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Unconstrained Nonlinear Programming

History

I (1669) Invents simply
version of Newton’s
method for finding roots of
polynomials (no calculus!):
De analysi per aequationes
numero terminorum
infinitas.

I (1740) Full Newton’s
method as we know it:
Thomas Simpson

Figure: Isaac Newton

Figure: Augustin Louis Cauchy

I (1847) Invents gradient
descent: Compte Rendu á
l’Académie des Sciences

I Why? Solving algebraic
equations of the orbit of
heavenly bodies.

I École Polytechnique and he
wrote almost 800 papers!
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Unconstrained Nonlinear Programming

History

The Problem: Nonlinear programming
Minimize a nonlinear differentiable function f : x ∈ Rn 7→ f (x) ∈ R

x∗ = arg min
x∈Rn

f (x). (1)

Warning: This problem is often impossible. First check there exists a
minimum. Even linear programming does not always have a maximum!
Develop iterative methods x1, . . . , xk , . . . , such that

lim
k→∞

xk = x∗.

Template method

xk+1 = xk + skd
k ,

where sk > 0 is a step size and dk ∈ Rn is search direction. Satisfy the
descent condition

f (xk+1) < f (xk).
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Unconstrained Nonlinear Programming

History

Local and Global Minima

Definition of Local Minima

The point x∗ ∈ Rn is a local minima of f (x) if there exists r > 0
such that

f (x∗) ≤ f (x), ∀‖x − x∗‖2 < r . (2)

Definition of Global Minima

The point x∗ ∈ Rn is a global minima of f (x) if

f (x∗) ≤ f (x), ∀x . (3)
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Unconstrained Nonlinear Programming

History

In general finding global minima is impossible.
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Unconstrained Nonlinear Programming

Multivariate Calculus

Multivariate Calculus
For a differentiable function f : x ∈ Rn 7→ f (x) ∈ R, we refer to ∇f (x)
as the gradient evaluated at x defined by

∇f (x) =
[
∂f (x)
∂x1

, . . . , ∂f (x)
∂xn

]>
.

Note that ∇f (x) is a column-vector. For any vector valued function
F : x ∈ Rn → F (x) = [f1(x), . . . , fn(x)]> ∈ Rn define the Jacobian
matrix by

∇F (x)
def
=


∂f1(x)
∂x1

∂f2(x)
∂x1

∂f3(x)
∂x1

. . . ∂fn(x)
∂x1

∂f2(x)
∂x1

∂f2(x)
∂x2

∂f3(x)
∂x2

. . . ∂fn(x)
∂x2

...
...

...
. . .

...
∂f1(x)
∂xn

∂f2(x)
∂xn

∂f3(x)
∂xn

. . . ∂fn(x)
∂xn


=
[
∇f1(x),∇f2(x),∇f3(x), . . . ,∇f2(x)

]
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Unconstrained Nonlinear Programming

Multivariate Calculus

Multivariate Calculus
The gradient is useful because of 1st order Taylor expansion

f (x0 + d) = f (x0) +∇f (x0)>d + ε(d)‖d‖2, (4)

where ε(d) is a real valued such that

lim
d→0

ε(d) = 0. (5)

Definition of limit: given any constant c > 0 there exists δ > 0 such that

‖d‖ < δ ⇒ |ε(d)| < c . (6)

Example (The ε(d) function)

If f (x) = ‖x‖2
2 and f (x) = x>Ax , where A = A>, what is ε(d)?

Name three functions ε such that limd→0 ε(d) = 0.
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Unconstrained Nonlinear Programming

Multivariate Calculus

Example (The ε(d) function)

If f (x) = ‖x‖2
2 and f (x) = x>Ax , where A = A>, what is ε(d)?

Name three functions ε such that limd→0 ε(d) = 0.

Solution:
f (x0 + d) = (x0 + d)>A(x0 + d) = x>0 Ax0︸ ︷︷ ︸

=f (x0)

+ 2x>0 A︸ ︷︷ ︸
=∇f (x0)>

d + d>Ad

Thus ε(d)‖d‖2 = d>Ad ⇒ ε(d) =
d>Ad

‖d‖2
and

lim
d→0

ε(d) = 0

Three examples:

ε(d) = log(d), ε(d) = ‖d‖, ε(d) =
a‖d‖3 + b‖d‖2

c‖d‖+ e
.

9 / 76



Unconstrained Nonlinear Programming
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Unconstrained Nonlinear Programming
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Unconstrained Nonlinear Programming

Multivariate Calculus

The Hessian Matrix
If f ∈ C 2, we refer to ∇2f (x) as the Hessian matrix:

∇2f (x)
def
=


∂2f (x)
∂x1∂x1

∂2f (x)
∂x1∂x2

∂2f (x)
∂x1∂x3

. . . ∂2f (x)
∂x1∂xn

∂2f (x)
∂x1∂x2

∂2f (x)
∂x2∂x2

∂2f (x)
∂x2∂x3

. . . ∂2f (x)
∂x2∂xn

...
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

∂2f (x)
∂xn∂x3

. . . ∂2f (x)
∂xn∂xn


If f ∈ C 2 then

∂2f (x)

∂xi∂xj
=
∂2f (x)

∂xj∂xi
, ∀i , j ∈ {1, . . . , n}, ⇔ ∇2f (x) = ∇2f (x)>.

Hessian matrix useful for 2nd order Taylor expansion.

f (x0 + d) = f (x0) +∇f (x0)>d +
1

2
d>∇2f (x0)d + ε(d)‖d‖2

2. (7)

Exe: If f (x) = x3 or f (x) = x>Ax what is ε(d)?

Sol: (x + d)3 = x3 + 3x2d + 3xd2 + d3. Thus ε(d) = d
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Unconstrained Nonlinear Programming

Multivariate Calculus

The Product-rule
The vector valued version of the product rule
I For any function F (x) : Rn → Rn and matrix A ∈ Rn×n we

have
∇(F (x)>A) = ∇F (x)>A. (8)

I For any two vector valued functions F1 and F2 we have that

∇(F1(x)>F2(x)) = ∇F1(x)F2(x) +∇F2(x)F1(x). (9)

Example

Let f (x) = 1
2x
>Ax , where A ∈ Rn×n is a symmetric positive

definite matrix. Calculate the gradient and the Hessian of f (x).

Let F1(x) = A>x and F2(x) = x then
∇f (x) = 1

2∇(A>x)x + 1
2∇(x)A>x = 1

2 (A + A>)x = Ax since
∇(A>x) = A>∇(x) = A. Differentiating again
∇(∇f (x)) = ∇(Ax) = ∇(A)x +∇(x)A = A.
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Unconstrained Nonlinear Programming

Local Descent Lemma and Local Optimality

Template method

xk+1 = xk + skd
k ,

where sk > 0 is a step size and dk ∈ Rn is search direction. Satisfy
the descent condition

f (xk+1) < f (xk).

How to choose d?
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Unconstrained Nonlinear Programming

Local Descent Lemma and Local Optimality

How to find d ∈ Rn such that

f (xk + skd) ≤ f (xk).

Lemma (Steepest Descent)

For d ∈ Rn the local change of f (x) around x0 is

∆(d)
def
= lim

s→0+

f (x0 + sd)− f (x0)

s
. (10)

Let v = − ∇f (x0)
/
‖∇f (x0)‖2 be the normalized gradient. We

have

v = arg min
d∈Rn

∆(d)

subject to ‖d‖2 = 1. (11)

The negative normalized gradient is the direction that minimizes
the local change of f (x) around x0. The normalized gradient
maximizes the local change.
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Unconstrained Nonlinear Programming

Local Descent Lemma and Local Optimality

Proof.
Using 1st order Taylor we have that

f (x0 + sd)− f (x0) = s∇f (x0)>d + ε(sd)s.

Dividing by s and taking the limit s → 0 we have

∆(d) = lim
s→0+

f (x0 + sd)− f (x0)

s
= ∇f (x0)>d+ lim

s→0+
ε(sd) = ∇f (x0)>d .

Now using that ‖d‖2 = 1 together with the Cauchy inequality

− ‖∇f (x0)‖2 ≤ ∆(d) = ∇f (x0)>d ≤ ‖∇f (x0)‖2. (12)

The upper and lower bound is achieved when d = ∇f (x0)
/
‖∇f (x0)‖2

and d = − ∇f (x0)
/
‖∇f (x0)‖2, respectively.
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Unconstrained Nonlinear Programming

Local Descent Lemma and Local Optimality

The search direction d is a descent direction if it has an obtuse
angle with the gradient

Corollary (Descent Condition)

If d>∇f (x0) < 0 then there exists s > 0 such that

f (x0 + sd) < f (x0).

Proof.

From (12) we have that ∆(d) = ∇f (x0)>d < 0.
Let c = −∇f (x0)>d > 0.
Let s > 0 be such that ε(sd) < c

2 . (Because lims→0 ε(sd) = 0 )
Consequently from 1st order Taylor:

f (x0 + sd)− f (x0)

s
= ∇f (x0)>d + ε(sd) ≤ −c

2
< 0.

Re-arranging f (x0 + sd) ≤ f (x0)− s c
2 < f (x0)
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Unconstrained Nonlinear Programming

Sufficient and Necessary conditions for local optimality

Definition of Local Minima

The point x∗ ∈ Rn is a local minima of f (x) if there exists r > 0
such that

f (x∗) ≤ f (x), ∀‖x − x∗‖2 < r . (13)

Theorem (Necessary optimality conditions)

If x∗ is a local minima of f (x) then

1 ∇f (x∗) = 0

2 d>∇2f (x∗)d ≥ 0, ∀d ∈ Rn.

So it is necessary that ∇f (x∗) = 0 and the d is positive curvature
direction before we stop.
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Unconstrained Nonlinear Programming

Sufficient and Necessary conditions for local optimality

Proof.

That ∇f (x∗) = 0 follows from Descent Condition. Suppose there exists
d ∈ Rn such that d>∇2f (x∗)d < 0. Suppose w.l.o.g that ‖d‖2 = 1.
Using the 2nd order Taylor we have that

f (x∗ + sd) = f (x∗) +
s2

2
d>∇2f (x∗)d + ε(sd)s2.

Let δ > 0 be such that for s ≤ δ we have that ε(sd) < |d>∇2f (x∗)d |
/

4.
Dividing the above by s2, for s ≤ δ we have that

f (x∗ + sd)

s2
=

f (x∗)

s2
+

1

2
d>∇2f (x∗)d + ε(sd)

<
f (x∗)

s2
+

1

4
d>∇2f (x∗)d ,

thus f (x∗ + sd) < f (x∗) for all s ≤ δ which contradicts the definition of
local minima.
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Unconstrained Nonlinear Programming

Sufficient and Necessary conditions for local optimality

With a slight modification, same conditions they are also sufficient.

Theorem (Sufficient Local Optimality conditions)

If x∗ ∈ Rn is such that

1 ∇f (x∗) = 0

2 d>∇2f (x∗)d > 0, ∀d ∈ Rn with d 6= 0,

then x∗ is a local minima.

We can use this theorem to find local minima!
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Unconstrained Nonlinear Programming

Sufficient and Necessary conditions for local optimality

Proof: Let d ∈ Rn. Because ∇2f (x∗) is positive definite, the smallest
non-zero eigenvalue must be strictly positive. Consequently

‖d‖2λmin(∇2f (x∗)) ≤ d>∇2f (x∗)d .

Using the second-order Taylor expansion, we have that

f (x∗ + d) = f (x∗) +
1

2
d>∇2f (x∗)d + ε(d)‖d‖2

2

≥ f (x∗) +
‖d‖2

2

2
λmin(∇2f (x∗)) + ε(d)‖d‖2

2.

Let r > 0 be such that every d with ‖d‖ ≤ r we have that

|ε(d)| < λmin(∇2f (x∗))/4 ⇒ ε(d) > −λmin(∇2f (x∗))/4.

Thus for ‖d‖ ≤ r we have

f (x∗ + d) ≥ f (x∗) +
‖d‖2

2

2
λmin(∇2f (x∗)) + ε(d)‖d‖2

2

≥ f (x∗) +
‖d‖2

2

4
λmin(∇2f (x∗)) > f (x∗).
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Unconstrained Nonlinear Programming

Sufficient and Necessary conditions for local optimality

Exercise

Let f (x) = 1
2x
>Ax − x>b + c , with A symmetric positive definite.

How many local/global minimas can f (x) have? Find a formula for
the minima using only the data A and b.

Proof.

By the sufficient conditions x∗ is a local minima if

∇f (x∗) = 0 ⇔ Ax∗ = b,

and
∇2f (x∗) = A � 0.

Since Ax = b has only one solution there exists only one local
minima which must be the global minima.
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Unconstrained Nonlinear Programming

Convex functions

Convex Functions

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y), ∀x , y ∈ Rd , t ∈ [0, 1].
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Unconstrained Nonlinear Programming

Convex functions

Theorem

If f is a convex function, then every local minima of f is also a
global minima. We only need to check 1st order ∇f (x∗) = 0!

Proof.
Let x∗ be a local minima and suppose there exists x̄ ∈ Rn such that
f (x̄) < f (x∗). Let zt = tx̄ + (1− t)x∗ for t ∈ [0, 1]. By the definition of
convexity we have that

f (zt) = f ((1− t)x̄ + tx∗) ≤ (1− t)f (x̄) + tf (x∗)

< (1− t)f (x∗) + tf (x∗) = f (x∗). (14)

Thus x∗ cannot be a local minima. Indeed, for any r > 0 with
r ≤ ‖x̄ − x∗‖2, we have that by choosing t = 1− r/‖x̄ − x∗‖2 we have
that

‖zt − x∗‖2 = (1− t)‖x̄ − x∗‖2 ≤ r .

Yet from (14) we have that f (zt) < f (x∗). A contraction. Thus there
exists no x̄ with f (x̄) < f (x∗). 22 / 76



Unconstrained Nonlinear Programming

Convex functions

Theorem

If f is twice continuously differentiable, then the following three
statements are equivalent

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y), ∀x , y , t ∈ [0, 1]. (0th)

f (y) ≥ f (x) +∇f (x)>(y − x), ∀x , y . (1st)

0 ≤ d>∇2f (x)d , ∀x , d . (2nd)

Proof.

We prove (0th)⇒ (1st)⇒ (2nd).
The remaing (2nd)⇒ (0th) is left as an exercise.
(0th)⇒ (1st): Dividing (0th) by t and re-arranging

f (y + t(x − y))− f (y)

t
≤ f (x)− f (y).

Now taking the limit t → 0 gives (1st).
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Unconstrained Nonlinear Programming

Convex functions

Proof.

(1st)⇒ (2nd): First we prove this holds for 1–dimensional functions
f : R→ R. From (1st) we have that

f (y) ≥ f (x) + f ′(x)(y − x),

f (x) ≥ f (y) + f ′(y)(x − y).

Combining the above two we have that

f ′(x)(y − x) ≤ f (y)− f (x) ≤ f ′(y)(y − x).

Dividing by (y − x)2 we have

f ′(y)− f ′(x)

y − x
≥ 0, ∀x , y , x 6= y .

It remains to take the limit. Extend to every n–dimensional function
using

d2f (x + tv)

dv2

∣∣∣∣
t=0

= v>∇2f (x)v ≥ 0,∀v 6= 0.

24 / 76



Unconstrained Nonlinear Programming

Gradient method

Move in negative gradient direction iteratively

xk+1 = xk − sk∇f (xk),

where sk > 0 is the step size. How to choose sk the stepsize?
Sometimes constant step size works

Theorem

Let A ∈ Rn×n is symmetric positive definite. f (x) = 1
2x
>Ax − x>b + c .

If we choose a fixed stepsize of sk = 1/σmax(A) then GD converges

‖∇f (xk+1)‖2 ≤
(

1− σmin(A)

σmax(A)

)k

‖∇f (x0)‖2. (15)

Proof part I:

∇f (xk+1) = Axk+1 − b

= A(xk − s∇f (xk))− b

= A(xk − s(Axk − b))− b

= Axk − b − sA(Axk − b) = (I − sA)∇f (xk). 25 / 76



Unconstrained Nonlinear Programming

Gradient method

Proof part II: From ∇f (xk+1) = (I − sA)∇f (xk) taking norms

‖∇f (xk+1)‖2 ≤ ‖I − sA‖2‖∇f (xk)‖2.

Choosing s = 1/σmax(A) we have that I − sA is symmetric positive
definite and

‖I − sA‖2 = 1− sσmin(A) = 1− σmin(A)

σmax(A)
< 1.

Homework: Prove this last step! Thus finally

‖∇f (xk+1)‖2 ≤
(

1− σmin(A)

σmax(A)

)
‖∇f (xk)‖2

≤
(

1− σmin(A)

σmax(A)

)k

‖∇f (x0)‖2.
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Unconstrained Nonlinear Programming

Gradient method

What to do for non-quadratic functions? Choose the best sk ?

sk = arg min
s≥0

f (xk + sdk).

Seems good, but leads to zig-
zagging convergence because

∇f (xk+1)>∇f (xk) = 0.

To prove this

d

ds
f (xk − s∇f (xk))

∣∣
s=sk

= 0.

Using the chain-rule we have that

d

ds
f (xk − s∇f (xk))

∣∣
s=sk

= −sk∇f (xk−sk∇f (xk))>∇f (xk) = 0.

27 / 76



Unconstrained Nonlinear Programming

Gradient method

What to do for non-quadratic functions? Choose the best sk ?

sk = arg min
s≥0

f (xk + sdk).

Seems good, but leads to zig-
zagging convergence because

∇f (xk+1)>∇f (xk) = 0.

To prove this

d

ds
f (xk − s∇f (xk))

∣∣
s=sk

= 0.

Using the chain-rule we have that

d

ds
f (xk − s∇f (xk))

∣∣
s=sk

= −sk∇f (xk−sk∇f (xk))>∇f (xk) = 0.

27 / 76



Unconstrained Nonlinear Programming

Gradient method

Backtracking Line search
Instead of *best* step size, find a good one.

Algorithm 1 Backtracking Line Search(α, ρ, c)

1: Choose α > 0, ρ, c ∈ (0, 1).
2: while f (xk + αdk) ≤ f (xk) + c α∇f (xk)>dk do
3: Update α = ρα.

Figure: Where φ(α) = f (xk + αdk) and l(α) = f (xk) + c α∇f (xk)>dk
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Unconstrained Nonlinear Programming

Gradient method

Putting everything together with a stopping criteria

Algorithm 2 Gradient Descent

1: Choose x0 ∈ Rn.
2: while ‖∇f (xk)‖2 > ε or f (xk+1)− f (xk) ≤ ε do
3: Calculate dk = −∇f (xk)
4: Calculate sk using Backtracking Line Search.
5: Update xk+1 = xk + skdk .

Figure: Convergence of Gradient Descent
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Unconstrained Nonlinear Programming

Newton’s Method

Gradient uses 1st order approximation. What about 2nd order?

Figure: Comparing 1st order and 2nd Taylor of f (x) = ex .

Local quadratic approximation using 2nd Taylor

qk(x) = f (xk) +∇f (xk)>(x − xk) +
1

2
(x − xk)>∇2f (xk)(x − xk).
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Unconstrained Nonlinear Programming

Newton’s Method

Newton’s Method

Newton’s method minimizes the local quadratic approximation.

qk(x) = f (xk) +∇f (xk)>(x − xk) +
1

2
(x − xk)>∇2f (xk)(x − xk).

Assume that ∇2f (xk) is invertible. Let xk+1 be the point that solves

∇xqk(x) = ∇f (xk) +∇2f (xk)(xk+1 − xk) = 0.

Isolating xk+1 we have

xk+1 = xk −∇2f (xk)−1∇f (xk) .

Newton’s method can converge at a quadratic speed. Much faster than
Gradient Descent.
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Unconstrained Nonlinear Programming

Newton’s Method

Theorem

Let f (x) be a µ–strongly convex function:

v>∇2f (x)v ≥ µ‖v‖2, ∀x , v ∈ Rn. (16)

If the Hessian is also Lipschitz

‖∇2f (x)−∇2f (y)‖2 ≤ L‖x − y‖2 (17)

then Newton’s method converges according to

‖xk+1 − x∗‖2 ≤
L

2µ
‖xk − x∗‖2

2. (18)

In particular if ‖x0 − x∗‖2 ≤ µ
L , then for k ≥ 1 we have that

‖xk − x∗‖2 ≤
1

22k

µ

L
. (19)
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Unconstrained Nonlinear Programming

Newton’s Method

Proof:

xk+1 − x∗ = xk − x∗ −∇2f (xk)−1
(
∇f (xk)−∇f (x∗)

)
= xk − x∗ −∇2f (xk)−1

∫ 1

s=0

∇2f (xk + s(x∗ − xk))(xk − x∗)ds

= ∇2f (xk)−1

∫ 1

s=0

(
∇2f (xk)−∇2f (xk + s(x∗ − xk))

)
(xk − x∗)ds

Let δk := xk − x∗. Taking norms we have that

‖δk+1‖ ≤ ‖∇2f (xk)−1‖
∫ 1

s=0

‖∇2f (xk)−∇2f (xk + s(x∗ − xk))‖ ‖δk‖ds

≤ L

µ

∫ 1

s=0

s‖δk‖2ds

=
L

2µ
‖δk‖2.
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Unconstrained Nonlinear Programming

Newton’s Method

Proof Part II: So now we have shown

‖xk+1 − x∗‖ ≤ ;
L

2µ
‖xk − x∗‖2.

If ‖x0 − x∗‖ ≤ µ
L , then by induction that

‖xk − x∗‖ ≤ 1

22k

µ

L
, (20)

then we have that

‖xk+1−x∗‖ ≤ L

2µ
‖xk−x∗‖2 ≤ L

2µ

1

22k

1

22k

(µ
L

)2

<
1

22k+1

µ

L
,

which concludes the induction proof.
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Constrained Nonlinear Optimization

Constrained Nonlinear Optimization
Let f , gi and hj be C 1 continuous functions, for i = 1, . . . ,m and
j = 1, . . . , p. Consider the constrained optimization problem

min
x∈Rn

f (x)

subject to gi (x) ≤ 0, for i ∈ I .

hj(x) = 0, for j ∈ J, (21)

where I = {1, . . . ,m} and J = {1, . . . , p}. Some notation:

I Inequality constraints: gi (x) ≤ 0, for i ∈ I

I Equality constraints: hj(x) = 0, for j ∈ J

I Feasible point x : Satisfies all inequality and equality constraints.

I Feasible set X : All the feasible points

X
def
= {x ∈ Rn : gi (x) ≤ 0, hj(x) = 0, for i ∈ I , and j ∈ J}.

I Abbreviated form: min
x∈X

f (x).
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Constrained Nonlinear Optimization

Exercise: Solve the following constrained nonlinear optimization problem
graphically.

min
x∈Rn

(x1 − 3)2 + (x2 − 2)2

subject to x2
1 − x2 − 3 ≤ 0,

x2 − 1 ≤ 0,

−x1 ≤ 0.

Figure: Plot of feasible set
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Constrained Nonlinear Optimization

Adding constraints can make the problem easy.
Easy example: If X = {x0} is a single point, we are done. If
X = {x0 + td0, ∀t ∈ R} it is easier.
But constraints can also make the problem harder (specially
conceptually). Also even if gi and hj are smooth, the feasible set can be
non-smooth. Hard example:

Figure: Difficult feasible set with objective function
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Constrained Nonlinear Optimization

Existence Theory

Theorem (Existence)

If the feasible set X is bounded and non-empty, then there exists a
solution to minx∈X f (x).

Proof.

Given that the sets R− = [−∞, 0] and {0} are closed, by the
continuity of gi and hj we have that X is closed. Indeed,

X =

(
m⋂
i=1

g−1
i ([−∞, 0])

)
∩

 p⋂
j=1

h−1
j ({0})

 ,

and thus is a finite intersection of closed sets. By assumption X is
bounded, thus it is compact. By the continuity of f we have that
f (X ) is also compact (The Extreme value theorem). Consequently
there exists a minimum in f (X ).
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Constrained Nonlinear Optimization

Existence Theory

Definition

We say that f : Rn → R is coercive if lim‖x‖→∞ f (x) =∞.

Theorem

If X is non-empty and f is coercive, then there exists a solution to
minx∈X f (x).

Proof.

Let x0 ∈ X . Define Br := {x : ‖x‖ ≤ r}. Since f is coercive, there exists
r such that for each x with ‖x‖ ≥ r we have that f (xk) ≥ f (x0).
Otherwise we would be able to construct a sequence xk with ‖xk‖ → ∞
such that f (x) ≤ f (x0), which contracts the coercivity of f .
Thus clearly the minimum of f is in Br . Since Br is bounded and closed,
we have that x0 ∈ Br ∩ X thus it is bounded, closed and nonempty.
Again by the extreme value theorem, f (x) attains its minimum in Br ∩X ,
which is also the minimum in X .
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Constrained Nonlinear Optimization

Admissable and Feasible directions

Given x0 ∈ X how can me move and still stay inside X?
If X was a polyhedra then d is a feasible or an admissible direction at
x0 ∈ X if there exists ε > 0 such that x0 + td ∈ X for all 0 ≤ t ≤ ε.

Figure: Difficult feasible set with objective function

For the case that the frontier of the feasible set is nonlinear, we need to
consider a more general notion of feasible directions.
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Constrained Nonlinear Optimization

Admissable and Feasible directions

Definition

We say that d is an admissible direction at x0 ∈ X if there exists a C 1

differentiable curve φ : R+ → Rn such that

1 φ(0) = x0

2 φ′(0) = d

3 There exists ε > 0 such that t ≤ ε we have φ(t) ∈ X

We denote by A(x0) the set of admissable directions at x0.

Some examples of admissable sets

I As a straight forward example, given d ∈ Rn let
X = {x | ∀α ∈ R, x = αd}. For any x0 ∈ X we have that
A(x0) = X .

I Consider the circle X = {(cos(θ), sin(θ)) | 0 ≤ θ ≤ 2π} ⊂ R2. Then
for every x0 = ((cos(θ0), sin(θ0))) we have that

A(x0) = {(−α sin(θ), α cos(θ)),∀α ∈ R}.
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Constrained Nonlinear Optimization

Admissable and Feasible directions

Taylor for Composition with Curve

Lemma

Let φ : R+ → Rn be a C 1 curve as defined in Definition 15. Let
f : Rn → R be continuously differentiable. Then the first order Taylor
expansion of the composition f (φ(t)) around x0 can be written as

f (φ(t)) = f (x0) + td>∇f (x0) + t ε̂(t), (22)

where limt→0 ε̂(t) = 0.

Proof: Since both f and φ are C 1, their composition is also C 1. Thus
f (φ(t)) first order Taylor expansion around t = 0 gives

f (φ(t)) = f (φ(0)) + t
df (φ(t))

dt
|t=0 + tε(t).

Now plugging in φ(0) = x0 and using the chain-rule

df (φ(t))

dt
|t=0 = (φ′(t)>∇f (φ(t)))|t=0 = (d>∇f (x0)).
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Constrained Nonlinear Optimization

Admissable and Feasible directions

Theorem (Necessary Condition for Admissable Direction)

Let I0(x0) = {i : gi (x0) = 0, i ∈ I} be the indexes of saturated
inequalities. If d ∈ A(x0) is an admissable direction then

1 For every i ∈ I (x0) we have that d>∇gi (x0) ≤ 0.

2 For every j ∈ J we have that d>∇hj(x0) = 0.

Let B(x0) be the set of directions that satisfy the above two conditions.
Thus A(x0) ⊂ B(x0).

Proof 1. Let i ∈ I (x0). Let φ(t) be the curve associated to d . The 1st
order Taylor expansion of gi around x0 in the d direction which is

gi (φ(t))
(22)
= gi (x0) + td>∇gi (x0) + tε(t)

= td>∇gi (x0) + tε(t) ≤ 0,

where we used gi (φ(t)) ≤ 0 for t sufficiently small. Dividing by t gives

d>∇gi (x0) + ε(t) ≤ 0.

Letting t → 0 we have that d>∇gi (x0) ≤ 0. 44 / 76



Constrained Nonlinear Optimization

Admissable and Feasible directions

Theorem (Necessary Condition for Admissable Direction)

Let I0(x0) = {i : gi (x0) = 0, i ∈ I} be the indexes of saturated
inequalities. If d ∈ A(x0) is an admissable direction then

1 For every i ∈ I (x0) we have that d>∇gi (x0) ≤ 0.

2 For every j ∈ J we have that d>∇hj(x0) = 0.

Let B(x0) be the set of directions that satisfy the above two conditions.
Thus A(x0) ⊂ B(x0).

Proof 2. Using the first order Taylor expansion of hj around x0 gives

hj(φ(t))
(22)
= hj(x0) + td>∇hj(x0) + tε(t) = td>∇hj(x0) + tε(t) = 0.

Dividing by t and then taking the limit as t → 0 gives
d>∇hj(x0) = 0.
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Constrained Nonlinear Optimization

Admissable and Feasible directions

Cone of Feasible Directions
We refer to B(x0) as the cone of feasible directions.
Cones are easy to work with. We would like to use B(x0) instead A(x0).
But sometimes B(x0) and to A(x0) are not the same.

Example (Degeneracy)

Consider the constraint given by

h1(x) = (x2
1 + x2

2 − 2)2 = 0.

Thus

∇h1(x) = 2(x2
1 + x2

2 − 2)

(
x1

x2

)
.

Every feasible point satisfies ∇h1(x) = 0. Consequently B(x) = R2 for
every feasible point. Yet h1(x) = 0 describes a circle, and clearly A(x) is
the tangent line at x . Thus we cannot use ∇h1(x) to describe feasible
directions. We would not have this problem if instead we used instead

h1(x) = (x2
1 + x2

2 − 2) = 0.
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Constrained Nonlinear Optimization

Admissable and Feasible directions

To exclude these degeneracies, we impose the Constraint qualifications.

Definition

We say that the constraint qualifications hold at x0 if for every d ∈ B(x0)
there exists a sequence (dt)

∞
t=1 ∈ A(x0) such that dt → d .

Recall

B(x)
def
=
{
d | d>∇gi (x) ≤ 0, d>∇hj(x0) = 0, ∀j ∈ J, ∀i ∈ I (x)

}
.

Constraint qualifications makes things easier.

Theorem (Necessary conditions)

Let x∗ be a local minimum. If the constraint qualification holds at x∗

then for every d ∈ B(x∗) we have that ∇f (x∗)>d ≥ 0. Every direction in
the feasible cone is not descent directions.

So we can check if x∗ is a local minima by testing the directions in the
feasible cone!
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Constrained Nonlinear Optimization

Admissable and Feasible directions

Theorem (Necessary conditions)

Let x∗ be a local minimum. If the constraint qualification holds at x∗

then for every d ∈ B(x∗) we have that ∇f (x∗)>d ≥ 0. Every direction in
the feasible cone is not descent directions.

Proof: Let dk ∈ A(x∗) be a sequence such that dk → d . Let φk be the
curve associated to dk . Using the first order Taylor expansion we have

f (φk(t)) = f (x∗) + t∇f (x∗)
>dk + tεk(t).

Since x∗ is a local minima, there exists T for which t ≤ T we have that
f (x∗) ≤ f (φk(t)). Consequently

t∇f (x∗)
>dk + tεk(t) = f (φk(t))− f (x∗) ≥ 0, for t ≤ T .

Dividing by t and taking the limit we have

lim
t→0
∇f (x∗)

>dk + εk(t) = ∇f (x∗)
>dk ≥ 0.

Taking the limit in k concludes the proof.
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Constrained Nonlinear Optimization

Equality Constrained Optimization

Consider equality constrained optimization problem

min
x∈Rn

f (x)

subject to hj(x) = 0, for j ∈ J (23)

Figure: Graphical solution: Not optimal
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Constrained Nonlinear Optimization

Equality Constrained Optimization

Consider equality constrained optimization problem

min
x∈Rn

f (x)

subject to hj(x) = 0, for j ∈ J (24)

Figure: Graphical solution: Optimal
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Constrained Nonlinear Optimization

Equality Constrained Optimization

Theorem (Langrange’s Condition)

Let x∗ ∈ X be a local minima and suppose that the constraint
qualifications hold at x∗ for (32). It follows that the gradient of the
objective is a linear combination of the gradients of constraints at x∗,
that is, there exists µj ∈ R for j ∈ J such that

∇f (x∗) =
∑
j∈J

µj∇hj(x∗). (25)

Let E = span ({∇h1(x∗), . . . ,∇hp(x∗)}) . Let us re-write
∇f (x∗) = y + z where y ∈ E and w ∈ E⊥, thus

−z>∇hj(x∗) = 0, ∀j ∈ J.

Thus by definition −z ∈ B(x∗). Consequently by Necessary Conditions
we have that −z>∇f (x∗) ≥ 0. It follows that

−z>∇f (x∗) = −z>y − ‖z‖2
2 = −‖z‖2

2 ≥ 0.

Consequently z = 0 and ∇f (x∗) = y ∈ E .
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Constrained Nonlinear Optimization

Equality Constrained Optimization

Consider equality constrained optimization problem

min
x∈Rn

f (x)

subject to hj(x) = 0, for j ∈ J (26)

Figure: Graphical solution two constraints: Optimal
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Constrained Nonlinear Optimization

Karush, Kuhn and Tuckers condition

min
x∈Rn

f (x)

subject to gi (x) ≤ 0, for i ∈ I .

hj(x) = 0, for j ∈ J, (27)

Theorem (Karush, Kuhn and Tuckers condition)

Let x∗ ∈ X be a local minima and suppose that the constraint
qualifications hold at x∗ for (26). It follows that there exists
µj ∈ R and λi ∈ R+ for j ∈ J and i ∈ I (x∗) such that

∇f (x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I (x∗)

λi∇gi (x∗). (28)

For this proof, we need to learn about some geometry of Polyhedra.
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Constrained Nonlinear Optimization

Karush, Kuhn and Tuckers condition

Theorem (Karush, Kuhn and Tuckers condition)

Let x∗ ∈ X be a local minima and suppose that the constraint
qualifications hold at x∗ for (26). It follows that there exists µj ∈ R and
λi ∈ R+ for j ∈ J and i ∈ I (x∗) such that

∇f (x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I (x∗)

λi∇gi (x∗).

Figure: Left: Not optimal. Right: Optimal. 54 / 76



Constrained Nonlinear Optimization

Geometry of Polyhedra

Theorem (Separating Hyperplane theorem)

Let X ,Y ⊂ Rn be two disjoint convex sets. Then there exists a
hyperplane defined by v ∈ Rn and β ∈ R such that

〈v , x〉 ≤ β and 〈v , y〉 ≥ β, ∀x ∈ X , ∀y ∈ Y .

Figure: Difficult feasible set with objective function
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Constrained Nonlinear Optimization

Geometry of Polyhedra

Theorem (Separating a cone and a point)

Consider a given vector b and the cone

K
def
= {Aλ+ Bµ | ∀λ ≥ 0,∀µ}. (29)

Then either b ∈ K or there exists a vector y such that

〈y , b〉 ≤ 0 and 〈y , k〉 ≥ 0, ∀k ∈ K . (30)

Figure: Difficult feasible set with objective function
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Constrained Nonlinear Optimization

Geometry of Polyhedra

Figure: Separating a cone and a line

Proof: Let `b = {αb | ∀α > 0} Since K is a cone,

b ∈ K ⇔ K ∩ `b = 6 ∅.
Since K and `b are convex sets, by the Separating Hyperplane theorem
there exists a hyperplane separating K and `b. Clearly this hyperplane
must pass through the origin. 57 / 76



Constrained Nonlinear Optimization

Geometry of Polyhedra

Theorem (2nd Version of Farkas Lemma)

Consider the set

P = {(λ, µ) : Aλ+ Bµ = b, λ ≥ 0}

and
Q = {y : A>y ≥ 0, B>y = 0}.

The set P is non-empty if and only if every y ∈ Q is such that b>y ≥ 0.

Let
K

def
= {Aλ+ Bµ | ∀λ ≥ 0,∀µ}.

If P is not empty then b ∈ K .
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Constrained Nonlinear Optimization

KKT proof and examples

Proof.
If b ∈ P is equivalent to b ∈ K . If b is not in K then there exists a
separating hyperplane that passes through the origin parametrized by a
vector y . Consequently

〈y ,Aλ+ Bµ〉 = 〈A>y , λ〉+ 〈B>y , µ〉 ≥ 0, ∀λ ≥ 0, ∀µ. (31)

Since this has to hold for every vector µ it is easy to see that B>y = 0.
Otherwise, fix λ = 0. If the ith row of B>y is non-zero we can choose
µ = ei and then µ = −ei which when inserted into (31) gives

〈B>y , ei 〉 ≥ 0 and 〈B>y , ei 〉 ≤ 0,

which gives a contradiction and shows that B>y = 0.
Furthermore A>y ≥ 0. This follows by simply choosing λ as the ith
coordinate vector. The converse is also true, since if A>y ≥ 0 and λ ≥ 0
then clearly their inner product is positive. Finally, from (30) we also
have that b>y ≥ 0.
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Constrained Nonlinear Optimization

KKT proof and examples

min
x∈Rn

f (x)

subject to gi (x) ≤ 0, for i ∈ I .

hj(x) = 0, for j ∈ J, (32)

Theorem (Karush, Kuhn and Tuckers condition)

Let x∗ ∈ X be a local minima and suppose that the constraint
qualifications hold at x∗ for (26). It follows that there exists
µj ∈ R and λi ∈ R+ for j ∈ J and i ∈ I (x∗) such that

∇f (x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I (x∗)

λi∇gi (x∗). (33)

We call this the KKT equation.

We now prove this using Farkas Lemma.
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Constrained Nonlinear Optimization

KKT proof and examples

∇f (x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I (x∗)

λi∇gi (x∗). (34)

Proof KKT: Since Constraint Qualifications holds by the Necessary
Conditions Theorem we know that for every d ∈ Rn that satisfies

−d>∇gi (x∗) ≥ 0, for i ∈ I (x∗)

d>∇hj(x∗) = 0, for j ∈ J,

we have that d>∇f (x∗) ≥ 0. By defining b = ∇f (x∗) and

A = [−∇g1(x∗), . . .−∇gm(x∗)] and B = [∇h1(x∗), . . .∇hp(x∗)],

we can re-write the conic constraint as

d ∈ {d : A>d ≥ 0, B>d = 0}

implies that d>b ≥ 0. By Farkas Lemma this is equivalent to there exists
(λ, µ) ∈ P where

P = {(λ, µ) : Aλ+ Bµ = b, λ ≥ 0},

which in turn is equivalent to (34).
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Constrained Nonlinear Optimization

KKT proof and examples

Definition of KKT conditions

There exists x that is feasible x ∈ X and µ ∈ R|J| and λ ∈ R|I | such that
:

∇f (x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I (x∗)

λi∇gi (x∗)

Theorem (Sufficient conditions)

Let f and gi for i ∈ I be convex functions. Let hj be linear for j ∈ J.
Suppose the constraint qualifications hold at x∗ ∈ X and the KKT
conditions are verified. Then x∗ is a local minima
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Proof: Let µj ∈ R and λi ∈ R+ for j ∈ J and i ∈ I (x∗) such that
KKT (33) holds. Let x ∈ X . Since f (x) is convex, we have that

f (x) ≥ f (x∗) +∇f (x∗)>(x − x∗)

(33)
= f (x∗) +

∑
j∈J

µj∇hj(x∗)>(x − x∗)−
∑

i∈I (x∗)

λi∇gi (x∗)>(x − x∗).

Since hj is linear and hj(x) = 0 = hj(x
∗) we have that

∇hj(x∗)>(x − x∗) = hj(x)− hj(x
∗) = 0.

Since each gi is convex, we have that

∇gi (x∗)>(x − x∗) ≤ gi (x)− gi (x
∗)

i∈I (x∗)
= gi (x) ≤ 0.

Plugging the above into (35) gives

f (x)
(35)

≥ f (x∗)−
∑

i∈I (x∗)

λi∇gi (x∗)>(x − x∗).

(35)

≥ f (x∗)−
∑

i∈I (x∗)

λigi (x) ≥ f (x∗).
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Lagrangian Formulation
The KKT conditions are often described with the help of an
auxiliary function called the Lagrangian function

L(x , µ, λ)
def
= f (x)− 〈µ, h(x)〉+ 〈λ, g(x)〉 , (35)

where h(x)
def
= (hj(x))j∈J and g(x)

def
= (gi (x))i∈I for shorthand.

Theorem

Let x ∈ Rn, µ ∈ R|J| and λ ∈ R|I |. If

∇xL(x , µ, λ) = 0 (36)

∇µL(x , µ, λ) = 0 (37)

∇λL(x , µ, λ) ≤ 0 (38)

then the KKT conditions holds.
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Theorem

Let x ∈ Rn, µ ∈ R|J| and λ ∈ R|I |. If

∇xL(x , µ, λ) = 0 (39)

∇µL(x , µ, λ) = 0 (40)

∇λL(x , µ, λ) ≤ 0 (41)

then the KKT conditions holds.

Proof: Differentiating we have that

∇xL(x , µ, λ) = ∇f (x∗)−
∑
j∈J

µj∇hj(x∗) +
∑

i∈I (x∗)

λi∇gi (x∗) (42)

∇µL(x , µ, λ) = h(x) (43)

∇λL(x , µ, λ) = g(x) (44)

Setting (42) to zero is equivalent to (33). Setting (43) to zero and
restricting (44) to be less then zero gives h(x) = 0 and g(x) ≤ x and
thus x is feasible, and the KKT conditons hold.
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Example: Largest Circle in Ellipse?

min−x2 − y2 =: f (x , y)

subject to ax2 + by2 ≤ 1,

where a > b > 0. Use graphic solution first.

Figure: Graphic solution
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Solve using the KKT conditions.

min−x2 − y2 =: f (x , y)

subject to ax2 + by2 ≤ 1,

where a > b > 0. Assume that constraint qualifications hold.

Assuming the constraint is active (why?), we have the KKT conditions

2x = 2aλx

2y = 2bλy .

ax2 + by2 = 1. (KKT)

1 x 6= 0. From the KKT we have that 1 = aλ and consequently
λ = a−1. From 2y = 2bλy , since bλ 6= 1 we have that y = 0. The
feasibility constraint now gives us that x = ±a−1/2.

2 x = 0. If y 6= 0, then necessarily λ = b−1, and feasibility gives us
that y = ±b−1/2.

In case (1) we have that f (x , y) = −x2 − y2 = −a−1. In case (2) we
have f (x , y) = −b−1. Since −b−1 < −a−1 ≤ 0, we have that
(x , y) = (0,±b−1/2) are the two minimum. What is the maximum?
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Example: Quadratic with Linear Constraints
Let A ∈ Rn×n be symmetric positive definite, B ∈ Rn×n be invertible and
b, y ∈ Rn. Consider the problem

min 1
2x
>Ax − b>x

subject to Bx = y .

Write the solution x∗ to the above as a function of A,B, b and y .

Using KKT there exists µ ∈ Rn such that

Ax∗ − b = B>µ

Bx∗ = y

Rearranging gives (
A −B>
B 0

)(
x∗

µ

)
=

(
b
y

)
Thus (

x∗

µ

)
=

(
A −B>
B 0

)−1(
b
y

)
.
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Exercise: Deducing Duality using KKT

Consider the primal problem

max
x

c>x

subject to Ax = b,

x ≥ 0, (P)

Using the KKT condition show that the dual is given by

min
x

b>y

subject to A>y ≤ c (D)
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In primal change the min for a max, then KKT equations with λ ≥ 0 for
the inequalities and y variables is

A>y + λ = c Colinear gradients

Ax = b Enforcing equality constraints

x ≥ 0 Enforcing inequality constraints

λ ≥ 0 Positive Lagrange multipliers

xiλi = 0, i = 1, . . . , n. Testing if xi is active (45)

The constraint xiλi = 0 checks if the xi ≥ 0 constraint is active or not.
Since both x and λ are positive we can rewrite (45) as x>λ ≥ 0.

The
KKT equations of dual with x ≥ 0 Lagrange parameters is

Ax = b Colinear gradients

A>y ≤ c Enforcing inequality constraints

x ≥ 0 Positive Lagrange multipliers

x>(A>y − c) = 0, i = 1, . . . , n. Testing if constraints are active (46)

Now rename λ = c − A>y and substitute throughout.
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Now we come back to designing algorithms that fit the format

xk+1 = xk + skd
k , (47)

such that f (xk+1) < f (xk) and xk+1 ∈ X .
In the constrained setting we have the additional problem of enforcing
xk+1 ∈ X .
Divide tasks: Take one step to decrease f and another to become
feasible. For this we need the Projection Operator.

PX (z)
def
= arg min

1

2
‖x − z‖2

subject to x ∈ X .

With the projection operator we can now define the projected gradient
descent method

xk+1 = PX (xk − sk∇f (xk)) .

First, let us study some examples of projections.
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Projection onto the sphere

If X = {x : ‖x‖ ≤ r} where r > 0 show that

PX (z) = r
z

‖z‖
.

Proof. We can solve this project problem

min
1

2
‖x − z‖2 subject to ‖x‖2 ≤ r2.

Suppose that ‖z‖ ≤ r . Clearly x = z is the solution.
Suppose instead ‖z‖ > r . Since {x : ‖x‖ ≤ r} is a closed set, we know
the projection will be on the boundary ‖x‖ = r . Let h(x) = ‖x‖2 − r2.
Using the KKT conditions we have that

∇f (x) = −µ∇h(x) =⇒ (x − z) = −2µx =⇒ x =
z

1 + 2λ
.

Since ‖x‖ = r we have that

‖z‖
1 + 2µ

= r =⇒ 1

1 + 2µ
=

r

‖z‖
=⇒ x = r

z

‖z‖
.
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Projection onto hyperplane

Let A ∈ Rn×n be and invertible matrix and let b ∈ Rn. If
X = {x : Ax = b}. Show that

PX (z) = z − A>(AA>)−1(Az − b).

Proof The Lagrangian function associated to the projection is given by

L(x , µ) =
1

2
‖x − z‖2 + µ>(Ax − b). (48)

Taking the derivative in x and setting to zero gives

∇xL(x , µ) = x − z + A>µ = 0 ⇔ x = z − A>µ (49)

Now using that Ax = b and left multiplying the above by A gives

b = Ax = Az − AA>µ = 0.

Since A is invertible, isolating µ in the above gives

µ = (AA>)−1(Az − b).

Inserting this value for µ into (49) gives the solution. 72 / 76
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Remark on Pseudoinverse operators

We did not need A to be square or invertible to define the projection onto
Ax = b. Indeed, no matter what A is the set {x : Ax = b} is a closed
set, and thus there must exist a solution to the projection optimization
problem. In general, the projection of z onto Ax = b is given by

PX (z) = z − A†(Az − b),

where A† is known as the Moore-Penrose Pseudoinverse. Infact, the
pseudoinverse of a matrix can be defined as the operator that gives this
solution!
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Projected GD: The good and the bad

xk+1 = PX (xk − sk∇f (xk)) .

Figure: PGD can zig-zag and be
slow

Good: General, can be applied to
any closed convex constraint. Easy
to implement when PX (x) is known
Bad: If PX (x) is not known, can be
too expensive to approximate. Can
zig-zag.
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Consider the problem

min
x∈Rn

f (x)

subject to gi (x) ≤ 0, for i ∈ I . (50)

Develop a method the given feasible point xk ∈ Rn finds xk+1 such that

f (xk) ≤ f (xk+1)

and for which gi (x
k+1) ≤ 0 for all i ∈ I .

Hint: Look for an admissible directions d ∈ Rn that are also descent
direction. This can be done by solvig LP

min
x∈Rn

d>∇f (xk)

subject to d>∇gi (xk) ≤ 0, ∀i ∈ I (xk)

− 1 ≤ d ≤ 1 (LPd)
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Algorithm 3 Descent Algorithm

1: Choose x0 ∈ X and ε > 0. Set k = 0.
2: while KKT(xk) conditions not verified or ‖∇f (xk)‖ > ε do
3: Find d by solving (LPd) . Find feasible direction
4: Find s ∈ R+ such that f (xk + sd) < f (xk) and xk + sd ∈ X
5: xk+1 = xk + sd . Take a step
6: k = k + 1

Issues: LPd is expensive to solve, and this only works when g(x) ≤ 0 is a
Polyhedra, and is only efficient in R2.
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