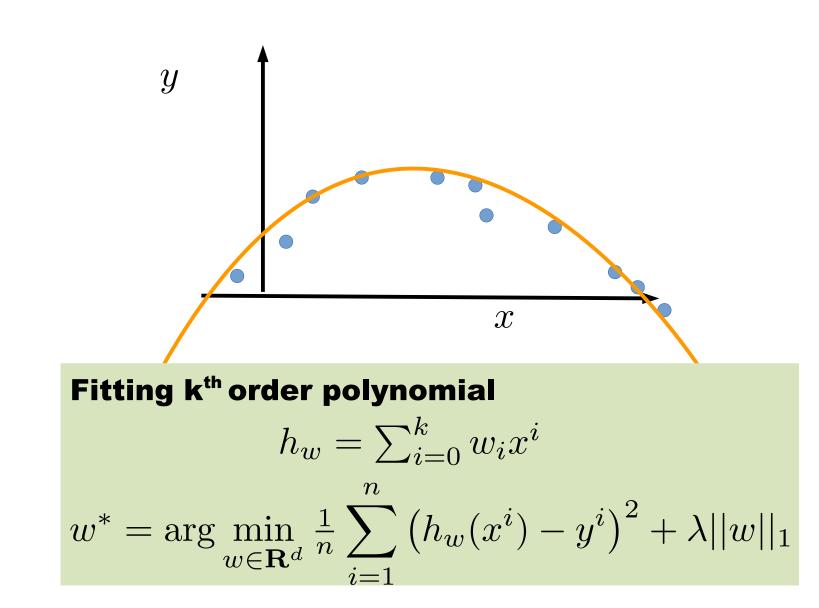
Regularization

Regularizor Functions

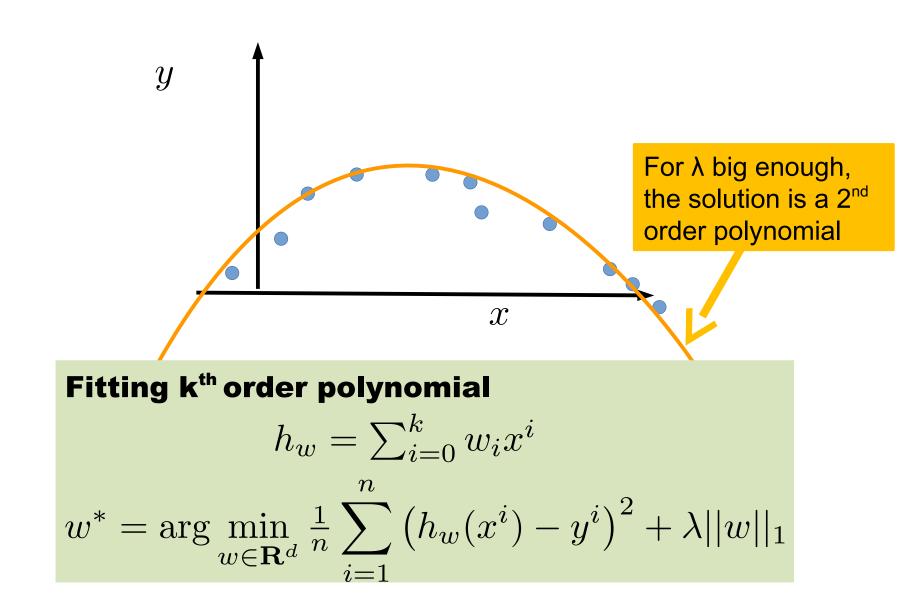


Exe: $R(w) = ||w||_2^2$, $||w||_1$, $||w||_p$, other norms ...

Overfitting and Model Complexity



Overfitting and Model Complexity



Exe: Ridge Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

L2 regularizor $R(w) = ||w||_2^2$

L2 loss
$$\ell(y_h,y) = (y_h-y)^2$$

Ridge Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle w, x^i \rangle)^2 + \lambda ||w||_2^2$

Exe: Support Vector Machines

Linear hypothesis $h_w(x) = \langle w, x \rangle$

2 regularizor
$$R(w) = ||w||_2^2$$

Hinge loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

SVM with soft margin

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle w, x^i \rangle\} + \lambda ||w||_2^2$$

Exe: Logistic Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

2 regularizor
$$R(w) = ||w||^2$$

Logistic loss $\ell(y_h, y) = \ln(1 + e^{-yy_h})$

Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(2) Choose a parametrization for hypothesis: $h_w(x)$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

(4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

(4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

Part II: Optimizing Empirical Risk

Re-writing as Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$ Can we use this sum structure?

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

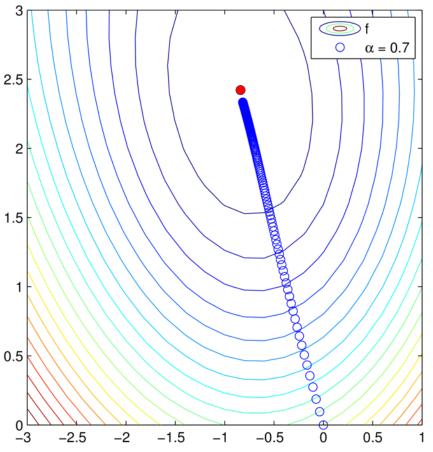
$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T - 1 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

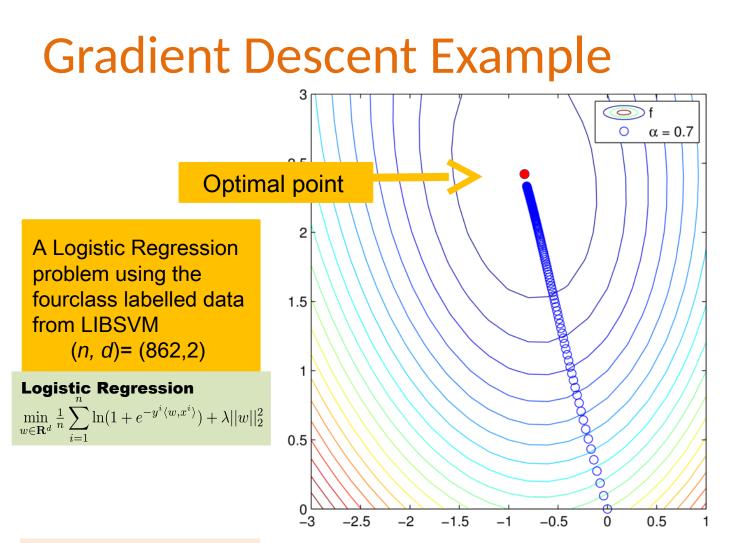
Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d)= (862,2)

Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$



Can we prove that this always works?



Can we prove that this always works?

Gradient Descent Example 0 0 $\alpha = 0.7$ **Optimal point** 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862, 2)1 Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 0 L -3

-2.5

Can we prove that this always works?

No! There is no universal optimization method. The "no free lunch" of Optimization

-2

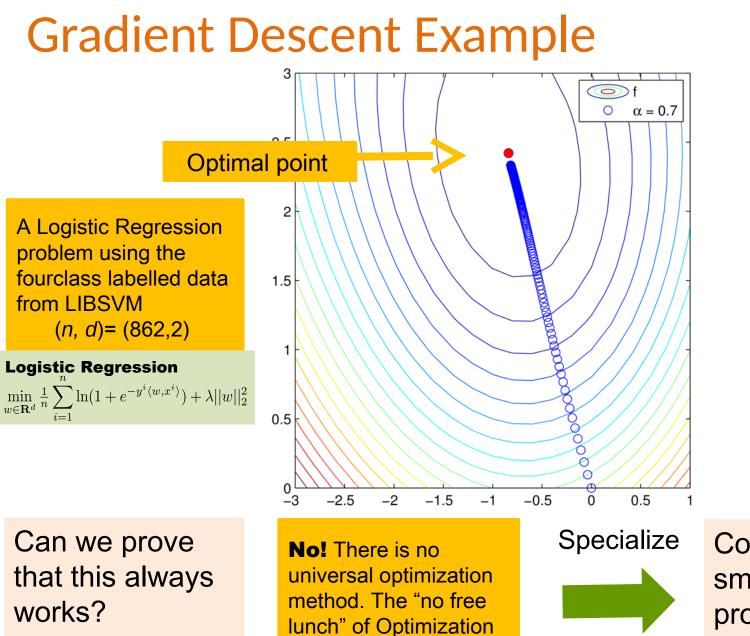
-1.5

-1

-0.5

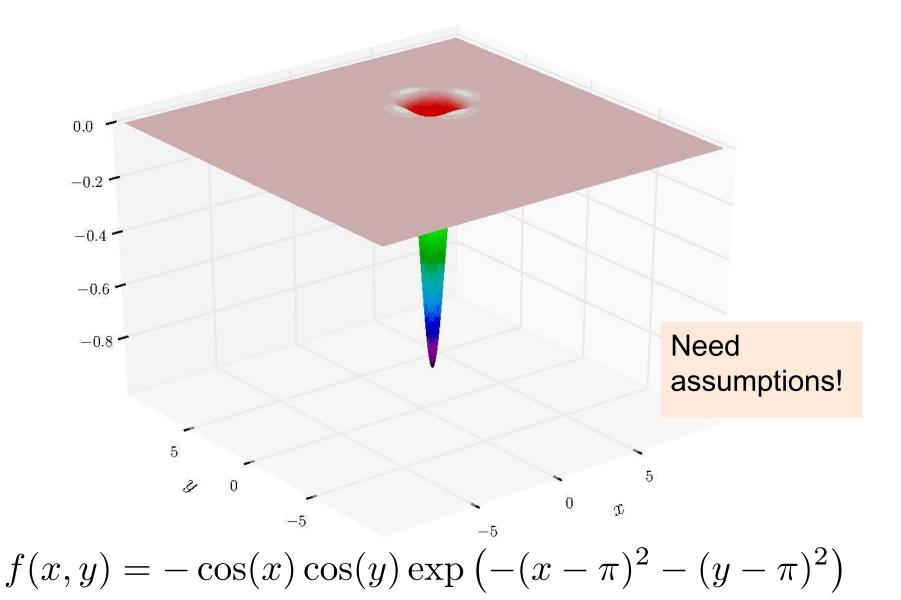
0.5

Õ



Convex and smooth training problems

Optimization is hard (in general)





Main assumption

Nice property

If $\nabla f(w^*) = 0$ then $f(w^*) \le f(w), \quad \forall w \in \mathbb{R}^d$

All stationary points are global minima

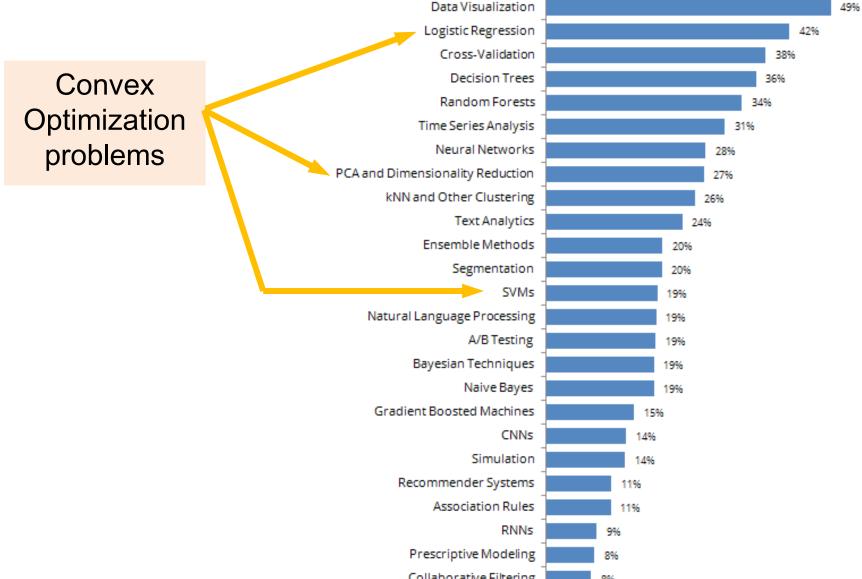
Lemma: Convexity => Nice property

If
$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$$
, $\forall w, y \in \mathbb{R}^d$

then nice property holds

PROOF: Choose
$$y = w^*$$

Data science methods most used (Kaggle 2017 survey)



Part III: Stochastic Gradient Descent

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

Is it possible to design a method that uses only the gradient of a **single** data func f(q,w) at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data funct $\phi(w)$ at each iteration?

Unbiased Estimate

Let *j* be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function f(w) at each iteration?

Unbiased Estimate

Let *j* be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data funct $\phi(w)$ at each iteration?

Unbiased Estimate

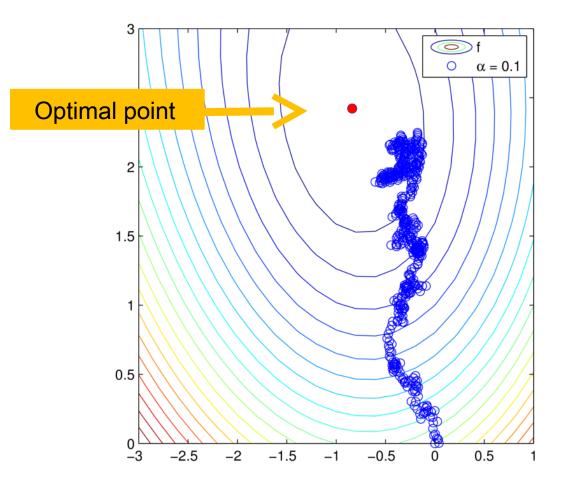
Let *j* be a random index sampled from {1, ..., n} selected uniformly at random. Then

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$$

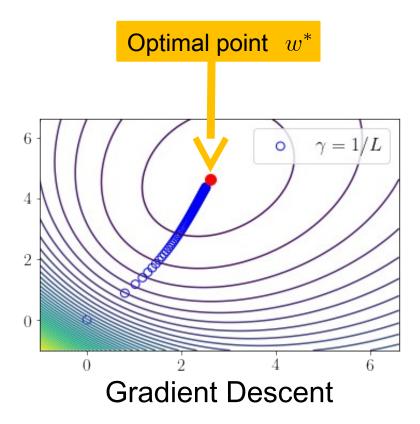
Use
$$\nabla f_j(w) \approx \nabla f(w)$$

EXE: Let $\sum_{i=1}^{n} p_i = 1$ and $j \sim p_j$. Show $\mathbb{E}[\nabla f_j(w)/(np_j)] = \nabla f(w)$

SGD 0.0 Constant stepsize
Set
$$w^0 = 0$$
, choose $\alpha > 0$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^T

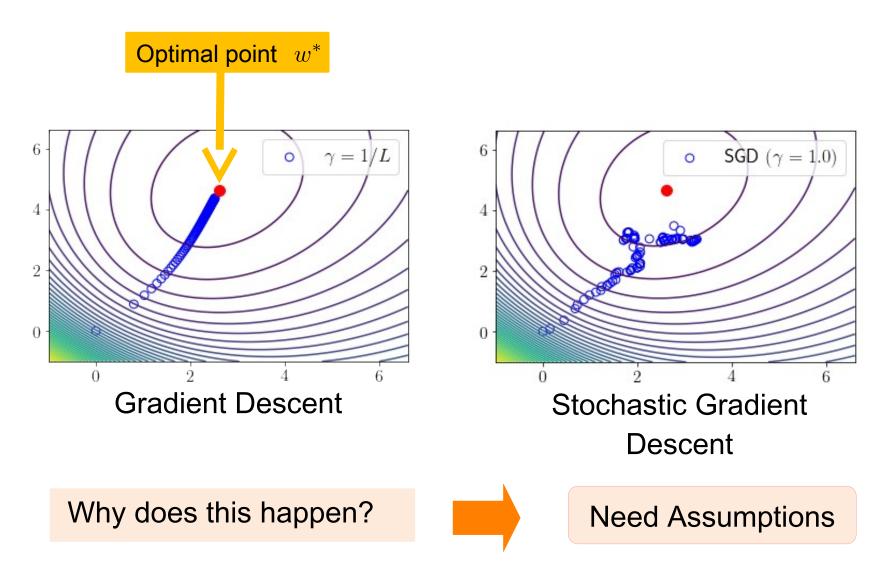


GD vs Stochastic Gradient Descent



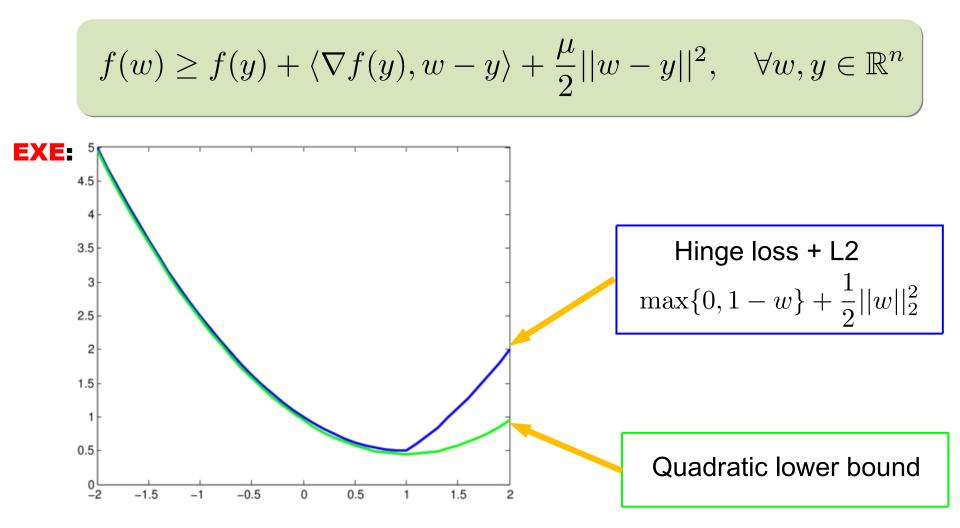
Need Assumptions

GD vs Stochastic Gradient Descent



Assumption: Strong convexity

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if



Assumption: Strong convexity

Not an Example: Neural networks, dictionary learning, And more

Assumption: Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

 $||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$

Assumption: Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2) $f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$

Assumption: Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$$

EXE: Using that $\sigma_{\max}(X)^2 ||d||_2^2 \ge ||X^{ op}d||_2^2$

Show that $\frac{1}{2}||X^{\top}w - b||_2^2$ is $\sigma_{\max}(X)^2$ -smooth

Smoothness: Examples

Convex quadratics:

Logistic:

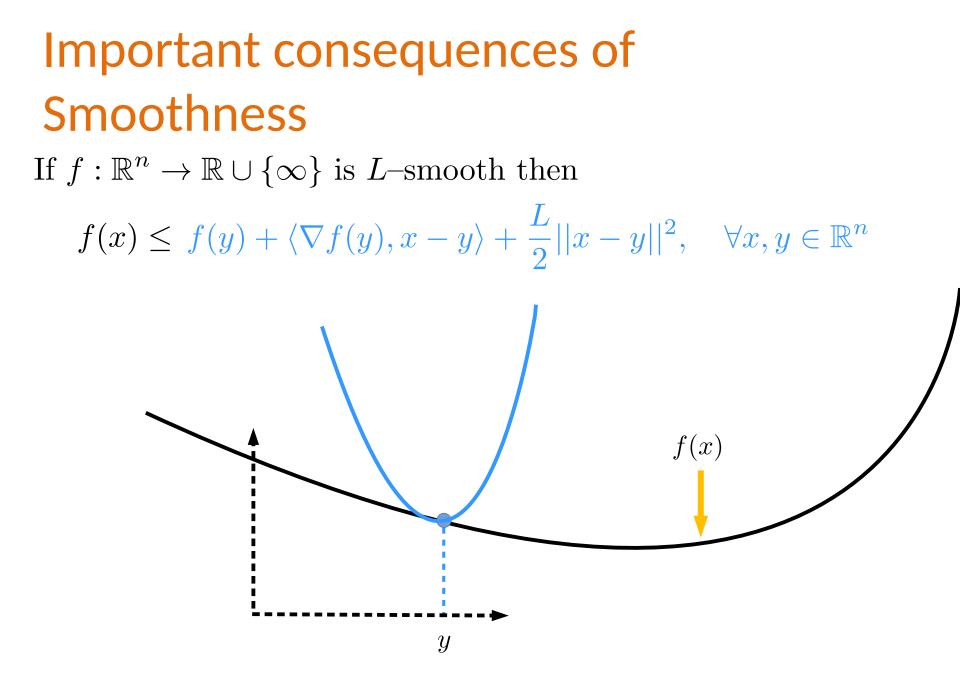
Trigonometric:

$$x \mapsto x^\top A x + b^\top x + c$$

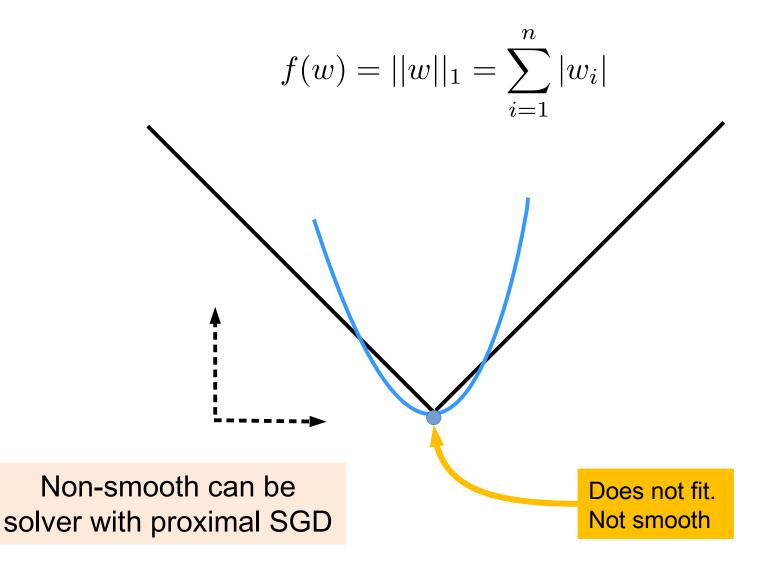
$$x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$$

$$x \mapsto \cos(x), \sin(x)$$

Proof is an exercise!



Smoothness: Convex counter-example



Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2, \quad \forall w$$

Each
$$f_i$$
 is convex and L_i smooth
 $f_i(y) \le f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$
 $L_{\max} := \max_{i=1,...,n} L_i$

Definition: Gradient Noise

$$\sigma^2 \quad := \quad \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i \|v\|^2, \forall v$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \leq L_i I \Leftrightarrow v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$ 1. $f(w) = \frac{1}{2n} ||X^\top w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (x_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$ $= \frac{1}{n} \sum_{i=1}^n f_i(w)$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (x_{i}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = x_i x_i^\top + \lambda \quad \preceq \quad (||x_i||_2^2 + \lambda)I \quad = \quad L_i \ I$

EXE: Calculate the L_i 's and L_{max} for

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i -smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||X^{\top}w - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (x_{i}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = x_i x_i^{\top} + \lambda \quad \preceq \quad (||x_i||_2^2 + \lambda)I = L_i I$ $L_{\max} = \max_{i=1,\dots,n} (||x_i||_2^2 + \lambda) = \max_{i=1,\dots,n} ||x_i||_2^2 + \lambda$

EXE: Calculate the L_i 's and L_{max} for 2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

EXE: Calculate the
$$L_i$$
's and L_{max} for
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

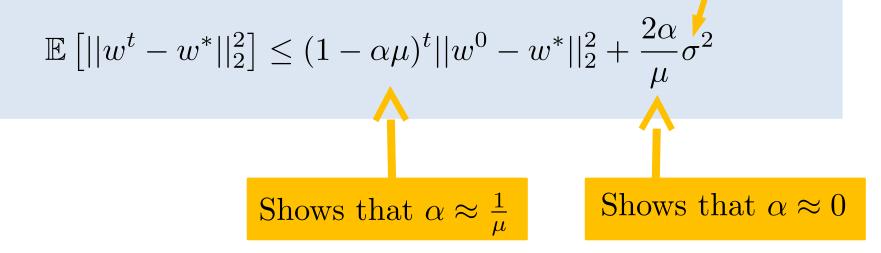
2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2,$$

$$\begin{aligned} \text{EXE: Calculate the } L_i \text{'s and } L_{\max} \text{ for} \\ 2. \quad f(w) &= \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2 \\ 2. \quad f_i(w) &= \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2, \\ \nabla f_i(w) &= \frac{-y_i a_i e^{-y_i \langle w, a_i \rangle}}{1 + e^{-y_i \langle w, a_i \rangle}} + \lambda w \\ \nabla^2 f_i(w) &= a_i a_i^\top \left(\frac{(1 + e^{-y_i \langle w, a_i \rangle}) e^{-y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle})^2} - \frac{e^{-2y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle})^2} \right) + \lambda I \end{aligned}$$

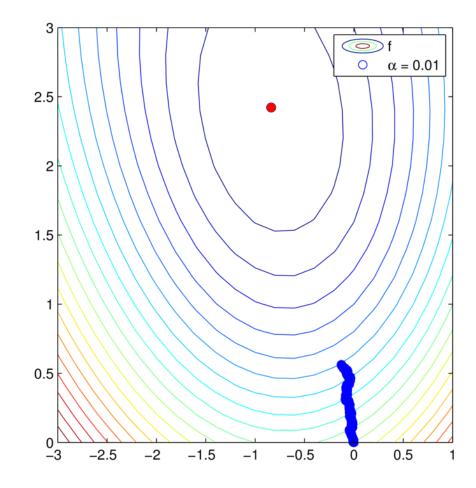
$$=a_i a_i^{\top} \frac{e^{-y_i \langle w, a_i \rangle}}{(1+e^{-y_i \langle w, a_i \rangle})^2} + \lambda I \quad \preceq \quad \left(\frac{||a_i||_2^2}{4} + \lambda\right) I = L_i I$$

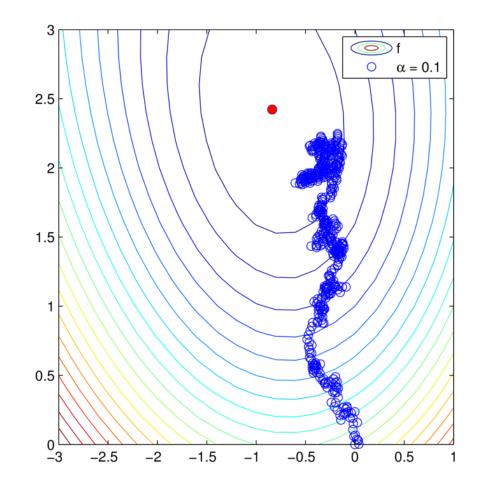
Theorem

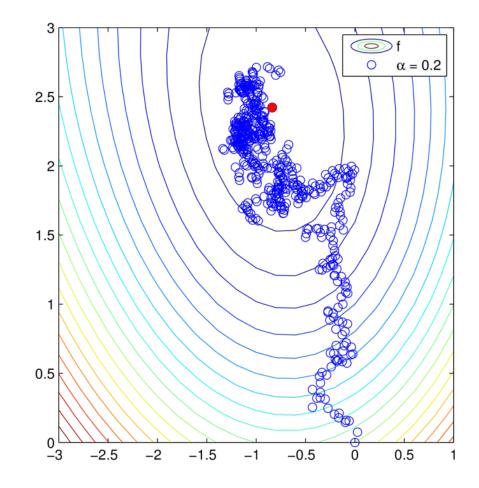
If f is μ -str. convex, f_i is convex, L_i -smooth, $\alpha \in [0, \frac{1}{2L_{\max}}]$ then the iterates of the SGD satisfy $\sigma^2 := \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$

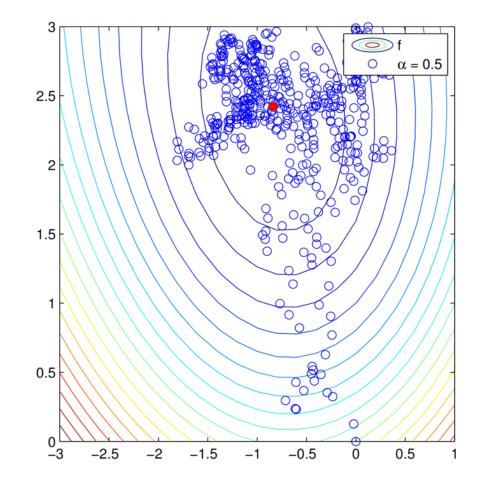


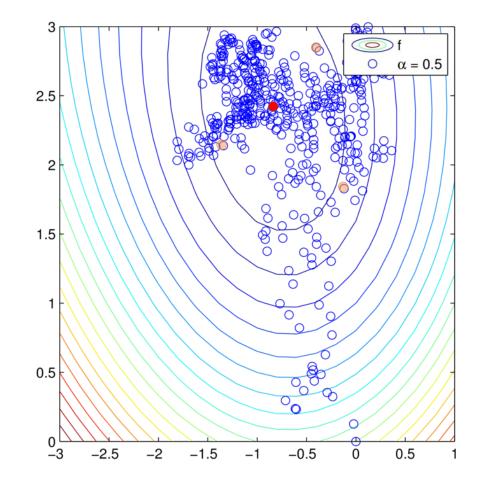
RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik, ICML 2019, arXiv:1901.09401 SGD: General Analysis and Improved Rates.

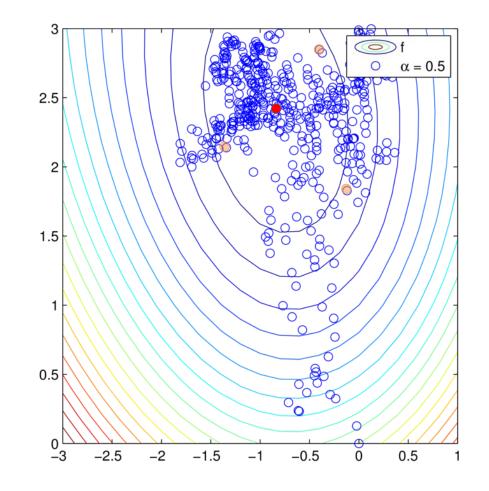






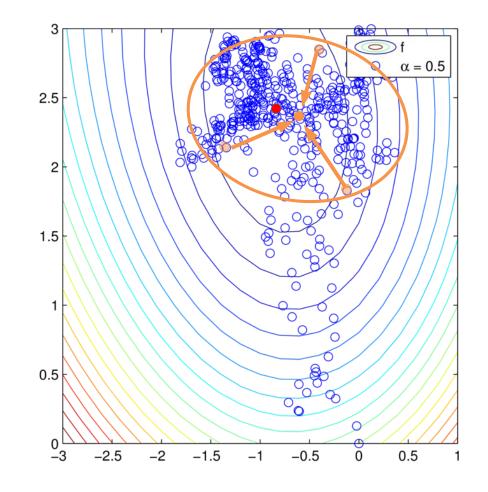






1) Start with big steps and end with smaller steps

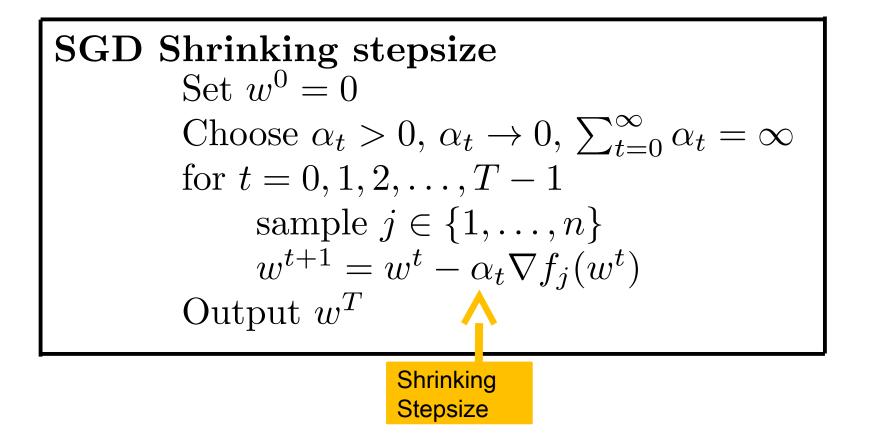
2) Try averaging the points



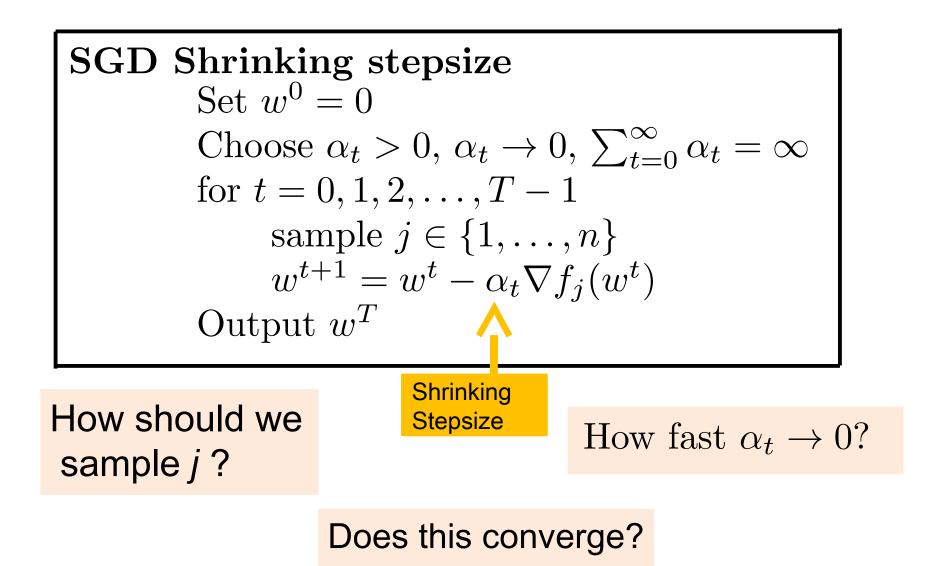
1) Start with big steps and end with smaller steps

2) Try averaging the points

SGD shrinking stepsize



SGD shrinking stepsize



Theorem for switching to shrinking stepsizes

If f is μ -str. convex, f_i is convex and L_i -smooth.

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then the SGD iterates converge $\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$

Theorem for switching to shrinking stepsizes

If f is μ -str. convex, f_i is convex and L_i -smooth.

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$
$$\alpha^{t} = O(1/(t+1))$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then the SGD iterates converge

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

Theorem for switching to shrinking stepsizes

If f is μ -str. convex, f_i is convex and L_i -smooth.

Let $\mathcal{K} := L_{\max}/\mu$ and let

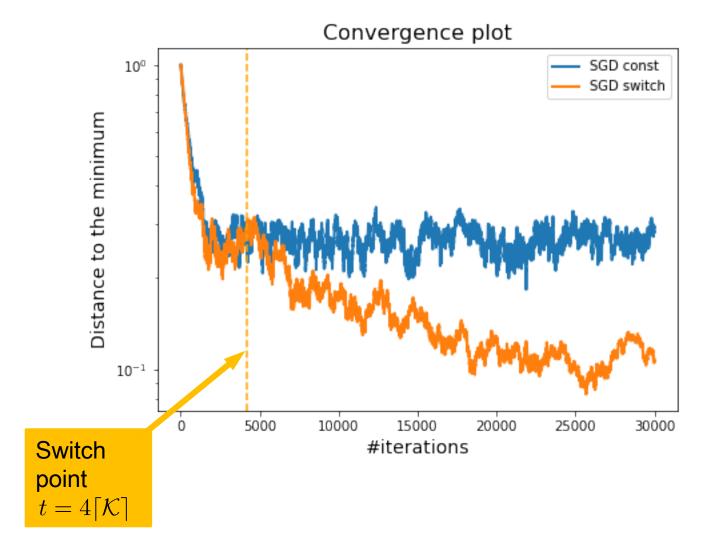
$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$
$$\alpha^{t} = O(1/(t+1))$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then the SGD iterates converge

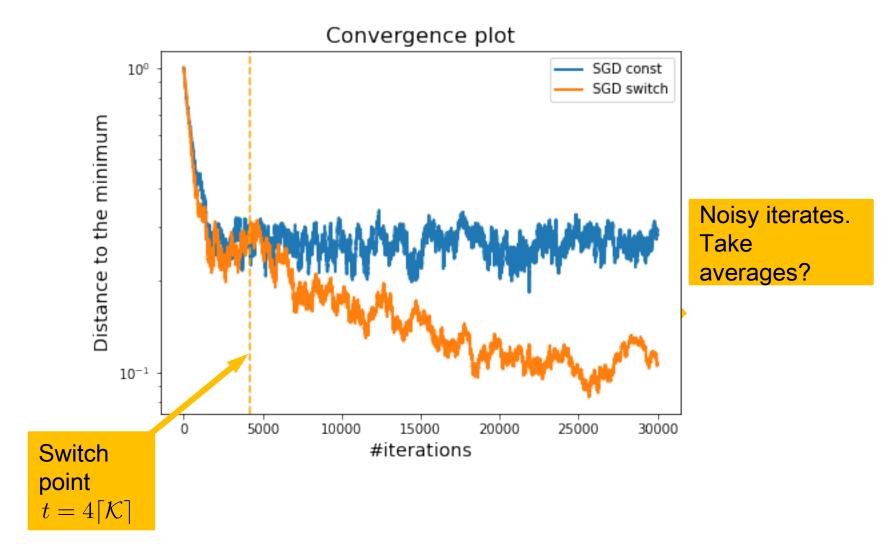
$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

In practice often $\alpha^t = C/\sqrt{t+1}$ where C is tuned

Stochastic Gradient Descent with switch to decreasing stepsizes



Stochastic Gradient Descent with switch to decreasing stepsizes



SGD with (late start) averaging

SGD with late averaging
Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)Acceleration of stochastic approximation by averaging

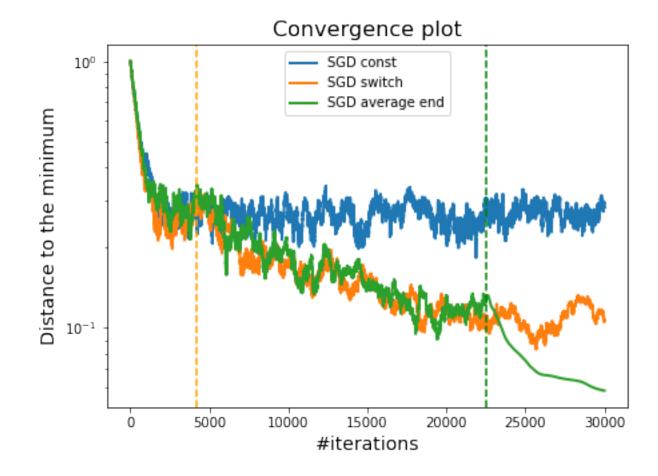
SGD with (late start) averaging

SGD with late averaging
Set
$$w^0 = 0$$

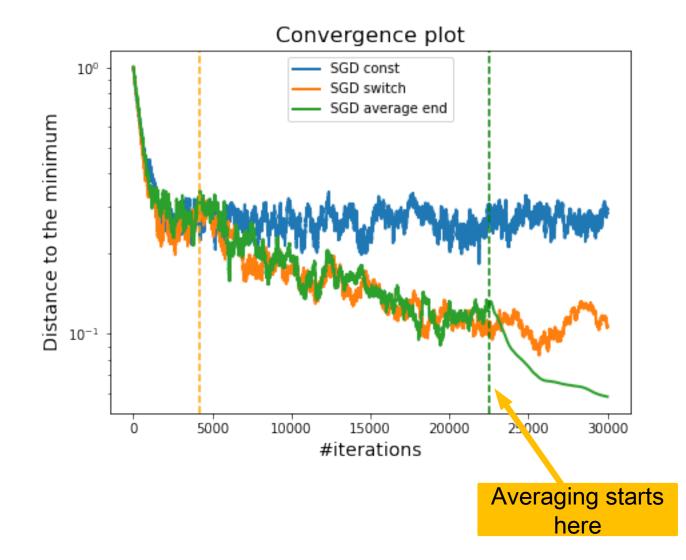
Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)
Acceleration of stochastic approximation by averaging

Stochastic Gradient Descent Averaging the last few iterates



Stochastic Gradient Descent Averaging the last few iterates



Part III.2: Stochastic Gradient Descent for Sparse Data

Lazy SGD updates for Sparse Data

Let x^i have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

Sparse Examples:

encoding of categorical variables (hot one encoding), word2vec, recommendation systems ...etc 2 regularizor

Finite Sum Training Problem L2 regularized linear hypothes
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Let x^i have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

$$w^{t+1} = w^t - \alpha_t \left(\ell'(\langle w^t, x^i \rangle, y^i) x^i + \lambda w^t \right) \\= (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

Sparse Examples:

encoding of categorical variables (hot one encoding), word2vec, recommendation systems ...etc IS

systems ...etc

Finite Sum Training Problem L2 regularized linear hypothes
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Let x^i have at most $s \in \mathbb{N}$ nonzero elements for all i. How many operations does each SGD step cost?

$$w^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} + \lambda w^{t} \right)$$

= $(1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$
encoding of categorical
variables (hot one encoding),
word2vec, recommendation
$$W^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i$$

IS

2 regularizor

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$ $= (1 - \lambda \alpha_t) \beta_t \left(z^t - \frac{\alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t) \beta_t} x^i \right)$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$
$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$
$$\beta_{t+1}$$

SGD step

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$

$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \qquad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

SGD step

00000

$$w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$$

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$
(1) scaling +
(5) sparse add =
(5) update
$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \qquad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

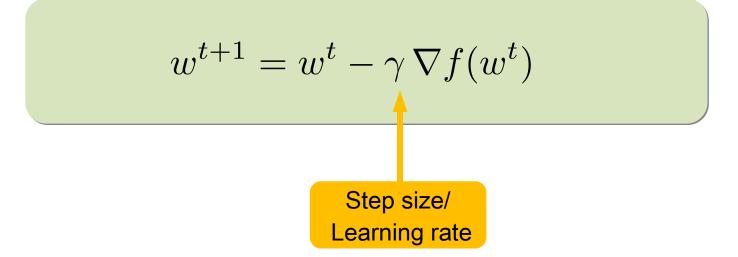
Part IV: Momentum and gradient descent

Back to Gradient Descent

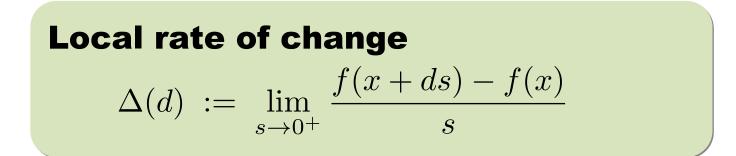
Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

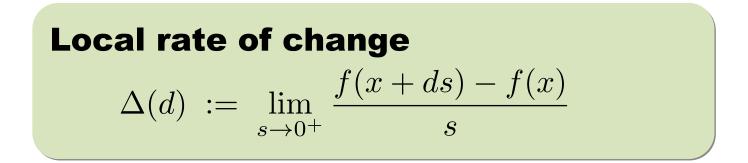
Baseline method: Gradient Descent (GD)

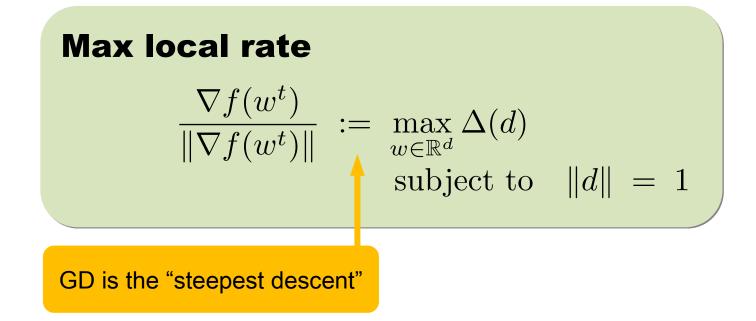


GD motivated through local rate of change

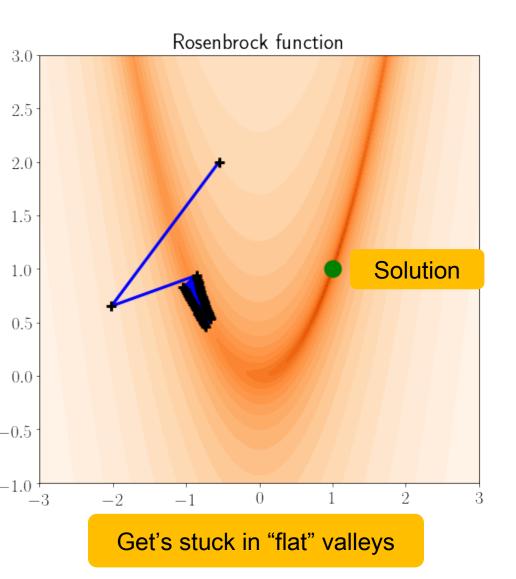


GD motivated through local rate of change

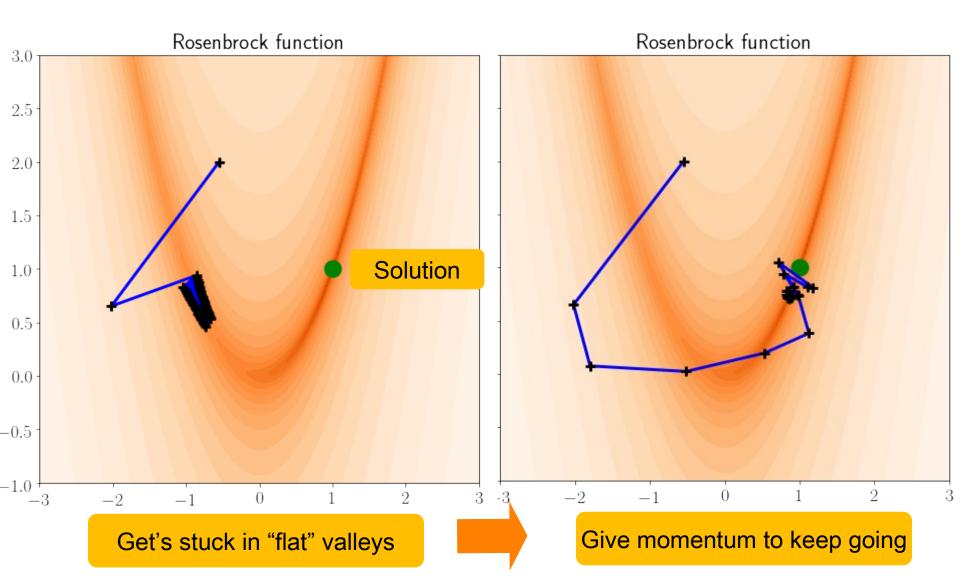




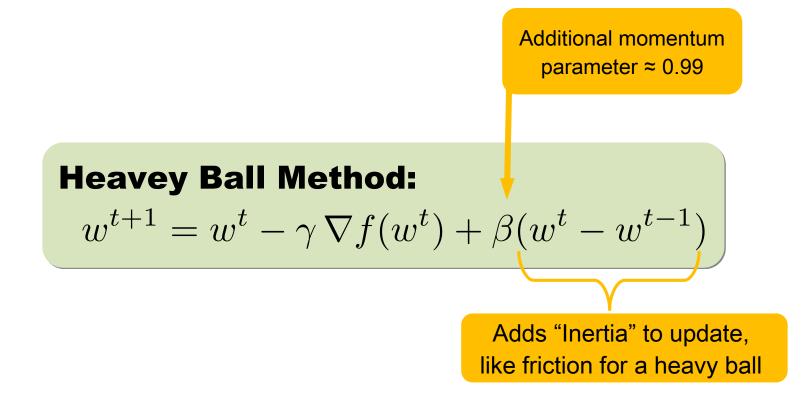
Local motivation not good for global

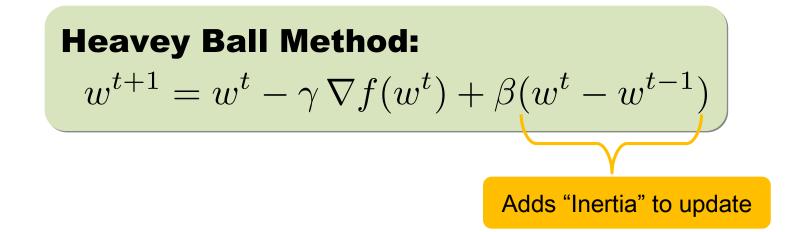


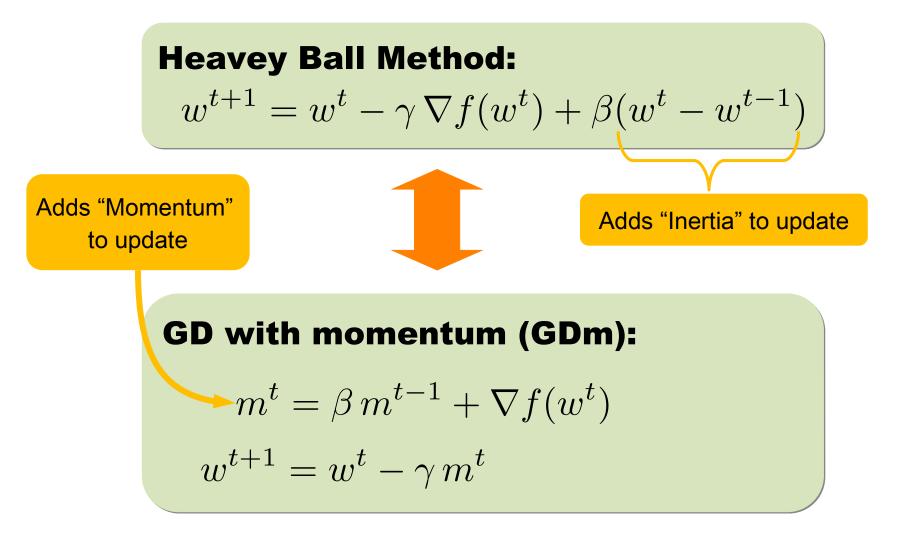
Local motivation not good for global



Adding Momentum to GD







GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^t - \gamma m^t$$

= $w^t - \gamma (\beta m^{t-1} + \nabla f(w^t))$
= $w^t - \gamma \nabla f(w^t) - \gamma \beta m^{t-1}$
= $w^t - \gamma \nabla f(w^t) + \frac{\gamma \beta}{\gamma} (w^t - w^{t-1})$

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$= w^{t} - \gamma (\beta m^{t-1} + \nabla f(w^{t}))$$

$$= w^{t} - \gamma \nabla f(w^{t}) - \gamma \beta m^{t-1}$$

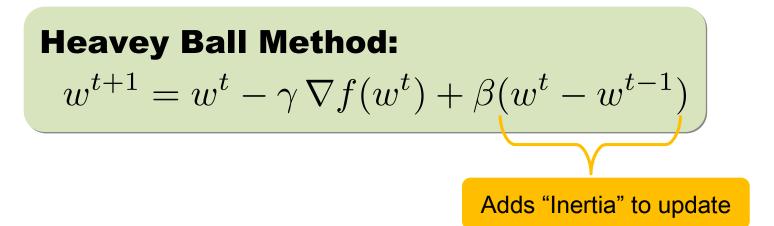
$$= w^{t} - \gamma \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} (w^{t} - w^{t-1})$$

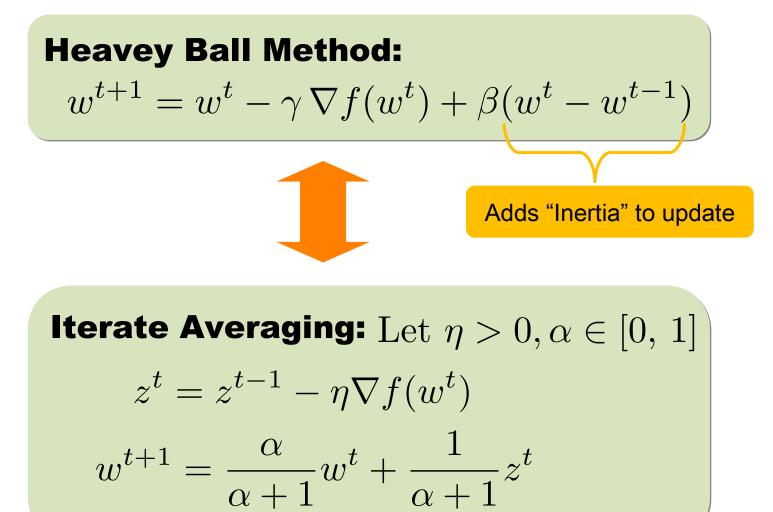
$$\begin{aligned} & \overset{\text{GD with momentum:}}{\overset{m^{t} = \beta \, m^{t-1} + \nabla f(w^{t})}{w^{t+1} = w^{t} - \gamma \, m^{t}} \\ & w^{t+1} = w^{t} - \gamma \, m^{t} \\ & = w^{t} - \gamma \, (\beta m^{t-1} + \nabla f(w^{t})) & \overset{m^{t-1} = -\frac{1}{\gamma} (w^{t} - w^{t-1})}{w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1}} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} \, (w^{t} - w^{t-1}) \end{aligned}$$

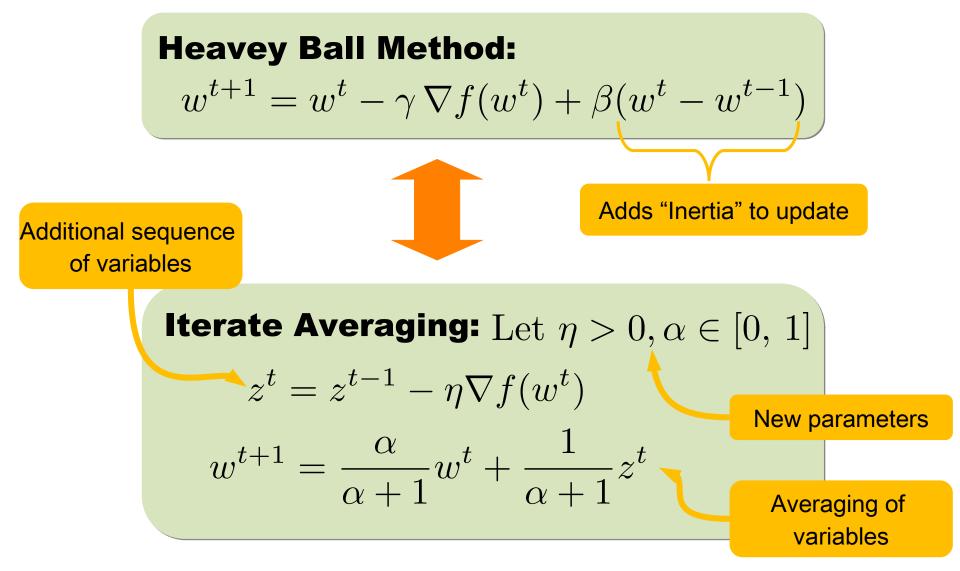
$$\begin{split} & \overset{\text{GD with momentum:}}{\overset{m^{t} = \beta \ m^{t-1} + \nabla f(w^{t})}{w^{t+1} = w^{t} - \gamma \ m^{t}}} \\ & w^{t+1} = w^{t} - \gamma \ m^{t} \\ & = w^{t} - \gamma \ (\beta m^{t-1} + \nabla f(w^{t})) \\ & = w^{t} - \gamma \ \nabla f(w^{t}) - \gamma \beta \ m^{t-1} \\ & = w^{t} - \gamma \ \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} \ (w^{t} - w^{t-1}) \\ & w^{t+1} = w^{t} - \gamma \ \nabla f(w^{t}) + \beta (w^{t} - w^{t-1}) \end{split}$$

$$\begin{aligned} & \overset{\text{GD with momentum:}}{\overset{m^{t} = \beta \, m^{t-1} + \nabla f(w^{t})}{w^{t+1} = w^{t} - \gamma \, m^{t}} \\ & w^{t+1} = w^{t} - \gamma \, m^{t} \\ & = w^{t} - \gamma \, (\beta m^{t-1} + \nabla f(w^{t})) & \overset{m^{t-1} = -\frac{1}{\gamma} (w^{t} - w^{t-1})}{w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1}} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) - \gamma \beta \, m^{t-1} \\ & = w^{t} - \gamma \, \nabla f(w^{t}) + \frac{\gamma \beta}{\gamma} \, (w^{t} - w^{t-1}) \end{aligned}$$
Heavey Ball Method:

$$w^{t+1} = w^{t} - \gamma \, \nabla f(w^{t}) + \beta (w^{t} - w^{t-1}) \end{aligned}$$







Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^{t} = z^{t-1} - \eta \nabla f(x^{t})$ $w^{t+1} = \frac{\alpha}{\alpha+1} w^{t} + \frac{1}{\alpha+1} z^{t}$

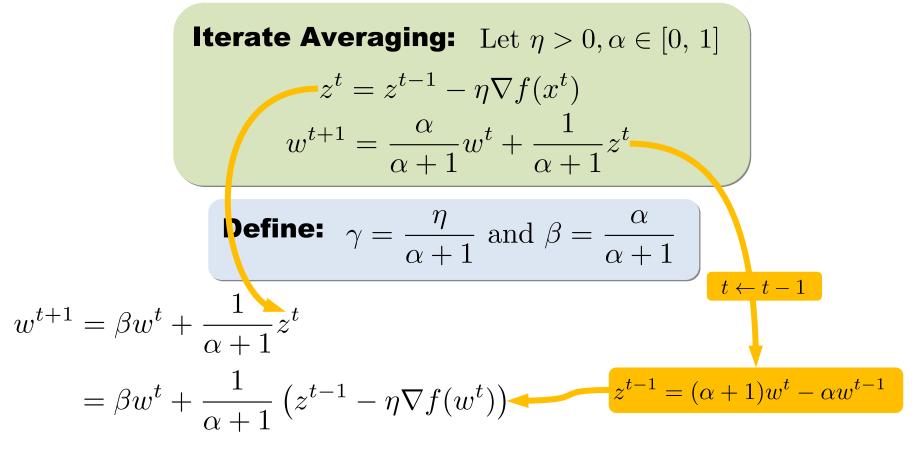
Define:
$$\gamma = \frac{\eta}{\alpha + 1}$$
 and $\beta = \frac{\alpha}{\alpha + 1}$

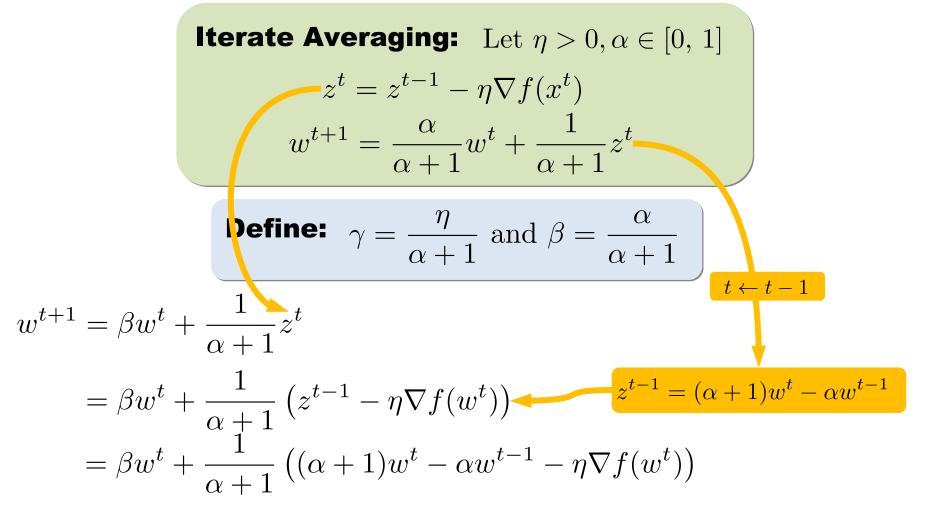
Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^{t} = z^{t-1} - \eta \nabla f(x^{t})$ $w^{t+1} = \frac{\alpha}{\alpha+1} w^{t} + \frac{1}{\alpha+1} z^{t}$ Define: η

Define:
$$\gamma = \frac{\eta}{\alpha + 1}$$
 and $\beta = \frac{\alpha}{\alpha + 1}$
 $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^{t} = z^{t-1} - \eta \nabla f(x^{t})$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$ $=\beta w^{t} + \frac{1}{\alpha+1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right)$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^t = z^{t-1} - \eta \nabla f(x^t)$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $t \leftarrow t - 1$ $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$ $=\beta w^{t} + \frac{1}{\alpha+1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right)$ $z^{t-1} = (\alpha + 1)w^t - \alpha w^{t-1}$





Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^t = z^{t-1} - \eta \nabla f(x^t)$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $t \leftarrow t - 1$ $w^{t+1} = \beta w^t + \frac{1}{\alpha \perp 1} z^t$ $= \beta w^{t} + \frac{1}{\alpha + 1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right) \qquad z^{t-1} = (\alpha + 1)w^{t} - \alpha w^{t-1}$ $= \beta w^{t} + \frac{1}{\alpha + 1} \left((\alpha + 1)w^{t} - \alpha w^{t-1} - \eta \nabla f(w^{t}) \right)$ $= w^t - \gamma \nabla f(w^t) + \beta (w^t - w^{t-1})$

Iterate Averaging: Let $\eta > 0, \alpha \in [0, 1]$ $z^t = z^{t-1} - \eta \nabla f(x^t)$ $w^{t+1} = \frac{\alpha}{\alpha+1}w^t + \frac{1}{\alpha+1}z^t$ **Define:** $\gamma = \frac{\eta}{\alpha + 1}$ and $\beta = \frac{\alpha}{\alpha + 1}$ $t \leftarrow t - 1$ $w^{t+1} = \beta w^t + \frac{1}{\alpha + 1} z^t$ $= \beta w^{t} + \frac{1}{\alpha + 1} \left(z^{t-1} - \eta \nabla f(w^{t}) \right) \qquad z^{t-1} = (\alpha + 1)w^{t} - \alpha w^{t-1} \\ = \beta w^{t} + \frac{1}{\alpha + 1} \left((\alpha + 1)w^{t} - \alpha w^{t-1} - \eta \nabla f(w^{t}) \right)$ **Heavey Ball Method:** $= w^{t} - \gamma \nabla f(w^{t}) + \beta (w^{t} - w^{t-1})$

Part IV.2: Convergence of Momentum with gradient descent

Convergence of Gradient Descent

Theorem Let f be μ -strongly convex and L-smooth, that is If $\gamma = \frac{2}{L+\mu}$ then Gradient Descent converges $||w^{t} - w^{*}|| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^{t} ||w^{0} - w^{*}||$ $\kappa := L/\mu \ge 1$

Convergence of Gradient Descent

Theorem Let f be μ -strongly convex and L-smooth, that is If $\gamma = \frac{2}{L+\mu}$ then Gradient Descent converges $\|w^t - w^*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t \|w^0 - w^*\|$ $\kappa := L/\mu \ge 1$ $\frac{\|w^{\iota} - w^*\|}{\|w^0 - w^*\|} \le \epsilon$ **Corollary** $t \geq \frac{1}{\kappa+1} \log\left(\frac{1}{\epsilon}\right)$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let $f \in C^2$ be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges

$$||w^{t} - w^{*}|| \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{t} ||w^{0} - w^{*}||$$

$$\kappa := L/\mu \ge 1$$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let $f \in C^2$ be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges

$$||w^{t} - w^{*}|| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{t} ||w^{0} - w^{*}||$$

 $\kappa := L/\mu \ge 1$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let $f \in C^2$ be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges

$$||w^{t} - w^{*}|| \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{t} ||w^{0} - w^{*}||$$

Optimal iteration complexity for this function class

C

$$\kappa := L/\mu \geq 1$$

orollary
$$t \ge \frac{1}{\sqrt{\kappa}+1} \log\left(\frac{1}{\epsilon}\right)$$
 $\frac{\|w^t - w^*\|}{\|w^0 - w^*\|} \le \epsilon$

$$\int_{s=0}^{1} \nabla^2 f(w^s) ds(w^t - w^*) = \nabla f(w^t) - \nabla f(w^*) = \nabla f(w^t)$$

$$w^s := w^* + s(w^t - w^*)$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1})$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{\gamma}$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{\gamma}(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$\int_{s=0}^{1} \nabla^{2} f(w^{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w^{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{\gamma}(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$
Depends on two times steps

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} z^{t}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} z^{t} - \text{Simple recurrence!}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_{\gamma}(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

 $= \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} z^{t}$ Simple recurrence!

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

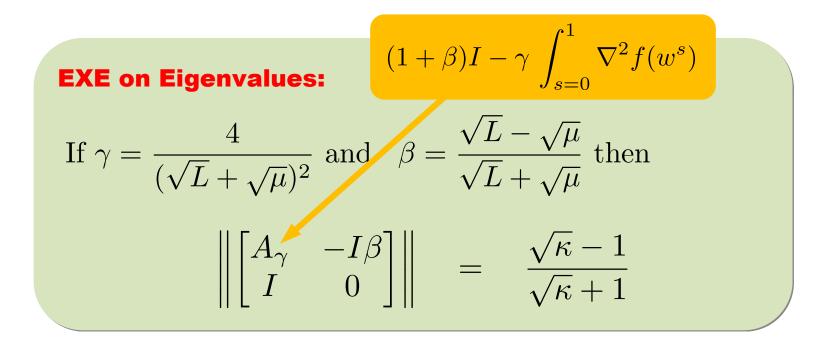
$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$

EXE on Eigenvalues:

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then
$$\left\| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \right\| = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

$$\|z^{t+1}\| \leq \| \begin{bmatrix} A_{\gamma} & -I\beta \\ I & 0 \end{bmatrix} \| \|z^t\|$$



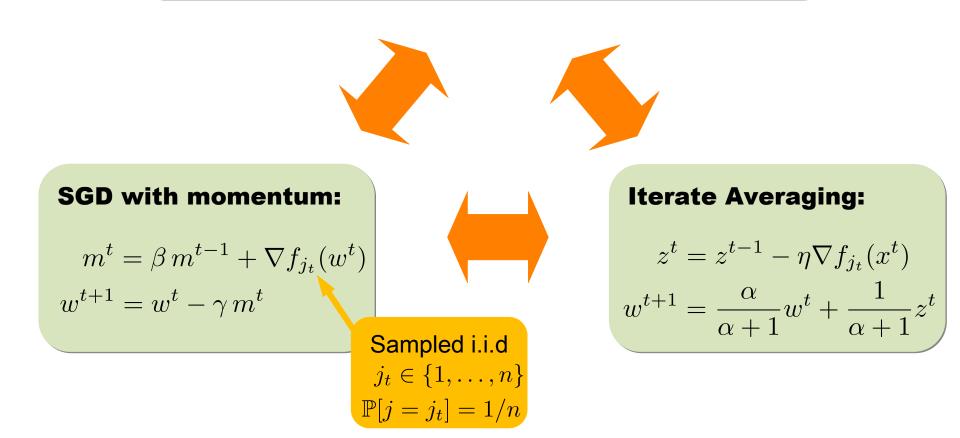
Part V: Momentum with SGD

Adding Momentum to SGD

Rumelhart, Hinton, Geoffrey, Ronald, 1986, Nature

Stochastic Heavey Ball Method:

$$w^{t+1} = w^t - \gamma \nabla f_{j_t}(w^t) + \beta (w^t - w^{t-1})$$



 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ $= \beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ = $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ = $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average: $w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average:

$$w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

Acts like an approximate variance reduction since

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

Momentum as exponentiated average:

$$w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

Acts like an approximate variance reduction since

$$\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}(w^{t})$$

http://fa.bianp.net/teaching/2018/COMP-652/stochastic gradient.html

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$

= $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$
= $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

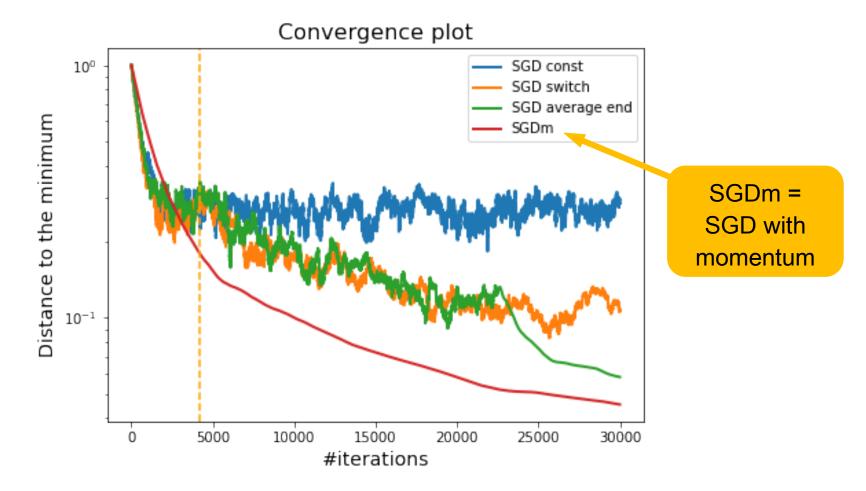
Momentum as exponentiated average:

$$w^{t+1} = w^t - \gamma \sum_{i=1}^{l} \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

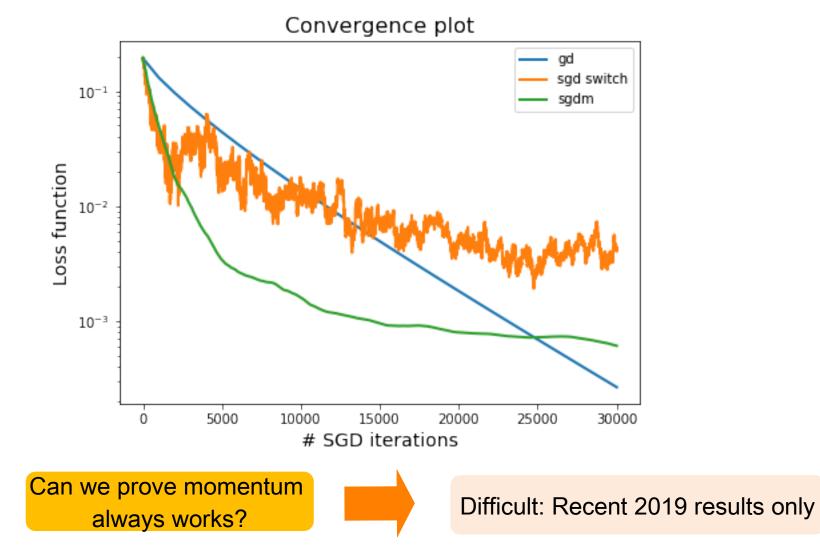
Acts like an approximate variance reduction since $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}(w^{t})$

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

Stochastic Gradient Descent with momentum



Stochastic Gradient Descent with momentum vs GD



Does momentum make SGD converge faster? Not clear, recently same rate as SGD + averaging

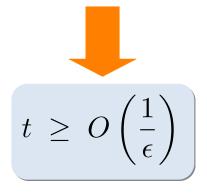
Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

f is μ -strongly convex, f_i is convex and L_i -smooth



Does momentum make SGD converge faster?

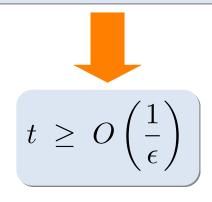
Not clear, recently same rate as SGD + averaging

 $t \geq O$

f is μ -strongly convex, f_i is convex and L_i -smooth

 f_i is convex and L_i -smooth

 $\left(\frac{1}{\epsilon^2}\right)$



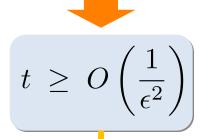
Does momentum make SGD converge faster?

 $t \geq O$

Not clear, recently same rate as SGD + averaging

f is μ -strongly convex, f_i is convex and L_i -smooth

 f_i is convex and L_i -smooth



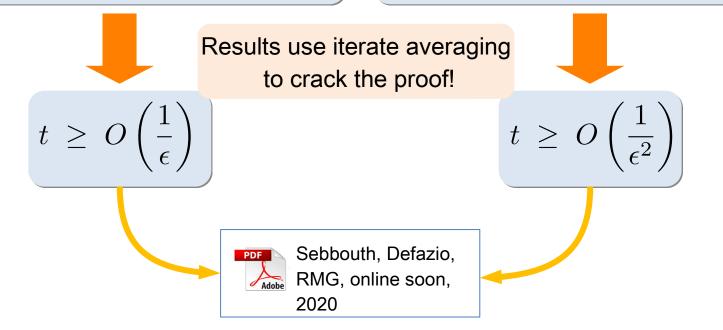
Sebbouth, Defazio, RMG, online soon, 2020

Does momentum make SGD converge faster?

Not clear, recently same rate as SGD + averaging

f is μ -strongly convex, f_i is convex and L_i -smooth

 f_i is convex and L_i -smooth



Part V: Test error and Validation

We have been solving:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We have been solving:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

But we already know these labels

We have been solving:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want our model to correctly label unseen data. We want to generalize But we already know these labels

We have been solving:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want our model to correctly label unseen data. We want to generalize But we already know these labels

We would like to solve:

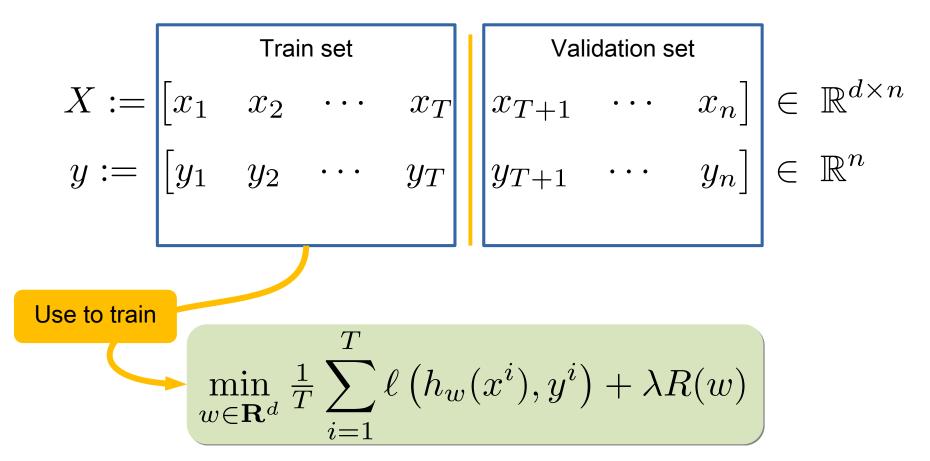
The statistical learning problem:

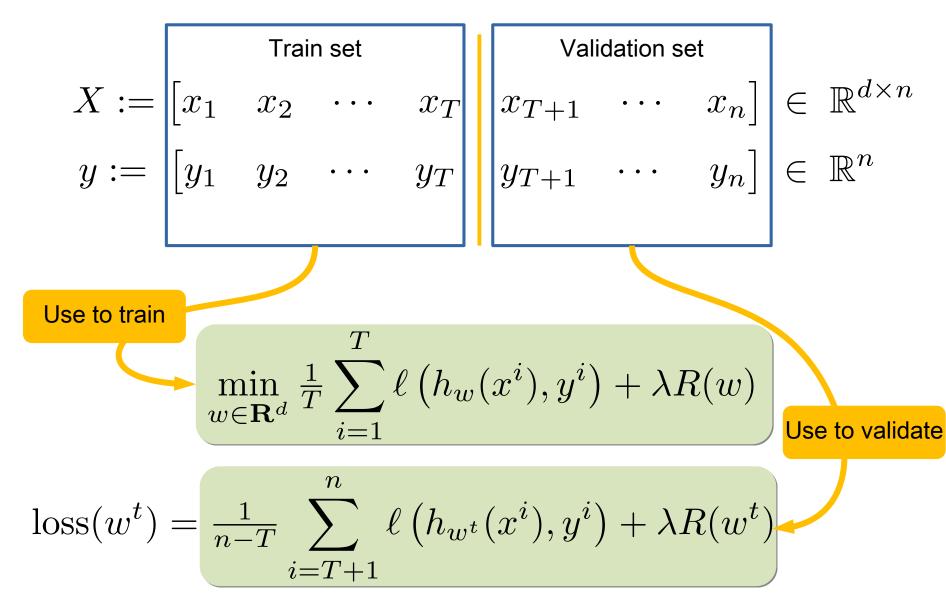
Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_T & x_{T+1} & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{d \times n}$$
$$y := \begin{bmatrix} y_1 & y_2 & \cdots & y_T & y_{T+1} & \cdots & y_n \end{bmatrix} \in \mathbb{R}^n$$

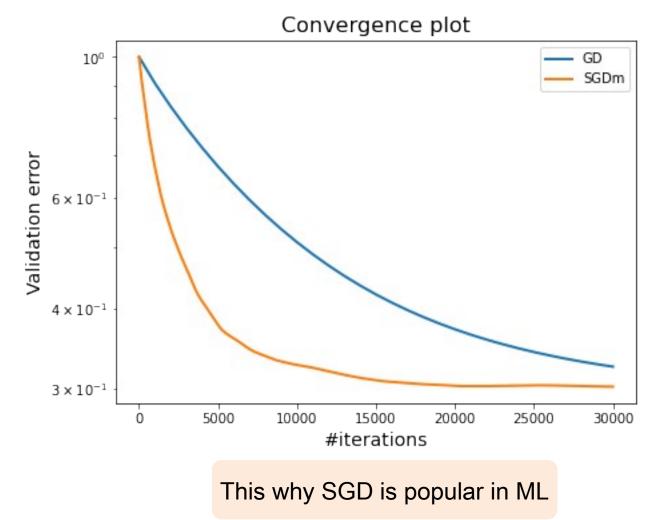
$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_T & x_{T+1} & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{d \times n}$$
$$y := \begin{bmatrix} y_1 & y_2 & \cdots & y_T & y_{T+1} & \cdots & y_n \end{bmatrix} \in \mathbb{R}^n$$

Train setValidation set
$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_T \\ y_1 & y_2 & \cdots & y_T \end{bmatrix}$$
 $\begin{bmatrix} Validation set \\ x_{T+1} & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{d \times n}$





Stochastic Gradient Descent with momentum vs GD on validation set



More reason why ML likes SGD

We have been solving:

$$\min_{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_{w}(x^{i}), y^{i}\right) + \lambda R(w)$$

But we want to solve:
But we already know these labels

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD can be applied to the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD for learning
Set
$$w^0 = 0, \alpha_t > 0$$

for $t = 0, 1, 2, ..., T - 1$
sample $(x, y) \sim \mathcal{D}$
 $w^{t+1} = w^t - \alpha_t \nabla \ell(h_{w^t}(x), y)$
Output $\overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t$