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Abstract

Theses are my notes for my lectures for the MDI210 Optimization and Numerical Analysis

course. Theses notes are a work in progress, and will probably contain several mistakes (let

me know?). If you are following my lectures you may find them useful to recall what we

covered in class. Otherwise, I recommend you read these lectures notes [1] for the part on

linear programming the excellent book [3] for the nonlinear optimization part. In particular,

this book [3] contains all the subjects covered in these notes, and is a much better reference

than these notes.

Contents

1 Linear Programming 2

1.1 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fundamental Theorem of linear programming . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The simplex algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Degeneracy and Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Initialization using a first phase problem . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 How to compute dual solution: Complementary slackness . . . . . . . . . . . . . . . 13

2 Nonlinear programming without constraints 14

2.1 The gradient, Hessian and the Taylor expansion . . . . . . . . . . . . . . . . . . . . . 15

2.2 Level sets and geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



3 Nonlinear programming with constraints 26

3.1 Admissable and Feasible directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Lagrange’s condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Karush, Kuhn and Tuckers condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Deducing Duality using KKT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Project Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The constrained descent method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Introduction to Constrained Optimization TP . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Characterizing the constraint qualification . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Farkas Lemma and the Geometry of Polyhedra . . . . . . . . . . . . . . . . . . . . . 43

1 Linear Programming

Consider the problem

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0, (LP)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. We assume that m ≤ n, otherwise the feasible set might be

trivial. For instance if n ≤ m and full rank, then there exists only one feasible point or no feasible

points.

1.1 A first example

First we start with a simple 2D graphic example. We want to maximize the production of products

x and y. Each unit of product x and y gives us 4 and 2 profit, respectively. To produce one unit

of product x we need 30 minutes on machine 1 and 40 minutes on machine 2. To produce one unit

of product y we need 20 minutes on machine 1 and 10 minutes on machine 2. Thus our problem is

to maximize 4x+ 2y subject to.

3x+ 2y ≤ 6

4x+ 1y ≤ 4

See Figures 1 for a graphical illustration. This graphical example leads us to believe that is

the solution is attainable, then it is always at a vertex. Indeed, this is the case as we show in

Theorem 1.1.
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Figure 1: An graphical example of the constraint set together with the level sets of 4x + 2y = z

with z ∈ {0, 2, 4, 6.4} as dashed lines.

1.2 Fundamental Theorem of linear programming

Theorem 1.1 (Fundamental Theorem of Linear Programming). Let P = {x |Ax = b, x ≥ 0}.
One of the three circumstances must hold

1. P = {∅}

2. P 6= {∅} and there exists a vertex v of P such that v ∈ arg minx∈P c
>x

3. There exists x, d ∈ Rn such that x+ td ∈ P for all t ≥ 0 and limt→∞ c
>(x+ td) =∞.

Proof: A formal proof can be found in Section 2.1.2 [1]. Here we will illustrate with examples.

1. The case P = {∅} is evidenced with the simple example

x+ y ≤ 1

x+ y ≥ 2

2. P 6= {∅} and there exists a vertex v of P such that v ∈ arg minx∈P c
>x
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3. There exists x, d ∈ Rn such that x+ td ∈ P for all t ≥ 0 and limt→∞ c
>(x+ td) =∞.

max x+ y

2x− y ≥ 0

x− 2y ≤ 2

This theorem suggests how we should develop an algorithm to solve the LP. First we should

take care of finding a feasible point and assuring that the domain is non-empty. This is called

initialization phase or phase 1. After determining a feasible point, we should traverse the

vertices of P searching for the optimal point. If we find one, we say that the solution is attainable.

If we find a direction in which c>x→∞, we say that there is an unbounded solution.

Let us transform this insight into a method for solving. First we transform a problem given in

the standard form

max 4x1 + 2x2

3x1 + 2x2 ≤ 600

4x1 + 1x2 ≤ 400

x1 ≥ 0, x2 ≥ 0. (1)

into a maximization over linear constraints with non-negativity constraints

max 4x1 + 2x2

x3 = 600 − 3x1 − 2x2

x4 = 400 − 4x1 − x2. (2)
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We arrived at the above (1) by simply adding x3 and x4 on the 1st and 2nd rows to fill in the slack

of the inequality. Accordingly, the variables x3 and x4 are referred to as the slack variables. ) It is

not hard to show that (1) and (2) are equivalent.

Exercise 1.2. Show that if (x∗1, x
∗
2) is a solution to (1) then there exists x∗3 and x4∗ such that

(x∗1, x
∗
2, x3∗, x4∗) is a solution to (2). Furthermore, if (x∗1, x

∗
2, x3∗, x4∗) is a solution to (2), show

that (x∗1, x
∗
2) is a solution to (1).

Proof: Straightforward.

The transformation (1) into (2) has effectively turned the constraint Ax ≤ b into a linear system

Ax−b = Ix̂ or equivalently Ax−Ix̂ = b. So now we can apply row transformations (left multiplying

by an invertible matrix). Next we re-write (2) in the Dictionary format

x3 = 600 − 3x1 − 2x2

x4 = 400 − 4x1 − x2

z = 4x1 + 2x2

The non-negativity constraints are non longer explicitly included, so we must take care so as

to ensure they hold. Note that the above has a convenient feasible point, that is, the point

(x∗1, x
∗
2, x
∗
3, x
∗
4) = (0, 0, 600, 400) satisfies the above equality constraints. The feasible point cor-

responds to the (0, 0) point in our original 2D constraint space. We will now try to move from this

vertex to a neighbouring vertex that has a larger objective value.

Note that the cost coefficient of x1 in the objective function is positive, which shows that

increasing x1 will increase the objective function. But increasing x1 decreases x3 and x4. Indeed

we have
x3 ≥ 0 ⇒ 600− 3x1 ≥ 0 ⇒ x1 ≤ 200,

x4 ≥ 0 ⇒ 400− 4x1 ≥ 0 ⇒ x1 ≤ 100.

Thus x1 ≤ 100 otherwise x4 will become negative. We will now perform row operations on (3) so

that x1 appears isolated on the left-hand side taking x4’s position. This is called pivoting on the

element (4, 1). This gives

x3 = 300 0 − 5
4x2

x1 = 100 − x4
4 − x2

4

z = 400 − x4 + x2

Now we are at the vertex (x∗1, x
∗
2) = (100, 0). We refer to this last operation as x4 leaving the basis

and x1 entering the basis. Next we see that increasing x2 increases the objective value but

x3 ≥ 0 ⇒ 240 ≥ x2,
x1 ≥ 0 ⇒ 400 ≥ x4.

Consequently we can increase x2 upto 240 while respecting the positivity constraints of x3. Thus

x3 will leave the basis and x2 will enter the basis. Performing a row elimination again, we have
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that
x2 = 240 0 − 4

5x3

x1 = 40 − x4
4 − 1

5x3

z = 640 − x4 − 4
5x3

Now increasing x4 or x3 will decrease the objective value, thus we can make no further improvement.

The final optimal vertex is given by (x∗1, x
∗
2) = (40, 240) and the optimal objective value is z∗ = 640.

1.3 Notation and definitions

Before formalizing a method for solving the above, we will establish a standard representation of

linear programs. The standard form is given in (LP). Not all LPs fit the format (LP), but all LPs

can be re-written in the form (LP). A few of the standard tricks we use to re-write an LP in the

standard form are listed as here

1. (Equality) Replace
∑n

j=1 aijxj = bi by

n∑
j=1

aijxj ≤ bi,

and

−
n∑
j=1

aijxj ≤ −bi.

2. (Box constraints) Replace

α ≤ xi ≤ β,

by

y = x− α,

y ≤ β − α

and

y ≥ 0.

3. (Unconstrained) If x has no positivity constraint, then replace x = x+ − x− and add the

constraints x+ ≥ 0 and x− ≥ 0.

We will now formalize the definitions we introduced in the examples.

• The objective is to maximize the linear objective function z =
∑n

j=1 cjxj

• There are m inequality constraints in the standard form given by

n∑
j=1

aijxj ≤ bi, for i ∈ {1, . . . ,m}.
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• There are n positivity constraints given by xj ≥ 0, for j ∈ {1, . . . , n}.

• We call (x∗1, . . . , x
∗
n) ∈ Rn a feasible solution if it satisfies the inequality and positivity con-

straints.

When passing from the standard form to the dictionary form, we had to introduce some additional

notation

• We call the additionally introduced variable (xn+1, . . . , xn+m) ∈ Rm the slack variables (“vari-

ables d’écart ”)

• We refer to
xn+1 = b1 −

∑n
j=1 a1jxj

...

xn+i = bi −
∑n

j=1 aijxj
...

xn+m = bm −
∑n

j=1 amjxj

z =
∑n

j=1 cjxj ,

as the initial dictionary.

• We say that the system of equations with non-negativity constraints forms a valid dictionary

if m of the variables (x1, . . . , xn+m) can be expressed as an explicit function of the remaining

n variables.

• We refer to the m variables isolated on the left-hand side as the basic variable (variable de

base)and the remaining n variables as non-basic (variable hors-base) or outside the basis.

After writing the problem in the dictionary format, we then performed several row elimination

operations to change the basic variables. These row operations altered the coefficients of the

constraints aij and the cost vector cj . We introduce notation to accommodate for these changing

coefficients.

• Let I ⊂ {1, . . . , n+m} be the set of indices of the basic variables and let J = {1, . . . , n+m}\I
be the non-basic variables.

• For a given basis determined by I there is a corresponding dictionary

xi = b′i +
∑

j∈J a
′
ijxj , for i ∈ I

z = z∗ +
∑

j∈J c
′
jxj ,

where a′ij , b
′
i, z
∗ ∈ R are coefficients resulting from the row operations. For this to be a feasible

dictionary we require that b′i ≥ 0.

7



1.4 The simplex algorithm

Let us now formalize the operations of the simplex algorithm. First, we choose a variable xj0 that

has a positive cost c′j0 to enter the basis, see Algorithm 1. Otherwise if all costs are negative, we

have found the optimal. Next we must choose a variable xi0 that will leave the basis. We determine

i0 as the first variable whose value equals zero as we increase x∗j0 . That is, since x∗j0 will be the only

non-zero non-basic variable, we have

x∗i = b′i +
∑
j∈J

a′ijx
∗
j = b′i + a′ij0x

∗
j0 .

Since we require x∗i ≥ 0 this imposes that b′i + a′ij0x
∗
j0
≥ 0. In other words

x∗j0 ≤ −
b′i
a′ij0

if a′ij0 < 0, , for i ∈ I, (3)

x∗j0 ≥ −
b′i
a′ij0

if a′ij0 ≥ 0, for i ∈ I. (4)

Since we are only interested in increasing the value of x∗j0 , the case (4) where a′ij0 ≥ 0 does not

restrict x∗j0 from increasing (since b′i ≥ 0). Thus only (3) constrains the value x∗j0 . With the

preceding definitions, we can now state the Simplex method in Algorithm 1. In particular, the

pivoting step in Algorithm 1 can be stated using elementwise operations as

for j ∈ J do

for i ∈ I \ {i0} do

a′ij ← a′ij −
a′ij0
a′i0j0

a′i0j # Row elimination on pivot (i0, j0).

cj ← cj −
c′j0
a′i0j0

a′i0j

for j ∈ J do

ai0j ← −
ai0j

a′i0j0

a′i0j0 = 1/a′i0j0

What was left unclear is how do we choose j0 to enter the basis. There are four common choices.

1. The mad hatter rule: Choose the first one you see.

2. Dantzig’s 1st rule: j0 = arg max
j∈J

cj .

3. Dantzig’s 2nd rule: Choose j0 ∈ {j ∈ J : cj > 0} that results in the largest increase in the

objective value. Let t = mini∈I,aij0<0

{
− bi
aij0

}
. The variable entering the basis will have value

x∗j0 = t. Consequently the objective value increases by tcj0 . Choosing j0 that maximizes this

increase is equivalent to choosing via

j0 = arg max
j∈J

{
cj min
i∈I,aij<0

{
− bi
aij

}}
.

This effective but computationally expensive.
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Algorithm 1 One Simplex iteration

Input: A basic index set I ⊂ {1, . . . , n+m}, J = I \{1, . . . , n+m}, constraint coefficients a′ij ∈ R, b′i ≥ 0

and c′i ∈ R.

———————————————————————————————–

if ci ≤ 0 for all i ∈ J then

STOP; # Optimal point found.

Choose a variable j0 to enter the basis from the set j0 ∈ {j ∈ J : c′j > 0}.
if a′ij0 ≥ 0 for all i ∈ I then

STOP; # The problem is unbounded.

Choose a variable i0 to leave the basis from the set i0 ∈ arg min
i∈I,a′

ij0
<0

{
− b′i
a′ij0

}
.

aux← a′i0j0
for i ∈ I \ {i0} do

a′i: ← a′i: − a′ij0 a
′
i0:

/
ai0j0 # Row elimination on pivot (i0, j0).

c′ ← c′ − c′j0 a
′
i0:

/
ai0j0 # Update the cost coefficients.

a′i0: ← − a′i0:
/
a′i0j0 # Row normalization .

ai0j0 ← 1/ aux

I ← (I \ {i0}) ∪ {j0}. # Update basic variables set

J ← (J \ {j0}) ∪ {i0}. # Update non-basic variable set

———————————————————————————————–

Output: I, a′ij , b
′
j , c

′
j .

4. Bland’s rule: Choose the smallest indices j0 and i0. That is, choose

j0 = arg min{j ∈ J : cj > 0}.

If the set arg mini∈I,aij0<0

{
bi
aij0

}
has more than one element, choose the smallest

i0 = min

{
arg min

i∈I,aij0<0

{
− bi
aij0

}}
.

Dantzig’s rules were designed to maximize the objective function in a greedy manner. While Bland’s

rule, though apparently mundane, was designed to avoid cycling.

1.5 Degeneracy and Cycling

If any of the basic variables have zero value, we say that it is a degenerate basis. Degenerate basis

require extra care because they may lead to the simplex algorithm cycling. See example on board

and your alternative french notes.

1.6 Initialization using a first phase problem

Not always will we have that bi ≥ 0 for i = 1, . . . ,m. Simply including slack variables will not

lead to a feasible basic solution. To find a feasible solution we will use the simplex method on an
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auxiliary first phase problem.

First assume we are given a problem

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0, (5)

where at least one bi < 0 where i ∈ {1, . . . ,m}. Consequently x∗ = 0 is not a feasible solution. To

remedy this we add an additional variable x0 and change the objective

max
x
− x0

subject to Ax ≤ b+ Ix0,

x ≥ 0, x0 ≥ 0. (LP-1st)

There now exists x0 for which there is a feasible solution, for instance choosing x∗0 = maxi=1,...,m |bi|
and x∗i = 0 for i = 1, . . . n. The problem (LP-1st) is known as the 1st phase simplex method. We

can use the simplex method to solve (LP-1st). If the solution to (LP-1st) is such that x∗0 6= 0, then

we know that the original problem (5) is infeasible. If the solution to (LP-1st) is such that x∗0 = 0,

then we can use the remaining variables x∗i 6= 0 as a starting basis.

To do this, first we setup a dictionary with slack variables as the basis, even though they do

not form a feasible basis.

xn+1 = b1 −
∑n

j=1 a1jxj + x0
...

xn+m = bm −
∑n

j=1 amjxj + x0

z = − x0

(6)

Next, different from our previous examples, we will make x0 enter the basis even though it has a

negative cost. Suppose w.l.o.g that xn+1 leaves the basis as x0 enters. Thus after pivoting on row

1, column n+ 1 and performing the row operations

ri → ri − r1 for the i = 2, . . . ,m,

the next dictionary would be

x0 = −b1 +
∑n

j=1 a1jxj + xn+1

...

xn+m = bm − b1 −
∑n

j=1(amj − a1j)xj + xn+1

z = b1 −
∑n

j=1 a1jxj − xn+1

(7)

Now, so long as there are positive elements in (a1j)j , we can proceed with the simplex method as

usual. Note that this indicates we should have chosen an element i0 to leave basis such that (ai0j)j .

has many positive coefficients. If we continue to iterate and x0 leaves the basis, then we have found

a feasible basis point and we can drop the x0 variable.
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1.7 Duality

Consider again the LP in standard form

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0, (P)

Though we now have a technique for solving (P), at any given moment we do not know how

far we are from the solution. Will we need another few minutes of computing resources or days

of computing resources? This is a troublesome question. For this, and other reasons, we will now

develop an alternative and equivalent formulation of (P) that will help determine if we are near

the solution, among other insights. This equivalent formulation is known as the dual formulation.

We can first derive the dual problem as a means of finding an upper bound to the solution of (P).

Say we wish to upper bound our objective z = c>x and we want to do this by combining rows of

the constraints Ax ≤ b. That is, let y ≥ 0 ∈ Rm. If we could determine such a y so that y>A ≈ c>

then we would have that

c>x ≈ (y>A)x ≤ y>b,

thus y>b is an approximate upper bound of c>x. What is more, y>b does not depend on x, ergo

this bound holds for all x, including the optimal solution. But just being approximate upper bound

is no good. Instead, assume we have 0 ≤ y ∈ Rm such that y>A ≥ c> or equivalently A>y ≥ c.

Then indeed the upper bound holds since

c>x ≤ (y>A)x ≤ y>b.

Now say we want the upper bound to be as tight as possible. We can do this by choosing y ≥ 0 so

that y>b is small as possible. That is, we need to the following dual linear program.

min
y

w
def
= y>b

subject to A>y ≥ c,

y ≥ 0. (D)

Exercise 1.3. Show that the dual of the dual is the primal program. In other words, this is a

reflexive transformation.

By construction of the dual program, the following lemma holds.
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Lemma 1.4 (Weak Duality). If x ∈ Rn is a feasible point for (P) and y ∈ Rm is a feasible point

for (D) then

c>x ≤ y>Ax ≤ y>b. (8)

Consequently

• If (P) has an unbounded solution, that is c>x → ∞, then there exists no feasible point y

for (D)

• If (D) has an unbounded solution, that is y>b→ −∞, then there exists no feasible point x

for (P)

• If x and y are primal and dual feasible, respectively, and c>x = y>b, then x and y are the

primal and dual optimal points, respectively.

What is even more remarkable is that, not only does (D) provide an upper bound for (P), but

they are equivalent problems, in the following sense

Theorem 1.5 (Strong Duality). If (P) or (D) is feasible, then z∗ = w∗. Moreover, if c′ is the

cost vector of the optimal dictionary of the primal problem, that is, if

z = z∗ +

n+m∑
i=1

c′ixi, (9)

then y∗i = −c′n+i for i = 1, . . . ,m.

Proof: First note that c′i ≤ 0 for i = 1, . . . ,m+ n otherwise the dictionary would not be optimal.

Consequently y∗i = −c′n+i ≥ 0 for i = 1, . . . ,m. Furthermore, by the definition of the slack variables

we have that

xn+i = bi −
n∑
j=1

aijxj , for i = 1, . . . ,m. (10)

Consequently, setting y∗i = −c′n+i, we have that

z
(9)
= z∗ +

n∑
j=1

c′jxj +

n+m∑
i=n+1

c′ixi

(10)
= z∗ +

n∑
j=1

c′jxj −
m∑
i=1

y∗i (bi −
n∑
j=1

aijxj)

= z∗ −
m∑
i=1

y∗i bi +
n∑
j=1

(
c′j +

m∑
i=1

y∗i aij

)
xj

=

n∑
j=1

cjxj , ∀x1, . . . , xn. (11)
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where the last line followed by definition of the objective function z =
∑n

j=1 cjxj . Since the above

holds for all x ∈ Rn, we can match the coefficients to obtain

z∗ =
m∑
i=1

y∗i bi (12)

cj = c′j +

m∑
i=1

y∗i aij , for j = 1, . . . , n. (13)

Since c′j ≤ 0 for j = 1, . . . , n, the above is equivalent to

z∗ =
m∑
i=1

y∗i bi (14)

m∑
i=1

y∗i aij ≤ cj , for j = 1, . . . , n. (15)

The inequalities (15) prove that y∗i ’s satisfies the constraints in (D), and thus is feasible. The

equality (14) shows that z∗ =
∑m

i=1 y
∗
i bi = w, and consequently by weak duality the y∗i ’s are dual

optimal.

Calculating the dual optimal variables y∗ using Theorem 1.5 requires knowing the cost vector

c′ of the optimal tableau. But it turns out that we do not need c′ to calculate y∗. We can instead

recover the y∗ by only knowing x∗, and the complementary slackness theorem shows (see notes).

1.8 How to compute dual solution: Complementary slackness

Let x∗ ∈ Rn be an optimal solution of (P). Then y∗ ∈ Rm is an optimal dual solution if c>x∗ =

(y∗)>b. Thus by the weak duality theorem we have that

c>x∗ = (y∗)>Ax∗ = (y∗)>b.

Subtracting (y∗)>Ax∗ from all sides of the above gives(
c−A>y∗︸ ︷︷ ︸
≥0

)>
x∗ = 0 = (y∗)>

(
b−Ax∗︸ ︷︷ ︸
≥0

)
.

Re-writing the above in element form we have that

n∑
j=1

(
cj −

m∑
i=1

aijy
∗
i

)
x∗j = 0 =

m∑
i=1

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
.

On both sides we have a sum over the product of positive numbers. Thus the total sum is only

zero if the individual products are zero, that is

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
= 0, ∀i = 1, . . . ,m.

x∗j
(
cj −

m∑
i=1

aijy
∗
i

)
= 0, ∀j = 1, . . . , n.
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This gives the following rule for computing y∗.

n∑
i=1

aijy
∗
i = cj , ∀j ∈ {1, . . . , n}, x∗j > 0.

yi = 0, ∀i ∈ {1, . . . ,m}, bi >
n∑
j=1

aijx
∗
j .

Thus we need a single system solve to compute y∗. Finally since bi >
∑n

j=1 aijx
∗
j implies that the

slack variable x∗n+i > 0 we have the more succinct rule

n∑
i=1

aijy
∗
i = cj , ∀j ∈ {1, . . . , n}, x∗j > 0.

yi = 0, ∀i ∈ {1, . . . ,m}, x∗n+i > 0. (16)

Definition 1.6. We refer to the method for computing the dual variables using (16) as the primal

dual map. Indeed for any primal feasible values x∗ we can compute a dual feasible y∗ using (16).

2 Nonlinear programming without constraints

Robert: I recommend reading Chapter 1 in [2] as an introduction into nonlinear optimization.

We now move onto nonlinear optimization, that is, we wish to minimize a possibly nonlinear dif-

ferentiable function f : x ∈ Rn 7→ f(x) ∈ R. First we will consider the unconstrained optimization

problem

x∗ ∈ arg min
x∈Rn

f(x). (17)

All the methods we develop are iterative, in that they produce a sequence of iterates x1, . . . , xk, . . . ,

in the hope that they converge to the solution with

lim
k→∞

xk = x∗.

Furthermore, we will focus on descent methods where the iterates are calculated via

xk+1 = xk + skd
k, (18)

where sk > 0 is a step size and dk ∈ Rn is search direction. The search direction and step size will

satisfy the descent condition given by

f(xk) < f(xk+1). (19)

This in turn guarantees that, little by little, we get closer to the solution of (17).

The key tool in ensuring that the descent condition holds is the gradient.
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2.1 The gradient, Hessian and the Taylor expansion

For a continuously differentiable function f : x ∈ Rn 7→ f(x) ∈ R, we refer to ∇f(x) as the gradient

evaluated at x defined by

∇f(x) =
[
∂f(x)
∂x1

, . . . , ∂f(x)∂xn

]>
.

Note that ∇f(x) is a column-vector.

For any vector valued function F : x ∈ Rd → F (x) = [f1(x), . . . , fn(x)]> ∈ Rn we define

the Jacobian matrix by

∇F (x)
def
=


∂f1(z)
∂x1

∂f1(z)
∂x2

∂f1(z)
∂x3

. . . ∂f1(z)
∂xd

∂f2(z)
∂x1

∂f2(z)
∂x2

∂f2(z)
∂x3

. . . ∂f2(z)
∂xd

...
...

...
. . .

...
∂fn(z)
∂x1

∂fn(z)
∂x2

∂fn(z)
∂x3

. . . ∂fn(z)
∂xd

 =



∇f1(x)>

∇f2(x)>

∇f3(x)>

...

∇fn(x)>


.

The gradient is useful because we can use it to build a linear approximation of f(x) using the

1st order Taylor expansion

f(x0 + d) = f(x0) +∇f(x0)>d+ ε(d)‖d‖2, (20)

where ε(d) is a continuous real valued such that

lim
d→0

ε(d) = 0. (21)

Furthermore, from definition of limit, given any constant c > 0 there exists δ > 0 such that

‖d‖ < δ ⇒ |ε(d)| < c. (22)

We will use the expansion (20) to motivate and understand the steepest descent method later.

If f(x) is twice differentiable, we refer to ∇2f(x) ∈ Rn×n as the Hessian matrix:

∇2f(x)
def
=


∂2f(z)
∂x1∂x1

∂2f(z)
∂x1∂x2

∂2f(z)
∂x1∂x3

. . . ∂2f(z)
∂x1∂xn

∂2f(z)
∂x1∂x2

∂2f(z)
∂x2∂x2

∂2f(z)
∂x2∂x3

. . . ∂2f(z)
∂x2∂xn

...
...

...
. . .

...
∂2f(z)
∂xn∂x1

∂2f(z)
∂xn∂x2

∂2f(z)
∂xn∂x3

. . . ∂2f(z)
∂xn∂xn

 .
If f ∈ C2 (twice continuously differentiable) then

∂2f(z)

∂xi∂xj
=
∂2f(z)

∂xj∂xi
, ∀i, j ∈ {1, . . . , n},

consequently the Hessian matrix is symmetric, that is, ∇2f(x) = ∇2f(x)>. Furthermore, for f ∈
C2, with the Hessian matrix we can build a quadratic approximation to our function using the 2nd

order Taylor expansion.

f(x0 + d) = f(x0) +∇f(x0)>d+
1

2
d>∇2f(x0)d+ ε(d)‖d‖22. (23)
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We will use this expansion to motivate the Newton method later on.

To calculate the gradient and the Hessian, we need to use the chain-rule and product-rule.

Chain-rule. For every differentiable map F (y) : Rd → Rn and function f(x) : Rn → R we have that the

gradient of the composition

f(F (x)) = f(F1(x), . . . , Fn(x)), (24)

is given by

∇(f(F (x))) = ∇F (x)>∇f(F (x)). (25)

Example 2.1. Given a vector a ∈ Rn let f(y) = y>a. Show that

∇(f(F (x))) = ∇F (x)>
dy>a

dy
= ∇F (x)>a. (26)

Product-rule. For any two vector valued functions F 1 : Rd 7→ Rn and F 2 : Rd 7→ Rn we have that

∇(F 1(x)>F 2(x)) = ∇F 1(x)>F 2(x) +∇F 2(x)>F 1(x). (27)

Proof: The product-rule can be deduced from the chain-rule. For this, let f(z, y) = z>y, for

z, y ∈ Rn. Thus F 1(x)>F 2(x) = f(F 1(x), F 2(x)). Now note that

∇f(z, y) =

(
y

z

)
.

Now let F (x) = (F 1(x), F 2(x)). Thus by the definition of Jacobian we have that

DF (x) =

(
DF 1(x)

DF 2(x)

)
.

The above combined with the chain rule gives that

∇f(F 1(x), F 2(x)) = DF (x)>∇f(F 1(x), F 2(x))

=
(
DF 1(x)> DF 2(x)>

)(F 2(x)

F 1(x)

)
= ∇F 1(x)>F 2(x) +∇F 2(x)>F 1(x). (28)

Exercise 2.2. Let f(x) = 1
2x
>Ax + x>b + c, where A ∈ Rn×n is a symmetric positive definite

matrix, b ∈ Rn and c ∈ R. Calculate the gradient and Hessian of f(x).
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Proof: Taking the gradient we have

∇f(x) = 1
2∇(x>Ax) +∇(x>b) +∇(c)

(26)
= 1

2∇(x>Ax) + b

(27)
= 1

2∇(x)>Ax+ 1
2∇(Ax)>x+ b

= 1
2Ax+ 1

2A
>x+ b = Ax+ b,

where we used in the last two sets that ∇(Ax) = A by the definition of the Jacobian and that

A = A>.

2.2 Level sets and geometry

For a fixed constant C ∈ R we refer to the following surface

{x ∈ Rn | f(x) = C}, (29)

as the C level set of f(x). Each level sets implicitly define a surface where f(x) has the same

value.

Exercise 2.3. Draw the level sets

4 = f(x1, x2),

9 = f(x1, x2),

where f(x1, x2, ) = x21 + x22.

The gradient direction is intimately linked to the geometry of the levels sets. Indeed, the

gradient points orthogonal to the level sets. Thus we can also use the gradient to define the the

tangent space, as follows.

Lemma 2.4. The tangent directions to a point on the level set of f(x) are orthogonal to the

gradient at that point. That is, for every

v ∈ Tf (x0) =

v ∈ Rn : v = lim
y → x0,

f(y) = f(x0)

y − x0

‖y − x0‖2

 , (30)

we have that v>∇f(x0) = 0.

Proof: Let y ∈ Rn be such that f(x0) = f(y), consequently using (20) we have that

f(y) = f(x0) +∇f(x0)>(y − x0) + ε(y − x0)‖y − x0‖2 = f(x0).

17



Thus ∇f(x0)>(y−x0)+ ε(y−x0)‖y−x0‖2 = 0. Dividing by ‖y−x0‖2 and taking the limit y → x0,

gives that

0 = lim
y→x0

(
∇f(x0)>

y − x0

‖y − x0‖2
+ ε(y − x0)

)
(30)+(21)

= ∇f(x0)>v.

Another way of phrasing the above result is that y = f(x0) +∇f(x0)>d is the tangent line of f(x)

at (x0, f(x0)).

The gradient is also the direction that maximizes the local change in the objective function,

while the negative gradient is the direction that minimizes the local change. This is the reason why

gradient methods are often referred to as steepest descent methods.

Lemma 2.5 (Steepest Descent). For a give d ∈ Rn we refer to

∆(d)
def
= lim

s→0+

f(x0 + sd)− f(x0)

s
, (31)

as the local change of f(x) around x0. Let v = ∇f(x0)
/
‖∇f(x0)‖2 be the normalized gradient.

It follows that

v = arg max
d∈Rn

∆(d)

subject to ‖d‖2 = 1. (32)

That is, the normalized gradient is the direction maximizes the local change of f(x) around x0.

Furthermore the negative normalized gradient minimizes the local change.

Proof: Using (20) we have that

f(x0 + sd)− f(x0) = s∇f(x0)>d+ ε(sd)s.

Dividing by s and taking the limit s→ 0 we have

∆(d) = lim
s→0+

f(x0 + sd)− f(x0)

s
= ∇f(x0)>d+ lim

s→0+
ε(sd) = ∇f(x0)>d.

Now using that ‖d‖2 = 1 together with the Cauchy inequality

− ‖∇f(x0)‖2 ≤ ∆(d) = ∇f(x0)>d ≤ ‖∇f(x0)‖2. (33)

The upper and lower bound is achieved when d = ∇f(x0)
/
‖∇f(x0)‖2 and d = − ∇f(x0)

/
‖∇f(x0)‖2,

respectively.

As a corollary, we have that the search direction is a descent direction if it has an obtuse angle

with the gradient

18



Corollary 2.6 (Descent Condition). If d>∇f(x0) < 0 then there exists s > 0 such that

f(x0 + sd) < f(x0).

Proof: From (33) we have that ∆(d) = ∇f(x0)>d < 0. Let c = −∇f(x0)>d > 0. Let s > 0 be

such that ε(sd) < c
2 . Consequently from (20) we have that

f(x0 + sd)− f(x0)

s
= ∇f(x0)>d+ ε(sd) ≤ − c

2
< 0.

2.3 Optimality conditions

Let f ∈ C2 be twice continuously differentiable throughout this section.

In most cases it is impossible to solve a general optimization problem such as (17). A much

more modest, and often attainable, objective is to find a local minima instead.

Definition 2.7. The point x∗ ∈ Rn is a local minima of f(x) is there exists r > 0 such that

f(x∗) ≤ f(x), ∀‖x− x∗‖2 < r. (34)

Thus a local minima point x∗ is one where all neighbouring points are worst. This is often good

enough for most applications (though not all applications). Finding local minima is made possible

through the following necessary and sufficient conditions.

Theorem 2.8 (Necessary optimality conditions). If x∗ is a local minima of f(x) then

1. ∇f(x∗) = 0

2. d>∇2f(x∗)d ≥ 0, ∀d ∈ Rn.

Proof: The fact that ∇f(x∗) = 0 follows from Corollary 2.6.

Now suppose there exists d ∈ Rn such that d>∇2f(x∗)d < 0. Suppose w.l.o.g that ‖d‖2 = 1.

Using the second order Taylor expansion we have that

f(x∗ + sd) = f(x∗) +
s2

2
d>∇2f(x∗)d+ ε(sd)s2.

Let δ > 0 be such that for s ≤ δ we have that ε(sd) < |d>∇2f(x∗)d|
/

4. Dividing the above by s2,

for s ≤ δ we have that

f(x∗ + sd)

s2
=

f(x∗)

s2
+

1

2
d>∇2f(x∗)d+ ε(sd)

<
f(x∗)

s2
+

1

4
d>∇2f(x∗)d,

thus f(x∗ + sd) < f(x∗) for all s ≤ δ which contradicts the definition of local minima.

Not only are the conditions in Theorem 2.8 necessary, with a slight modification, they are also

sufficient.
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Theorem 2.9 (Sufficient Local Optimality conditions). If x∗ ∈ Rn is such that

1. ∇f(x∗) = 0

2. d>∇2f(x∗)d > 0, ∀d ∈ Rn with d 6= 0,

then x∗ is a local optima.

Proof: Let d ∈ Rn such that ‖d‖2 = 1. Because ∇2f(x∗) is positive definite, the smallest non-zero

eigenvalue must also be strictly positive. Consequently

λmin(∇2f(x∗)) ≤ d>∇2f(x∗)d, ∀‖d‖2 = 1.

Using the second-order Taylor expansion, we have that

f(x∗ + d) = f(x∗) +
1

2
d>∇2f(x∗)d+ ε(d)‖d‖22

≥ f(x∗) +
‖d‖22

2
λmin(∇2f(x∗)) + ε(d)‖d‖22.

Let r > 0 be such that every d with ‖d‖ ≤ r we have that

|ε(d)| < λmin(∇2f(x∗))/4 ⇒ ε(d) > −λmin(∇2f(x∗))/4.

Thus for ‖d‖ ≤ r we have

f(x∗ + d) ≥ f(x∗) +
‖d‖22

2
λmin(∇2f(x∗)) + ε(d)‖d‖22

≥ f(x∗) +
‖d‖22

4
λmin(∇2f(x∗)) > f(x∗).

Exercise 2.10. Let f(x) = 1
2x
>Ax − x>b + c, with A symmetric positive definite. How many

local/global minimas can f(x) have? Find a formula for the minima using only the data A and b.

Proof: By the sufficient conditions x∗ is a local minima if Ax = b and A � 0. Since Ax = b, there

exists only one local minima.

2.4 Convex functions

In some cases, we can even find a global minima of (17). Indeed, for the convex functions, all local

minima are global minima. We say a function is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ Rd, t ∈ [0, 1]. (35)
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Theorem 2.11. If f is a convex function, then every local minima of f is also a global minima.

Proof: Let x∗ be a local minima and suppose there exists x̄ ∈ Rn such that f(x̄) < f(x∗). Now

consider the line segment zT = tx̄+ (1− t)x∗ for t ∈ [0, 1]. By the definition of convexity we have

that

f(zt) = f((1− t)x̄+ tx∗) ≤ (1− t)f(x̄) + tf(x∗) < (1− t)f(x∗) + tf(x∗) = f(x∗). (36)

This shows that x∗ cannot be a local minima. Indeed, for any r > 0 with r ≤ ‖x̄− x∗‖2, we have

that by choosing t = 1− r/‖x̄− x∗‖2 we have that

‖zt − x∗‖2 = (1− t)‖x̄− x∗‖2 ≤ r.

Yet from (36) we have that f(zt) < f(x∗). A contraction. Thus there exists no x̄ with f(x̄) <

f(x∗).

When f is twice differentiable, there are three equivalent ways of defining convexity.

Theorem 2.12. If f is twice continuously differentiable, then the following three statements are

equivalent

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ Rd, t ∈ [0, 1]. (37)

f(y) ≥ f(x) +∇f(x)>(y − x), ∀x, y ∈ Rd. (38)

0 ≤ d>∇2f(x)d, ∀x, d ∈ Rd. (39)

Proof: We only prove that (37)⇒ (38)⇒ (39). The remaining proof of (39)⇒ (37) is left as an

exercise.

((37)⇒ (38)) We can deduce (38) from (37) by dividing by t and re-arranging

f(y + t(x− y))− f(y)

t
≤ f(x)− f(y).

Now taking the limit t→ 0 gives

〈∇f(y), x− y〉 ≤ f(x)− f(y).

((38)⇒ (39)) First we prove this holds for 1–dimensional functions φ : R → R. For x, y ∈ R
and from (38) we have that

φ(y) ≥ φ(x) + φ′(x)(y − x),

φ(x) ≥ φ(y) + φ′(y)(x− y).

Combining the above two we have that

φ′(x)(y − x) ≤ φ(y)− φ(x) ≤ φ′(y)(y − x).
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Dividing by (y − x)2 we have

φ′(y)− φ′(x)

y − x
≥ 0, ∀x, y, x 6= y.

Taking the limit of y → x we have that

φ′′(x) ≥ 0, ∀x.

To then extend to any n–dimensional function, consider the 1-dimensional function φ(t) = f(x+tv).

Now note that

φ′′(t)
∣∣
t=0

=
d2f(x+ tv)

dv2

∣∣∣∣
t=0

= v>∇2f(x)v ≥ 0,∀v 6= 0.

We also say that f(x) is strictly convex when d>∇2f(x)d > 0, ∀d ∈ Rd with d 6= 0.

Exercise 2.13 (Homework). Let A ∈ Rn×n be a symmetric positive definite matrix. Prove

Theorem (2.12) for quadratic functions f(x) = 1
2x
>Ax+x>b+ c. What can we say about A when

f is convex or strictly convex?

2.5 Gradient method

Since the negative gradient is the direction that minimizes the local change, it is only natural to

use the negative gradient as a descent direction. This suggests the following method

xk+1 = xk − sk∇f(xk).

But the question still remains how to choose sk the stepsize? One natural strategy is to choose sk

that results in the maximum descent. That is,

sk = arg min
s≥0

f(xk + sdk). (40)

Finally, we also need a criteria to determine when we should stop iterating. Typically the user will

choose a tolerance to error ε > 0, and then stop the algorithm either when we are at an approximate

stationary point

‖∇f(xk)‖2 ≤ ε (41)

or when the rate in decrease is small

f(xk+1)− f(xk) ≤ ε. (42)

This gives the steepest descent method in Algorithm (2).

To give some insight into these questions, we now prove that Algorithm 2 converges for a

constant stepsize and quadratic functions
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Algorithm 2 Steepest Descent

1: Choose x0 ∈ Rn.
2: while ‖∇f(xk)‖2 > ε or f(xk+1)− f(xk) ≤ ε do

3: Calculate dk = −∇f(xk)

4: Calculate sk = arg mins≥0 f(xk + sdk)

5: Update xk+1 = xk + skdk.

Theorem 2.14. Let A ∈ Rn×n is symmetric positive definite. Let f(x) = 1
2x
>Ax − x>b + c. If

we choose a fixed stepsize of sk = 1/σmax(A) then the iterates of Algorithm 2 converge according

to

‖∇f(xk+1)‖2 ≤
(

1− σmin(A)

σmax(A)

)k
‖∇f(x0)‖. (43)

Proof:

∇f(xk+1) = Axk+1 − b

= A(xk − s∇f(xk))− b

= A(xk − s(Axk − b))− b

= Axk − b− sA(Axk − b)

= (I − sA)∇f(xk).

Taking norms

‖∇f(xk+1)‖2 ≤ ‖I − sA‖2‖∇f(xk)‖.

By choosing s = 1/σmax(A) we have that I − sA is symmetric positive definite and

‖I − sA‖2 = 1− sσmin(A) = 1− σmin(A)

σmax(A)
< 1.

Robert: Homework: Prove this last step!

Thus finally

‖∇f(xk+1)‖2 ≤
(

1− σmin(A)

σmax(A)

)
‖∇f(xk)‖ ≤

(
1− σmin(A)

σmax(A)

)k
‖∇f(x0)‖.

The rate of convergence in (43) may be slow. Indeed, it depends on how far the smallest and

largest singular are from each other. Perhaps the issue is that we used a fixed stepsize instead

of the “best” stepsize (40)? It turns out that also this greedy strategy of choosing the best step

size in (40) can also lead slow convergence. This is partly due to a phenomenon called zig-zagging.

When using the optimal stepsize (40), sequential gradients are orthogonal to one another, that is

∇f(xk+1)>∇f(xk) = 0. (44)
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To prove this, note that by the definition of sk in (40) we have that

d

ds
f(xk − s∇f(xk))

∣∣∣
s=sk

= 0.

Using the chain-rule we have that

d

ds
f(xk − s∇f(xk))

∣∣∣
s=sk

= −sk∇f(xk − s∇f(xk))>∇f(xk) = 0.

Thus so long as sk 6= 0, then (44) holds. This zigzagging can make the global convergence of steepest

descent painfully slow. One way to fix this zigzagging is to use a constant stepsize. Yet another

that works well in practice is to substitute the exact line search with an approximate line search

such as the Backtracking line search, see Algorithm 3. This line search method tries increasingly

smaller stepsizes until a sufficient decrease in the function is obtained.

Algorithm 3 Backtracking Line Search

1: Choose ᾱ > 0, ρ, c ∈ (0, 1). Set α = ᾱ

2: while f(xk + αdk) ≤ f(xk) + cα∇f(xk)>dk do

3: Update α = ρα.

Algorithm 2 also converges for all smooth functions, that is when there exists L > 0 such that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rn. (45)

See the notes here http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_4_Scribe_

Notes.final.pdf for a similar proof for all smooth functions.

2.6 Newton’s method

Using the second order Taylor expansion we can motivate the Newton method. At each iteration,

the Newton Method minimizes the local quadratic approximation

qk(x) = f(xk) +∇f(xk)>(x− xk) +
1

2
(x− xk)>∇2f(xk)(x− xk), (46)

as a proxy for minimizing f(x). Assuming f(x) is strictly convex, the stationary point xk+1 char-

acterized by ∇xqk(x) = 0 of (46) is given by

∇xqk(x) = ∇f(xk) +∇2f(xk)(xk+1 − xk) = 0.

Isolating xk+1 we have

xk+1 = xk −∇2f(xk)−1∇f(xk).

The advantage that Newton’s method has over the steepest descent is that it converges quadratically

when x is close to the minimum.
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Theorem 2.15. Let f(x) be a µ–strongly convex function, that is, we have a global lower bound

on the Hessian given by

∇2f(x) � µI, ∀x ∈ Rn. (47)

Furthermore, if the Hessian is also Lipschitz

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2 (48)

then Newton’s method converges locally and quadratically fast according to

‖xk+1 − x∗‖2 ≤
L

2µ
‖xk − x∗‖22. (49)

In particular if ‖x0 − x∗‖2 ≤ µ
L , then for k ≥ 1 we have that

‖xk − x∗‖2 ≤
1

22k
µ

L
. (50)

Proof:

xk+1 − x∗ = xk − x∗ −∇2f(xk)−1
(
∇f(xk)−∇f(x∗)

)
= xk − x∗ −∇2f(xk)−1

∫ 1

s=0
∇2f(xk + s(x∗ − xk))(xk − x∗)ds (Mean value theorem)

= ∇2f(xk)−1
∫ 1

s=0

(
∇2f(xk)−∇2f(xk + s(x∗ − xk))

)
(xk − x∗)ds

Taking norms we have that

‖xk+1 − x∗‖2 ≤ ‖∇2f(xk)−1‖2
∫ 1

s=0
‖∇2f(xk)−∇2f(xk + s(x∗ − xk))‖2‖xk − x∗‖2ds

(48)+(47)

≤ L

µ

∫ 1

s=0
s‖xk − x∗‖22ds

=
L

2µ
‖xk − x∗‖22.

Finally if ‖x0 − x∗‖2 ≤ µ
L , then by induction and assuming that (50) holds we have that

‖xk+1 − x∗‖ ≤ L

2µ
‖xk − x∗‖22 ≤ L

2µ

1

22k
1

22k

(µ
L

)2
<

1

22k+1

µ

L
,

which concludes the induction proof.

The assumptions on for this proof can be relaxed, since we only require the Hessian is Lipschitz

and lower bounded in a µ
2L–ball around x∗.
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3 Nonlinear programming with constraints

For this section, I highly recommend reading Chapter 12 in [3].

The objectives of this section are

1. To introduce nonlinear optimization with contraints and provide a geometric intuition.

2. Establish necessary first order optimality conditions which can be easily verified with linear

algebra.

Some prerequisites for understanding the section:

• Closed, open and compact sets and their interaction with continuous functions.

• The extreme value theorem.

Let f, gi and hj be C1 continuous functions, for i = 1, . . . ,m and j = 1, . . . , p. Consider the

constrained optimization problem

min
x∈Rn

f(x)

subject to gi(x) ≤ 0, for i ∈ I.

hj(x) = 0, for j ∈ J, (51)

where I = {1, . . . ,m}, J = {1, . . . , p}, gi(x) ≤ 0 are the inequality constraints and hj(x) = 0 are

the equality constraint. If a point x ∈ Rn satisfies all the inequality and equality constraints we

say that x is a feasible point. We refer to the set of all feasible points as the feasible set which we

denote by

X
def
= {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, for i = 1, . . . ,m, and j = 1, . . . , p.}.

If x is such that gi(x) = 0, we say that the ith inequality constraint is saturated or active at x.
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Exercise 3.1. Solve the following problem graphically

min
x∈Rn

(x1 − 3)2 + (x2 − 2)2

subject to x21 − x2 − 3 ≤ 0, (52)

x2 − 1 ≤ 0, (53)

−x1 ≤ 0. (54)

Figure 2: Plot of feasible set

Adding constraints can make the problem easier to solve as compared to the unconstrained

problem (17), since now we do not need to search the whole of Rn for a solution, but rather only

a subset X. Indeed, if X = {x0} then clearly the solution is x0. But constraints can add many

difficulties. Indeed, even with smooth differentiable functions gi and hj , the frontier of X may be

non-smooth (linear constraints define a polyhedron!). Thus it can be hard to guarantee feasibility

and find descent directions that are feasible. That is why first we focus on characterizing feasible

descent directions. See the examples in the beginning of Chapter 12 in [3] for examples on the

difficulties that constraints introduce.

Theorem 3.2 (Existence). If the feasible set X is bounded and non-empty, then there exists a

solution to (51).

Proof: Given that the sets R− = [−∞, 0] and {0} are closed, by the continuity of gi and hj we

have that X is closed. Indeed,

X =

(
m⋂
i=1

g−1i ([−∞, 0])

)
∩

 p⋂
j=1

h−1j ({0})

 ,

and thus is a finite intersection of closed sets. By assumption X is bounded, thus it is compact. By

the continuity of f we have that f(X) is also compact (The Extreme value theorem). Consequently

there exists a minimum in f(X).

Definition 3.3. We say that f : Rn → R is coercive if lim‖x‖→∞ f(x) =∞.

Theorem 3.4. If X is non-empty and f is coercive, then there exists a solution to (51)

Proof: Let x0 ∈ X. Define Br := {x : ‖x‖ ≤ r}. Since f is coercive, there exists r such that

for each x with ‖x‖ ≥ r we have that f(x) ≥ f(x0). Otherwise we would be able to construct a

sequence xk with ‖xk‖ → ∞ such that f(x) ≤ f(x0), which contracts the coercivity of f.
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Thus clearly the minimum of f is inBr. SinceBr is bounded and closed, we have that x0 ∈ Br∩X
thus it is bounded, closed and nonempty. Again by the extreme value theorem, f(x) attains its

minimum in Br ∩X, which is also the minimum in X.

3.1 Admissable and Feasible directions

To design iterative methods for solving constrained optimization problems, we need to know how

to move from one given point and still remain within the feasible set X. For instance if X was a

polyhedra, then we would say that d is a feasible or an admissible direction at x0 ∈ X if there

exists ε > 0 such that x0 + td ∈ X for all 0 ≤ t ≤ ε. To account for the case that the frontier of the

feasible set is nonlinear (not a straight line), we need to consider a more general notion of feasible

directions.

Definition 3.5. We say that d is an admissible direction at x0 ∈ X if there exists a C1 differen-

tiable curve φ : R+ → Rn such that

1. φ(0) = x0

2. φ′(0) = d

3. There exists ε > 0 such that t ≤ ε we have φ(t) ∈ X

We denote by A(x0) the set of admissable directions at x0.

Some examples of admissable sets

• As a straight forward example, given d ∈ Rn let X = {x | ∃α ∈ R, x = αd}. For any x0 ∈ X
we have that A(x0) = X.

• Consider the circle X = {(cos(θ), sin(θ)) | 0 ≤ θ ≤ 2π} ⊂ R2. Then for every x0 =

((cos(θ0), sin(θ0))) we have that

A(x0) = {(−α sin(θ), α cos(θ)),∀α ∈ R}.

We will often compose differentiable functions f : Rn → R with this curve and make use of the

following representation of the first order Taylor expansion

Lemma 3.6. Let φ : R+ → Rn be a C1 curve as defined in Definition 3.5. Let f : Rn → R
be continuously differentiable. Then the first order Taylor expansion of the composition f(φ(t))

around x0 can be written as

f(φ(t)) = f(x0) + td>∇f(x0) + tε̂(t), (55)
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where limt→0 ε̂(t) = 0.

Proof:

Since both f and φ are C1, their composition is also C1. Thus f(φ(t)) has a first order Taylor

expansion around t = 0 which is

f(φ(t)) = f(φ(0)) + t
df(φ(t))

dt
|t=0 + tε(t).

Now it is just a matter of plugging in φ(0) = x0 and using the chain-rule (25):

df(φ(t))

dt
|t=0 = (φ′(t)>∇f(φ(t)))|t=0 = (d>∇f(x0)).

Thus Lemma 3.6 shows that if we are interested in the local behaviour φ(t) can be replaced by

a line segment up to terms that go to zero faster than t.

A necessary condition on a direction being admissable is given in the following.

Proposition 3.7. Let I0(x0) = {i : gi(x0) = 0, i ∈ I} be the indexes of saturated inequalities.

If d ∈ A(x0) is an admissable direction then

1. For every i ∈ I(x0) we have that d>∇gi(x0) ≤ 0.

2. For every j ∈ J we have that d>∇hj(x0) = 0.

Let B(x0) be the set of directions that satisfy the above two conditions. Thus A(x0) ⊂ B(x0).

Proof: 1. Let i ∈ I(x0). Let φ(t) be the curve associated to d. Consider the 1st order Taylor

expansion of gi around x0 in the d direction which is

gi(φ(t))
(55)
= gi(x0) + td>∇gi(x0) + tε(t)

= td>∇gi(x0) + tε(t)

≤ 0,

where we used gi(φ(t)) ≤ 0 for t sufficiently small. Dividing by t we have that

d>∇gi(x0) + ε(t) ≤ 0.

Letting t→ 0 we have that d>∇gi(x0) ≤ 0.

2. Using the first order Taylor expansion of hj around x0 we have that

hj(φ(t))
(55)
= hj(x0) + td>∇hj(x0) + tε(t) = td>∇hj(x0) + tε(t) = 0. (56)

Dividing by t and then taking the limit as t→ 0 gives d>∇hj(x0) = 0.

Note that B(x0) is a cone, and we will refer to B(x0) as the cone of feasible directions. Because

the cone B(x0) is easy to work with, we would like to use B(x0) instead A(x0). Indeed, it only

depends on linear constraints involving gradients. But sometimes B(x0) is not equivalent to A(x0)

when there exists certain degeneracies.
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Example 3.8. Consider the constraint given by

h1(x) = (x21 + x22 − 2)2 = 0.

Thus

∇h1(x) = 2(x21 + x22 − 2)

(
x1

x2

)
.

Consequently for every feasible point we have that ∇h1(x) = 0. As such, we have that B(x) = R2

for every feasible point. Yet h1(x) = 0 describes a circle, and clearly A(x) is the tangent line at

x. Thus we cannot use ∇h1(x) to describe feasible directions.

Note that we would not have this problem if instead we used the equivalent constraint

h1(x) = (x21 + x22 − 2) = 0.

To exclude the possibility of such degeneracies, we impose the Constraint qualifications, which

are the conditions that ensure we can use B(x0) instead of A(x0).

Definition 3.9. We say that the constraint qualifications hold at x0 if for every d ∈ B(x0) there

exists a sequence (dt)
∞
t=1 ∈ A(x0) such that dt → d.

An example where the constraint qualifications do not hold, and consequently B(x0) 6= A(x0)

is given in the example above.

The following theorem justifies why constraint qualifications are important.

Theorem 3.10 (Necessary conditions). Let x∗ be a local minimum of (51) and suppose the

constraint qualification holds at x∗. It follows that for every d ∈ B(x∗) we have that∇f(x∗)>d ≥ 0.

In other words, all direction in the feasible cone are not descent directions.

Proof: Let dk ∈ A(x∗) be a sequence such that dk → d. Let φk be the curve associated to dk.

According to Lemma 3.6 we have that the first order Taylor expansion of f(φk(t)) can be written

as

f(φk(t)) = f(x∗) + t∇f(x∗)
>dk + tεk(t). (57)

Since x∗ is a local minima, there exists T for which t ≤ T we have that f(x∗) ≤ f(φk(t)).

Consequently

t∇f(x∗)
>dk + tεk(t) = f(φk(t))− f(x∗) ≥ 0, for t ≤ T.

Dividing by t and taking the limit we have

lim
t→0
∇f(x∗)

>dk + εk(t) = ∇f(x∗)
>dk ≥ 0.

Taking the limit in k concludes the proof.
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3.2 Lagrange’s condition

Consider the problem (51) but without inequality constraints, that is,

min
x∈Rn

f(x)

subject to hj(x) = 0, for j ∈ J, (58)

The following theorem gives us necessary conditions for a point to be a local minima that

requires only using linear algebra.

Theorem 3.11. Let x∗ ∈ X be a local minima and suppose that the constraint qualifications

hold at x∗ for (51). It follows that the gradient of the objective is a linear combination of the

gradients of constraints at x∗, that is, there exists µj ∈ R for j ∈ J such that

∇f(x∗) =
∑
j∈J

µj∇hj(x∗). (59)

Proof: Let E = span ({∇h1(x∗), . . . ,∇hp(x∗)}) . Let us re-write ∇f(x∗) = y+ z where y ∈ E and

w ∈ E⊥, thus

−z>∇hj(x∗) = 0, ∀j ∈ J.

Thus by definition −z ∈ B(x∗). Consequently by Theorem 3.10 we have that

−z>∇f(x∗) ≥ 0.

It follows that

−z>∇f(x∗) = −z>y − ‖z‖22 = −‖z‖22 ≥ 0.

Consequently z = 0 and ∇f(x∗) = y ∈ E.

3.3 Karush, Kuhn and Tuckers condition

Consider again the general problem with inequality constraints

min
x∈Rn

f(x)

subject to gi(x) ≤ 0, for i ∈ I.

hj(x) = 0, for j ∈ J, (60)

The extension of Lagrange’s condition to allow to inequality constraints is known at the Karush,

Kuhn Tuckers condition.

Theorem 3.12 (Necessary conditions). Let x∗ ∈ X be a local minima and suppose that the

constraint qualifications hold at x∗ for (58). It follows that there exists µj ∈ R and λi ∈ R+ for
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j ∈ J and i ∈ I(x∗) such that

∇f(x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I(x∗)

λi∇gi(x∗). (61)

Proof: From Theorem 3.10 we know that for every d ∈ B(x∗) we have that ∇f(x∗)>d ≥ 0. That

is, said more explicitly, we have that for every d ∈ Rn that satisfies

−d>∇gi(x∗) ≥ 0, for i ∈ I(x∗)

d>∇hj(x∗) = 0, for j ∈ J,

we have that d>∇f(x∗) ≥ 0. This statement fits perfectly the 2nd version of Farkas Theorem 3.28.

That is, let

A = [−∇g1(x∗), . . .−∇gm(x∗)] and B = [∇h1(x∗), . . .∇hp(x∗)],

and b = ∇f(x∗). Thus for every

d ∈ {d : A>d ≥ 0, B>d = 0}

we have that d>b ≥ 0. By Farkas Theorem 3.28 we have that this statement can be equivalently

re-written as there exists (λ, µ) ∈ P where

P = {(λ, µ) : Aλ+Bµ = b, λ ≥ 0}.

Through which we conclude that the set

P = {µ ∈ Rp, λ ∈ Rm+ :
∑
j∈J

µj∇hj(x∗)−
∑

i∈I(x∗)

λi∇gi(x∗) = ∇f(x∗)},

is non-empty, which concludes the proof.

Theorem 3.13 (Sufficient conditions). Let f and gi for i ∈ I be convex functions. Let hj be

linear for j ∈ J. Suppose the constraint qualifications hold at x∗ ∈ X and that (61) holds. Then

x∗ is a local minima.

Proof: Since the KKT conditions hold, there exist µj ∈ R and λi ∈ R+ for j ∈ J and i ∈ I(x∗)

such that (61) holds. Let x ∈ X. Since f(x) is convex, we have that

f(x) ≥ f(x∗) +∇f(x∗)>(x− x∗)
(61)
= f(x∗) +

∑
j∈J

µj∇hj(x∗)>(x− x∗)−
∑

i∈I(x∗)

λi∇gi(x∗)>(x− x∗). (62)

Using the linearity of each hj we have that

∇hj(x∗)>(x− x∗) = hj(x)− hj(x∗) = 0. (63)

32



Since each gi is convex, we have that

∇gi(x∗)>(x− x∗) ≤ gi(x)− gi(x∗)
i∈I(x∗)

= gi(x) ≤ 0. (64)

Plugging the above into (62) gives

f(x)
(63)

≥ f(x∗)−
∑

i∈I(x∗)

λi∇gi(x∗)>(x− x∗).

(64)

≥ f(x∗)−
∑

i∈I(x∗)

λigi(x) ≥ f(x∗). (65)

From now on we will refer to conditions given in the preceding Theorem 3.13 as the KKT

conditions. That is,

KKT conditions. There exists x that is feasible x ∈ X and µ ∈ R|J | and λ ∈ R|I| such

that (61) holds.

The KKT conditions are often described with the help of an auxiliary function called the

Lagrangian function

L(x, µ, λ) = f(x)− 〈µ, h(x)〉+ 〈λ, g(x)〉 , (66)

where we are using h(x)
def
= (hj(x))j∈J and g(x)

def
= (gi(x))i∈I for shorthand. Using the Lagrangian

we can describe the sufficient conditions for local optimality more succinctly using the following

theorem.

Theorem 3.14. Let x ∈ Rn, µ ∈ R|J | and λ ∈ R|I|. If

∇xL(x, µ, λ) = 0 (67)

∇µL(x, µ, λ) = 0 (68)

∇λL(x, µ, λ) ≤ 0 (69)

then the KKT conditions holds.

Proof: Differentiating we have that

∇xL(x, µ, λ) = ∇f(x∗)−
∑
j∈J

µj∇hj(x∗) +
∑

i∈I(x∗)

λi∇gi(x∗) (70)

∇µL(x, µ, λ) = h(x) (71)

∇λL(x, µ, λ) = g(x) (72)

Setting the first equation to zero is equivalent to (61). Setting the second equation to zero and

restricting the third to be less then zero gives h(x) = 0 and g(x) ≤ x and thus x is feasible, and

the KKT conditons hold.

Using the KKT conditions, what is the largest sphere that fits in an ellipsoid?
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Exercise 3.15.

min−x2 − y2

subject to ax2 + by2 ≤ 1,

where a > b > 0. Assume that constraint qualifications hold.

Using the KKT conditions and assuming that the constraint is not active, that is ax2+by2 < 1,

we quickly arrive at the solution (x, y) = (0, 0).

Now assuming the constraint is active, that is ax2 + by2 = 1, we have the KKT conditions

2x = 2aλx

2y = 2bλy.

ax2 + by2 = 1.

We can enumerate all the solutions as follows. Consider the case that 1) x 6= 0. Thus from the

KKT we have that 1 = aλ and consequently λ = a−1. From 2y = 2bλy, since bλ 6= 1 we have

that y = 0. The feasibility constraint now gives us that x = ±a−1/2. Now consider the case that

2) x = 0. If y 6= 0, then necessarily λ = b−1, and feasibility gives us that y = ±b−1/2. In the

first case, we have that f(x, y) = −x2 − y2 = −a−1. Alternatively in the second case we have

f(x, y) = −b−1. Since −b−1 < −a−1 ≤ 0, we have that (x, y) = (0,±b−1/2) are the two minimum.

What is the maximum?

Example 3.16. Let A ∈ Rn×n be symmetric positive definite, B ∈ Rn×n be invertible and

b, y ∈ Rn. Consider the problem

min 1
2x
>Ax− b>x

subject to Bx = y.

Write the solution x∗ to the above as a function of A,B, b and y.

By Theorem 3.11 we have that there exists µ ∈ Rn such that

Ax∗ − b = B>µ

Bx∗ = y

Rearranging gives (
A −B>

B 0

)(
x∗

µ

)
=

(
b

y

)
(73)
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Thus (
x∗

µ

)
=

(
A −B>

B 0

)−1(
b

y

)
.

3.4 Deducing Duality using KKT

We can also use the KKT condition to deduce the strong duality theorem for linear programming.

For this we will use the following primal form

max
x

c>x

subject to Ax = b,

x ≥ 0, (P)

which is the standard form after slack variables are introduced.

Exercise 3.17. Show that

min
x

b>y

subject to A>y ≤ c (D)

is the dual of (P).

Proof: If we change the min for a max in (P) and write down the KKT equations with λ ≥ 0 for

the inequalities and y variables for the equalities we get

A>y + λ = c Colinear gradients

Ax = b Enforcing equality constraints

x ≥ 0 Enforcing inequality constraints

λ ≥ 0 Positive Lagrange multipliers

xiλi = 0, i = 1, . . . , n. Testing if xi is active (74)

We have added one special constraint xiλi = 0 that checks if the xi ≥ 0 constraint is active or

not. In particular, if xi > 0 then λi = 0 and thus λ has no affects on the remaining equations. On

the hand, when xi = 0 then λi can be any positive number. Furthermore, since both x and λ are

positive we can rewrite (74) as x>λ ≥ 0.

We can also write down the KKT equations of (D). For this, let x ≥ 0 be the Lagrange

parameters associated to the constraint so that

35



Ax = b Colinear gradients

A>y ≤ c Enforcing inequality constraints

x ≥ 0 Positive Lagrange multipliers

x>(A>y − c) = 0 Testing if constraints are active (75)

Now by renaming λ = c−A>y we have that the above equations becomes

A>y + λ = c (76)

Ax = b Colinear gradients

λ ≥ 0 Enforcing inequality constraints

x ≥ 0 Positive Lagrange multipliers

x>λ = 0 Testing if constraints are active (77)

are identical to (74).

The only thing that has changed are the roles of the variables. For the primal problem we have

that x are the optimal variables and λ and y are the Lagrangian multipliers. For the dual problem,

we have that y is the optimal variable and x and λ are Lagrangian multipliers.

3.5 Project Gradient Descent

Now we come back to designing algorithms that fit the format

xk+1 = xk + skd
k, (78)

such that f(xk+1) < f(xk) and xk+1 ∈ X. In the constrained setting we have the additional prob-

lem of enforcing xk+1 ∈ X.

Divide tasks: Take one step to decrease f and another to become feasible. For this we need

the Projection Operator.

PX(z)
def
= arg min

1

2
‖x− z‖2

subject to x ∈ X.

With the projection operator we can now define the projected gradient descent method

xk+1 = PX(xk − sk∇f(xk)). (79)

First, let us study some examples of projections.
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Exercise 3.18. If X = {x : ‖x‖ ≤ r} where r > 0 show that

PX(z) = r
z

‖z‖
.

Proof: We can solve this project problem

min
1

2
‖x− z‖2

subject to ‖x‖2 ≤ r2.

Suppose that ‖z‖ ≤ r. Clearly x = z is the solution.

Suppose instead ‖z‖ > r. Since {x : ‖x‖2 ≤ r2} is a closed set, we know the projection will be

on the boundary given by ‖x‖ = r. Let h(x) = ‖x‖2 − r2. Using the KKT conditions we have that

∇f(x) = −µ∇h(x) =⇒ (x− z) = −2µx.

Isolating x gives

x =
z

1 + 2λ
. (80)

Since ‖x‖ = r we have that

‖z‖
1 + 2µ

= r =⇒ 1

1 + 2µ
=

r

‖z‖
.

Plugging the above into (80) gives

x = r
z

‖z‖
.

Exercise 3.19. Let A ∈ Rn×n be and invertible matrix and let b ∈ Rn. If X = {x : Ax = b}.
Show that

PX(z) = z −A>(AA>)−1(Az − b).

Proof: The Lagrangian function associated to the projection is given by

L(x, µ) =
1

2
‖x− z‖2 + µ>(Ax− b). (81)

Taking the derivative in x and setting to zero gives

∇xL(x, µ) = x− z +A>µ = 0 ⇔ x = z −A>µ (82)

Now using that Ax = b and left multiplying the above by A gives

b = Ax = Az −AA>µ = 0.

Since A is invertible, we have that AA> is invertible. Thus isolating µ in the above gives

µ = (AA>)−1(Az − b).

Inserting this value for µ into (82) gives

x = z −A>(AA>)−1(Az − b).
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Remark 3.20. We did not need A to be square or invertible to define the projection onto Ax = b.

Indeed, no matter what A is the set {x : Ax = b} is a closed set, and thus there must exist a

solution to the projection optimization problem. In general, the projection of z onto Ax = b is

given by

PX(z) = z −A†(Az − b),

where A† is known as the Moore-Penrose Pseudoinverse. Infact, the pseudoinverse of a matrix

can be defined as the operator that gives this solution!

The Project Gradient Methods (PGD) has some advantages and disadvantages. On the good

side, it is general and can be applied to any closed convex set X. When the projection onto X

is known in closed form, it can be very efficient to apply. On the down side depending on X the

projection is not known and can be costly. Furthermore, PGD can converge slowly and suffer from

excessive zig-zagging, see Figure 3.

Figure 3: The constraint set and level sets of the problem (54). The PGD can zig-zag and thus

converge slowly.
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3.6 The constrained descent method

Let us turn the intuition we developed in the previous sections into an algorithm for solving

min
x∈Rn

f(x)

subject to gi(x) ≤ 0, for i ∈ I. (83)

For this we can use the necessary conditions from Theorem 3.10. That is, say we are given a

current feasible point xk ∈ Rn and we wish to find xk+1 such that

f(xk) ≤ f(xk+1)

and for which gi(x
k+1) ≤ 0 for all i ∈ I. To do this, we will look for an admissible direction d ∈ Rn

that is also a descent direction, that is ∇f(xk)>d ≤ 0. From Proposition 3.7 we have that all

admissable satisfy d>∇gi(xk) ≤ 0 for all the active constraints i ∈ I(xk).

This suggests the following iterative method in Algorithm 4.

Algorithm 4 Descent Algorithm

1: Choose x0 ∈ X and ε > 0. Set k = 0.

2: while KKT(xk) conditions not verified or ‖∇f(xk)‖ > ε do

3: Find d such that d>∇f(xk) ≤ 0 and d>∇gi(xk) ≤ 0, ∀i ∈ I . Find feasible direction

4: Find s ∈ R+ such that f(xk + sd) < f(xk) and xk + sd ∈ X . Descent in set

5: xk+1 = xk + sd . Take a step

6: k = k + 1

In finding a direction that satisfies line 3, we can solve a minimization problem such as

min
x∈Rn

d>∇f(xk)

subject to d>∇gi(xk) ≤ 0, ∀i ∈ I(xk)

−1 ≤ d ≤ 1 (84)

3.7 Introduction to Constrained Optimization TP

In the TP2 you will implement a method based on Algorithm 4 but only for problems where gj are

affine functions and in 2D. That is,

min
x∈Rn

f(x)

subject to aix+ biy + ci ≤ 0, for i ∈ I, (85)

where gi(x, y) = aix+ biy + ci ≤ 0, for ai, bi, ci ∈ R for all i ∈ I.
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Exercise 3.21. What is ∇gj(x, y) =? What is the solution to (84) if I(xk) = ∅? What is the

solution if I(xk) = {i}?

The situation in which solving (84) can be tricky is when xk is on a corner. In 2D, this means

that there are two active constraints. Let us call them g1 and g1 thus I(xk) = {1, 2}. In the TP

you will be given access to the gradients of the constraints. Let n1 := −∇g1(xk) = −(a1, b1)
> and

n2 := −∇g2(xk) = −(a2, b2)
> so that they point to the interior of their respective constraint. Let

u1 ∈ R2 and u2 ∈ R2 be the border vectors of g1 and g2. In other words u>1 (x, y) = 0 is equivalent

to g1(x, y) = 0. We choose u1 and u2 such that u>1 n2 ≥ 0 and u>2 n1 ≥ 0, respectively.

Based on the inner products p1 :=
〈
u1,∇f(xk)

〉
and p2 :=

〈
u2,∇f(xk)

〉
, we now distinguish

between three different cases.

1. If
〈
n1,∇f(xk)

〉
≤ 0 and

〈
n2,∇f(xk)

〉
≤ 0 then d = − ∇f(xk)

‖∇f(xk)‖ is feasible

2. Else if p1 ≤ 0 and p2 ≤ 0 then both border vectors are feasible and we choose i∗ =

arg mini{
〈
ui,∇f(xk)

〉
} and d = ui∗ .

3. Else if p1 ≥ 0 and p2 ≥ 0 then all descent directions point outside the feasible region (indeed

the KKT conditions are verified) and there is no descent direction.

4. Else if p1 ≤ 0 and p2 ≥ 0 then d = u1.

5. Else p2 ≤ 0 and p1 ≥ 0 then d = u2.
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Appendix

3.8 Characterizing the constraint qualification

Robert: I didn’t teach it last year

First we show that sufficient conditions to characterize an admissable direction. We then move of

to use this to establish sufficient and easily verifiable conditions which guarantee that the constraint

qualification holds.

40



Lemma 3.22. Suppose that hj is an affine function for j ∈ J. Let x0 ∈ X and d ∈ Rn be such

that

d>∇gi(x0) < 0, for i ∈ I(x0)

d>∇hj(x0) = 0, for j ∈ J.

Then d is an admissable direction, that is d ∈ A(x0).

Proof: Let φ(t) = x0 + td. Since hj is affine we have that

hj(φ(t)) = hj(x
0) + td>∇hj(x0).

Furthermore, given that x0 is feasible we have that hj(x
0) = 0 and by assumption d>∇hj(x0) = 0,

consequently hj(φ(t)) = 0. Furthermore, for i ∈ I(x0) we have that

gi(φ(t)) = gi(x0) + td>∇gi(x0) + tε(t).

Since gi(x
0) = 0 and d>∇gi(x0) < 0, there exists t > 0 sufficiently small so that gi(φ(t)) ≤ 0. Thus

x0 + td ∈ X for t > 0 sufficiently small, which proves that d is a feasible direction.

We now give sufficient condition for the constraint qualifications to hold.

Lemma 3.23. Suppose hj is affine for all j ∈ J. Let x0 ∈ X. If there exists d̃ such that

d̃>∇gi(x0) < 0, for i ∈ I(x0)

d̃>∇hj(x0) = 0, for j ∈ J,

then the constraint qualification holds at x0.

Proof: Let d ∈ B(x0). We will now show that

dt = td+ (1− t)d̃,

for t ∈ [0, 1[ we have that dt ∈ A(x0) and for t→ 0 we have that dt converges to d, which in turn

shows that the constraint qualifications hold. Indeed, for i ∈ I(x0) we have that

d>t ∇gi(x0) = t d>∇gi(x0)︸ ︷︷ ︸
≤0, d∈B(x0)

+(1− t)d̃>∇gi(x0) < 0.

Furthermore

d>t ∇hj(x0) = td>∇hj(x0) + (1− t)d̃>∇hj(x0) = 0.

Consequently, by Lemma 3.22, we have that for all t ∈ [0, 1[ we have shown that dt ∈ A(x0). Now

taking any sequence tn → 1 we have that dt → d, thus by definition the constraint qualifications

hold at x0.

We will now use the previously Lemma to develop sufficient condition for the constraint quali-

fications to hold in the entire feasible set X.
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Proposition 3.24. If gi for i ∈ I are convex and hj for j ∈ J are affine and there exists a single

point x̃ ∈ X such that

gi(x̃) < 0, hj(x̃) = 0 ∀i ∈ I, j ∈ J, (86)

then the constraint qualification holds for all feasible points in X.

Proof: Let x0 ∈ X and let x̃ satisfy (86). Using the 1st order Taylor expansion around x̃ we have

that

0
(86)
> gi(x̃)

convexity
≥ gi(x

0) +∇gi(x0)>(x̃− x0).

If i ∈ I(x0) then gi(x
0) and from the above we have that ∇gi(x0)>(x̃− x0) < 0. Let d̃

def
= (x̃− x0).

Furthermore, for the equality constraints we have that

hj(x̃)
affine.

= hj(x
0) +∇hj(x0)>d̃.

Since hj(x
0) = 0 and thus ∇hj(x0)>d̃ = 0. This shows that d̃ satisfies the conditions of Lemma 3.23,

and thus the constraint qualifications hold at x0.

Yet another alternative characterization of constraint qualifications for a given x0, which is

easier to verify, is given in the following proposition.

Proposition 3.25. Suppose that hj are affine functions for j ∈ J. For a given feasible point

x0 ∈ X we have that the set

{∇gi(x0) : i ∈ I0(x0)} ∪ {∇hj(x0) : j ∈ J},

is a linearly independent set, then the constraint qualifications hold at x0.

Proof: Let x0 ∈ X and consider the following two Linear Programs

max
λ,µ

z =
∑

i∈I(x0)

λi +
∑
j∈J

0× µj .

subject to
∑
j∈J

µj∇hj(x0)−
∑

i∈I(x0)

λi∇gi(x0) = 0,

λi ≥ 0, for i ∈ I(x0). (P)

and

min
d

w ≡ 0

subject to d>∇gi(x0) ≤ −1, , for i ∈ I(x0),

d>∇hj(x0) = 0, for j ∈ J. (D)

It is not hard to show that (P) is the primal and (D) is its associated dual problem. Indeed, to see

this, first we right (P) in the standard form by introducing variables µ+, µ− ∈ Rp with µ = µ+−µ−
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and including the constraints µ+, µ− ≥ 0. Then write c = (1, . . . , 1︸ ︷︷ ︸
|I(x0)|

, 0, . . . , 0︸ ︷︷ ︸
2p

), b = 0 ∈ Rn, and

A =
[
−∇g1(x0), . . . ,−∇gm(x0),∇h1(x0), . . . ,∇hp(x0),−∇h1(x0), . . . ,−∇hp(x0).

]
From (D) the dual constraints are given by

A>d ≥ c⇒


d>∇hj(x0) ≥ 0,

−d>∇hj(x0) ≥ 0,

−d>∇gi(x0) ≥ 1, for i ∈ I(x0), j ∈ J.

Which exactly the constraint of (D). The rest follows by examining (D).

Since (P) is non-empty, since it admits the zero solution. Now suppose that (P) admits a

solution λ∗i , µ
∗ that is not zero. In which case, we have that the gradients of the constraints must

be linearly independent. This contractdicts our assumption, thus (λ∗i , µ
∗) = (0, 0) is the optimal

solution. Thus (P) is bounded and by strong duality Theorem 1.5 we have that (D) is feasible. Let

d̃ be a feasible solution to (D). Note that d̃ satisfies the assumptions of Lemma 3.23, consequently

the constraint qualification holds at x0.

3.9 Farkas Lemma and the Geometry of Polyhedra

Theorem 3.26 (Separating Hyperplane theorem). Let X,Y ⊂ Rn be two disjoint convex sets.

Then there exists a hyperplane defined by v ∈ Rn and β ∈ R such that

〈v, x〉 ≤ β and 〈v, y〉 ≥ β, ∀x ∈ X, ∀y ∈ Y.

Consider the cone given by

K
def
= {Aλ+Bµ | ∀λ ≥ 0, ∀µ}. (87)

Now consider the problem of determining is a given vector b is in this cone K or not. Since {b} is

a convex set and so if the cone K we have by the Separating Hyperplane theorem that if b is not

in K, then there exists a hyperplane separating K and {b}. Furthermore, this hyperplane happens

to pass through the origin. We formalize this in the following theorem.

Theorem 3.27 (Geometric Farkas). Consider a given vector b and the cone

K
def
= {Aλ+Bµ | ∀λ ≥ 0,∀µ}. (88)

Then either b ∈ K or there exists a vector y such that

〈y, b〉 ≤ 0 and 〈y, k〉 ≥ 0, ∀k ∈ K. (89)
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Proof: Since K is a cone, b ∈ K if and only if αb ∈ K for every α ≥ 0. Consequently the problem

of determining if b is in K is equivalent to determining if the hyperplane `b = {αb | ∀α ≥ 0}
intersects with K at a point other than the origin. Fortunately, excluding the origin from K results

in a convex set K \ {0}. Thus by the Separating Hyperplane theorem we have that if b is not in

K, then there exists a hyperplane separating K \ {0} and `b. Clearly this hyperplane must pass

through the origin.

Theorem 3.28 (2nd Version of Farkas). Consider the set

P = {(λ, µ) : Aλ+Bµ = b, λ ≥ 0}

and

Q = {y : A>y ≥ 0, B>y = 0}.

The set P is non-empty if and only if every y ∈ Q is such that b>y ≥ 0.

Proof: [Based on Separating Hyperplane] The proof follows by simply reinterpreting the Geometric

Farkas Theorem 3.27. Indeed, if b ∈ P is equivalent to saying that b and the cone (88) intersect.

On the other hand, if b is not in K then there exists a separating hyperplane that passes through

the origin parametrized by a vector y (89). Consequently

〈y,Aλ+Bµ〉 = 〈A>y, λ〉+ 〈B>y, µ〉 ≥ 0, ∀λ ≥ 0, ∀µ. (90)

Since this has to hold for every vector µ it is easy to see that B>y = 0. Otherwise, fix λ = 0. If the

ith row of B>y is non-zero we can choose µ = ei and then µ = −ei which when inserted into (90)

gives

〈B>y, ei〉 ≥ 0 and 〈B>y, ei〉 ≤ 0,

which gives a contradiction and shows that B>y = 0.

Furthermore A>y ≥ 0. This follows by simply choosing λ as the ith coordinate vector. The

converse is also true, since if A>y ≥ 0 and λ ≥ 0 then clearly their inner product is positive.

Finally, from (89) we also have that b>y ≥ 0.

Proof: [Old version based on duality theorem] Part (1) If P non-empty then y ∈ Q⇒ b>y ≥ 0:

Let µ = z+ − z− where z+, z− ≥ 0. Then clearly P is non-empty if and only if

P̂ = {(λ, z+, z−) : Aλ+Bz+ −Bz− = b, λ, z+, z− ≥ 0},

is non-empty. The dual program of P̂ if we consider a zero objective function (with c = 0) is given

by

min
y

y>b

subject to A>y ≥ 0, B>y ≥ 0, −B>y ≥ 0. (91)
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See Lemma 3.30 for how to deduce this version of duality. The feasible region of (91) is equivalent

to Q. By the weak duality Lemma 1.4 we have that if there exists a finite feasible primal point

y ∈ Q then we have that

b>y ≥ c>(λ, z+, z−) = 0.

Part (2) If y ∈ Q⇒ b>y ≥ 0 then P non-empty:

Clearly 0 ∈ Q and thus the dual (91) is feasible. Since y ∈ Q implies that b>y ≥ 0, we have

that (91) is feasible and bounded. This proves by duality that P is feasible.

Proof: [Using 1st Farkas Theorem] Let µ = z+−z− where z+, z− ≥ 0. Then clearly P is non-empty

if and only if

P̂ = {(λ, z+, z−) : Aλ+Bz+ −Bz− = b, λ, z+, z− ≥ 0},

is non-empty. Applying the 1st Farkas Theorem 3.29, we have that P̂ is non-empty if every y ∈ Q̂
implies that y>b ≥ 0 where

Q̂ = {y : A>y ≥ 0, B>y ≥ 0, −B>y ≥ 0}.

Clearly Q = Q̂ which concludes the proof.

Theorem 3.29 (Farkas Version 1). Consider the set

P = {x : Ax = b, x ≥ 0}

and

Q = {y : A>y ≥ 0}.

The set P is non-empty if and only if every y ∈ Q is such that b>y ≥ 0.

Proof: Any text on optimization.

Lemma 3.30 (Duality 2nd version). Consider the following LP with equality constraints

max
x

c>x

subject to Ax = b,

x ≥ 0, (LP)

Then the dual is given by

min
y

y>b

subject to A>y ≥ c. (DP)
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Proof: First we re-write (LP) as

max
x

c>x

subject to Ax ≤ b,

−Ax ≤ −b,

x ≥ 0, (LP)

The dual program (D) of the above is given by

min w>b− z>b

subject to A>w −A>z ≥ c,

w, z ≥ 0.

Substituting y = w − z gives the result.
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