Optimization and Numerical Analysis: Solving Linear Systems

Robert Gower

September 20, 2020

Table of Contents

Notation, Norms and Sensitivity
Matrix Norms
Solving linear systems
Triangular systems
Gaussian Elimination
Gauss Jordan
Cholesky Decomposition
Eigenvalues and Singular Values
Jacobi method
Convergence of Jacobi
Bibliograpy

The Problem: Linear Systems

One of the most common and fundamental problems in numerical computing is to solve a linear system:

$$
A x=b
$$

where $x \in \mathbb{R}^{n}$ is unknown, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$ are given.

$$
A=\left(a_{i j}\right)=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{d 1} & a_{d 2} & a_{d 3} & \ldots & a_{d n}
\end{array}\right]
$$

- Normal matrices: $A A^{\top}=A^{\top} A$
- Symmetric matrices: $\left(a_{i j}\right)=A=A^{\top}=\left(a_{j i}\right)$
- Orthogonal matrices: $A A^{\top}=A^{\top} A=I$, where $I=\left(\delta_{i j}\right)$ denotes the identity matrix.

What does it mean to be close to a solution?
First we generalize the notation of distance by defining a norm

Definition

We say that the function $\|\cdot\|: x \in \mathbb{R}^{n} \rightarrow R_{+}$is a norm if it is
Point separating: $\|x\|=0 \Leftrightarrow x=0, \forall x \in E$.
Subadditive: $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in E$
Homogeneous: $\|a x\|=|a|\|x\|, \forall x \in E, a \in \mathbb{R}$.
The L2 norm: $\|x\|_{2} \stackrel{\text { def }}{=} \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$.
The L1 norm: $\|x\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left|x_{i}\right|$.

What does it mean to be close to a solution?
First we generalize the notation of distance by defining a norm

Definition

We say that the function $\|\cdot\|: x \in \mathbb{R}^{n} \rightarrow R_{+}$is a norm if it is
Point separating: $\|x\|=0 \Leftrightarrow x=0, \forall x \in E$.
Subadditive: $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in E$
Homogeneous: $\|a x\|=|a|\|x\|, \forall x \in E, a \in \mathbb{R}$.
The L2 norm: $\|x\|_{2} \stackrel{\text { def }}{=} \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$.
The L1 norm:

$$
\|x\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left|x_{i}\right|
$$

Exercise: Show that $\|V y\|_{2}=\|y\|_{2}$ for every $y \in \mathbb{R}^{n}$ and orthogonal matrix $V \in \mathbb{R}^{n \times n}$.

We can define an induced norm over matrices by using vector norms. Let $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be a norm.

$$
\|A\| \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|}{\|x\|}
$$

In particular the L2 induced norm is

$$
\|A\|_{2} \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} .
$$

Exercise

Show that all induced norms satisfy

$$
\|A x\| \leq\|A\|\|x\|, \forall x \in \mathbb{R}^{n}
$$

and are submultiplicative. Also show that for $B \in \mathbb{R}^{n \times n}$ we have

$$
\begin{aligned}
& \|A B\|_{2}=\|A\|_{2}\|B\|_{2} . \\
& \|O\|_{2}=1, \quad \forall O \in \mathbb{R}^{n \times n} \text { orthonormal matrix. }
\end{aligned}
$$

Other Matrix Norms and Operators

If $A \in \mathbb{R}^{n \times n}$ is a square matrix we can define:
Trace: $\operatorname{Tr}(A) \stackrel{\text { def }}{=} \sum_{i=1}^{n} a_{i i}$
Frobenius norm: $\|A\|_{E} \stackrel{\text { def }}{=} \sqrt{\sum_{i, j=1}^{n, m} a_{i j}^{2}}=\sqrt{\operatorname{Tr}\left(A^{\top} A\right)}$
L1 norm: $\|A\|_{\infty} \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|_{1}}{\|x\|_{1}}$.

Exercise

Let $A, B \in \mathbb{R}^{n \times n}$ and let $O \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Prove

$$
\begin{gathered}
\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \\
\left\|O^{\top} A O\right\|_{E}=\|A\|_{E}
\end{gathered}
$$

Can we get close to a solution $A x=b$?

$$
\left[\begin{array}{cccc}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
32 \\
23 \\
33 \\
31
\end{array}\right] \quad \text { with solution } x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let us say we find a solution x^{\prime} that is close in the sense that

$$
\left[\begin{array}{cccc}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
32.1 \\
22.9 \\
33.1 \\
30.9
\end{array}\right] \quad \text { with solution } \quad x^{\prime}=\left[\begin{array}{c}
9.2 \\
-12.6 \\
4.5 \\
-1.1
\end{array}\right]
$$

An error on right hand side b of the order of $1 / 300$ has incurred a significant error in the solution x^{\prime} of an order of 10 .

This large error is due to the condition number of A. In algebra

$$
\begin{equation*}
A(x+\delta x)=b+\delta b \tag{1}
\end{equation*}
$$

How big can $\|\delta x\|$ be? Since we know $A x=b$ we have that

$$
A \delta x=\delta b
$$

Assuming A is invertible and left multiplying A^{-1} on both sides

$$
\delta x=A^{-1} \delta b \quad \Rightarrow \quad\|\delta x\| \leq\left\|A^{-1}\right\|\|\delta b\| .
$$

Furthermore $\|b\|=\|A x\| \leq\|A\|\|x\|$ and thus

$$
\frac{1}{\|x\|} \leq\|A\| \frac{1}{\|b\|}
$$

Putting the two above equations together gives

$$
\frac{\|\delta x\|}{\|x\|} \leq \underbrace{\left\|A^{-1}\right\|\|A\|}_{\stackrel{\text { def }}{=} \operatorname{Cond}(A)} \frac{\|\delta b\|}{\|b\|} .
$$

$$
\frac{\|\delta x\|}{\|x\|} \leq \underbrace{\left\|A^{-1}\right\|\|A\|}_{\stackrel{\text { def }}{=} \operatorname{cond}(A)} \frac{\|\delta b\|}{\|b\|}
$$

Definition

We call cond $(A)=\|A\|\left\|A^{-1}\right\|$ the condition number of A.
Similarly, small errors in A can also introduce large changes in x and this also depends on the condition number through

$$
\frac{\|\delta x\|}{\|x+\delta x\|} \leq \underbrace{\left\|A^{-1}\right\|\|A\|}_{\stackrel{\text { def }}{=} \operatorname{cond}(A)} \frac{\|\delta A\|}{\|A\|}
$$

where $\delta A \in \mathbb{R}^{m \times n}$ is the error in A.

Properties of the Condition Number

Theorem

- $\operatorname{cond}(A) \geq 1$
- $\operatorname{cond}(A)=\operatorname{cond}\left(A^{-1}\right)$
- $\operatorname{cond}(\alpha A)=\operatorname{cond}(A)$, for every $\alpha \neq 0$.
- $\operatorname{cond}(O)=1$ for every orthonormal matrix $O \in \mathbb{R}^{n \times n}$.

First we solve the easiest system: Triangular systems. For instance lower triangular $A x=b$ where

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n-1} & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n-1} & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
& & \cdots & a_{n-1 n-1} & a_{n-1 n} \\
0 & 0 & \cdots & 0 & a_{n n}
\end{array}\right]
$$

In other words

$$
\begin{equation*}
\sum_{j=i}^{n} a_{i j} x_{j}=b_{i}, \quad \text { for } i=1, \ldots, n \tag{2}
\end{equation*}
$$

Two efficient algorithms for solving triangular linear systems: forward substitution and backward substitution.

Backwards substitution method: Starting with $i=n$ we have

$$
a_{n n} x_{n}=b_{n} .
$$

Assuming that $a_{n n} \neq 0$ (otherwise there is no solution) we have that

$$
x_{n}=b_{n} / a_{n n}
$$

For $i<n$, separating out the x_{i} term in (2) we have

$$
\begin{equation*}
\sum_{j=i+1}^{n} a_{i j} x_{j}+a_{i i} x_{i}=b_{i} \tag{3}
\end{equation*}
$$

Assuming $a_{i i} \neq 0$ and isolating x_{i} gives

$$
\begin{equation*}
x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}} . \tag{4}
\end{equation*}
$$

Algorithm 1 Backward substitution

$$
\text { for } i=n, \ldots, 1 \text { do }
$$

$$
x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}}
$$

Exercise

How many floating point operations does backward substitution cost?

Proof: For a fixed i there are $n-(i+1)$ summations and multiplications in $\sum_{j=i+1}^{n} a_{i j} x_{j}$. Consequently there are $2(n-i)$ operations to compute $\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}}$. Summing up over $i=1, \ldots n$ we have a total of operations given by

$$
\sum_{i=1}^{n} 2(n-i)=2 n^{2}-n(n+1)=n(n-1)
$$

Exercise
 What can we do if we find $a_{i i}=0$? What does it say about this triangular system if $a_{i i}=0$?

Conclusion: Triangular linear systems are easy to solve.

Idea: Transform all linear systems into triangular systems?

Can we transform A into an upper triangular matrix?

Can we transform A into an upper triangular matrix? Yes, using invertible operations.

Theorem (Invertible operations)

Let $P \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that

$$
\{x: A x=b\}=\{x: P A x=P b\}
$$

Gaussian Elimination Idea: Use sequence of invertible operations P_{1}, \ldots, P_{k} such that

$$
P_{k} \cdots P_{2} P_{1} A=U
$$

Then solve

$$
U_{x}=P_{k} \cdots P_{2} P_{1} b
$$

Example of Gaussian Elimination

Consider the linear system

$2 x_{1}$	x_{2}	$-3 x_{3}$	$=$	5
$4 x_{1}$	x_{2}	$5 x_{3}$	$=$	-1
$10 x_{1}$	$-7 x_{2}$	$13 x_{3}$	$=$	-3

We want to isolate x_{1} on the top row.

Example of Gaussian Elimination

Consider the linear system

$2 x_{1}$	x_{2}	$-3 x_{3}$	$=$	5
$4 x_{1}$	x_{2}	$5 x_{3}$	$=$	-1
$10 x_{1}$	$-7 x_{2}$	$13 x_{3}$	$=$	-3

We want to isolate x_{1} on the top row. Subtracting two times the first row to the second row ($R_{2} \leftarrow R_{2}-2 R_{1}$) gives

$$
\begin{array}{ccccc}
2 x_{1} & x_{2} & -3 x_{3} & = & 5 \\
& -x_{2} & 11 x_{3} & = & -11 \\
10 x_{1} & -7 x_{2} & 13 x_{3} & = & -3
\end{array}
$$

Example of Gaussian Elimination

Consider the linear system

$2 x_{1}$	x_{2}	$-3 x_{3}$	$=$	5
$4 x_{1}$	x_{2}	$5 x_{3}$	$=$	-1
$10 x_{1}$	$-7 x_{2}$	$13 x_{3}$	$=$	-3

We want to isolate x_{1} on the top row. Subtracting two times the first row to the second row ($R_{2} \leftarrow R_{2}-2 R_{1}$) gives

$2 x_{1}$	x_{2}	$-3 x_{3}$	$=$	5
	$-x_{2}$	$11 x_{3}$	$=$	-11
$10 x_{1}$	$-7 x_{2}$	$13 x_{3}$	$=$	-3

Subtracting five times the first row to the third row $\left(R_{3} \leftarrow R_{3}-5 R_{1}\right)$ gives

$$
\begin{array}{lcccc}
2 x_{1} & x_{2} & -3 x_{3} & = & 5 \\
-x_{2} & 11 x_{3} & = & -11 \\
-12 x_{2} & 28 x_{3} & = & -28
\end{array}
$$

$$
\begin{array}{lccc}
2 x_{1} & x_{2} & -3 x_{3} & = \\
& -x_{2} & 11 x_{3} & = \\
-12 x_{2} & 28 x_{3} & = & -11 \\
& -28
\end{array}
$$

Now isolate x_{2} on the second row by $R_{3} \leftarrow R_{3}+12 R_{2}$ giving

$$
\begin{array}{lcccc}
2 x_{1} & x_{2} & -3 x_{3} & = & 5 \\
-x_{2} & 11 x_{3} & = & -11 \\
-12 x_{2} & 28 x_{3} & = & -28
\end{array}
$$

Now isolate x_{2} on the second row by $R_{3} \leftarrow R_{3}+12 R_{2}$ giving

$$
\begin{array}{ccccc}
2 x_{1} & x_{2} & -3 x_{3} & = & 5 \\
& -x_{2} & 11 x_{3} & = & -11 \\
& & -104 x_{3} & = & 104
\end{array}
$$

Now we have an upper triangular system! Easy to solve. But what were these operations, e.g. $R_{3} \leftarrow R_{3}+12 R_{2}$? Are they invertible operations? YES

Let $A^{0}=A$ and let $A^{k}=P_{k-1} A^{k-1}$ where $a_{i j}^{k}=0$ for $1 \leq j \leq k$ and $i \geq j+1$. To generate A^{k+1} from A^{k} we need to perform a row operation.

$$
\begin{aligned}
{\left[\begin{array}{ccccccc}
1 & 0 & 0 & & \ldots & 0 & 0 \\
0 & 1 & 0 & & \vdots & 0 & 0 \\
\vdots & & 1 & & 0 & 0 & \vdots \\
\vdots & \vdots & -a_{k+1 k}^{k} / a_{k k}^{k} & 1 & \ddots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & -a_{n k}^{k} / a_{k k}^{k} & \ldots & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
a_{11}^{k} & a_{12}^{k} & a_{13}^{k} & \ldots & a_{1 n}^{k} \\
0 & \ddots & \vdots & \vdots & a_{2 n}^{k} \\
\vdots & 0 & a_{k k}^{k} & \vdots & \vdots \\
\vdots & 0 & a_{k+1 k}^{k} & \ldots & a_{k+1 n}^{k} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & a_{n k}^{k} & \ldots & a_{n n}^{k}
\end{array}\right] } \\
=\left[\begin{array}{cccccc}
a_{11}^{k} & a_{12}^{k} & a_{13}^{k} & \ldots & a_{1(k+1)}^{k} & \ldots \\
0 & \ddots & \vdots & \ldots & a_{2(k+1)}^{k} & \ldots \\
\vdots & 0 & a_{k k}^{k} & \vdots & \vdots & \ldots \\
\vdots & 0 & 0 & \vdots & a_{(k+1)(k+1)}^{k+1} & \ldots \\
\vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & \ldots & a_{n(k+1)}^{k+1} & \ldots \\
a_{1 k+1) n}^{k+1} \\
0_{n n}^{k+1}
\end{array}\right]
\end{aligned}
$$

These row operations can be represented in a much more compact.

$$
\begin{equation*}
P_{k}=I-v_{k} e_{k}^{\top} \tag{5}
\end{equation*}
$$

where $e_{k}=\left(0, \cdots, \frac{1}{k t h}, 0, \cdots, 0\right) \in \mathbb{R}^{n}$ is the k th unit coordinate vector and $v_{k}=\left(0, \ldots, 0, \frac{a_{k+1 k}^{k}}{a_{k k}^{k}}, \ldots, \frac{a_{n k}^{k}}{a_{k k}^{k}}\right)$. With this notation we

$$
(k+1) t h
$$

can write

$$
P_{k} A^{k}=A^{k+1}
$$

Also these row operations are invertible!

Lemma

Let P_{k} be the k th row operation. It follows
(1) $P_{k}^{-1}=I+v_{k} e_{k}^{\top}$. (Invertible)
(2) $P_{k-1}^{-1} P_{k}^{-1}=I+v_{k} e_{k}^{\top}+v_{k-1} e_{k-1}^{\top}$ (Compositions are lower triangular)

Lemma

Let P_{k} be the k th row operation. It follows
(1) $P_{k}^{-1}=I+v_{k} e_{k}^{\top}$.
(2) $P_{k-1}^{-1} P_{k}^{-1}=I+v_{k} e_{k}^{\top}+v_{k-1} e_{k-1}^{\top}$

Proof.

(1) By direct computation we have

$$
\left(I+v_{k} e_{k}^{\top}\right)\left(I-v_{k} e_{k}^{\top}\right)=I+v_{k} e_{k}^{\top}-v_{k} e_{k}^{\top}-v_{k} e_{k}^{\top} v_{k} e_{k}^{\top}=I-v_{k} e_{k}^{\top} v_{k} e_{k}^{\top}
$$

The support of v_{k} does not intersect with the support of e_{k} thus $e_{k}^{\top} v_{k}=0$.
(2) Again by computation

$$
P_{k-1}^{-1} P_{k}^{-1}=\left(I+v_{k-1} e_{k-1}^{\top}\right)\left(I+v_{k} e_{k}^{\top}\right)=I+v_{k-1} e_{k-1}^{\top}+v_{k} e_{k}^{\top}+v_{k-1}\left(e_{k-1}^{\top} v_{k}\right) e_{k}^{\top} .
$$

This inner product $e_{k-1}^{\top} v_{k}$ is between two vector with disjoint support, thus $e_{k-1}^{\top} v_{k}=0$ and the result follows.

Gaussian Elimination overview

Gaussian elimination applies n row operations until the matrix is upper triangular

$$
\begin{equation*}
P_{n} P_{n-1} \cdots P_{1} A=U \tag{6}
\end{equation*}
$$

Then solves the upper triangular system

$$
U_{x}=P_{n} P_{n-1} \cdots P_{1} b
$$

The cost of applying P_{k} is $(n-k-1) n$ consequently the cost of performing (6) is

$$
\sum_{k=1}^{n}(n-k-1) n=O\left(n^{3}\right)
$$

Choosing a Pivot

Three strategies

- Default: Choosing $a_{k k}$ as the pivot.
- Partial Pivot: On column k we choosing the element below the diagonal with the largest absolute value

$$
i_{\text {pivot }}=\arg \max _{i \geq k}\left|a_{i k}\right|
$$

- Total Pivot: Choose the largest element below or to the right of the diagonal

$$
\left(i_{\text {pivot }}, j_{\text {pivot }}\right)=\arg \max _{i, j \geq k}\left|a_{i j}\right| .
$$

Both Partial and Total pivoting improves numerical stability of Gaussian Elimination.

Gaussian Elimination gives a Triangular Decomposition

Since by Lemma 6 the matrix P_{k} is invertible we have that the product of row operations in (6) is also invertible with

$$
\begin{equation*}
\left(P_{n} P_{n-1} \cdots P_{1}\right)^{-1}=P_{1}^{-1} \cdots P_{n-1}^{-1} P_{n}^{-1} \stackrel{\text { def }}{=} L . \tag{7}
\end{equation*}
$$

Again by Lemma 6 and induction we have that L is lower triangular. Left multiplying (6) by L we have

$$
\begin{equation*}
A=L U . \tag{8}
\end{equation*}
$$

This is known as the $L U$ decomposition. This decomposition can be used to efficiently solve multiple linear systems

$$
A x^{i}=b_{i}, \quad \text { for }=1, \ldots, 10
$$

Each system $A x=b_{i}$ can be solved with two triangular solves
First lower triangular solve: $\quad L y=b_{i}$ Second upper triangular solve : $\quad U x^{i}=y$

Each system $A x=b_{i}$ can be solved with two triangular solves

$$
\begin{aligned}
\text { First lower triangular solve : } & L y=b_{i} \\
\text { Second upper triangular solve : } & U x^{i}=y
\end{aligned}
$$

The two together give: $L y=b \quad \Leftrightarrow \quad L \underbrace{U x^{i}}_{y}=b_{i} \quad \Leftrightarrow \quad A x^{i}=b_{i}$.
Thus cost of solving each system if $O\left(n^{2}\right)$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix such that the submatrix

$$
A_{1: k, 1: k} \stackrel{\text { def }}{=}\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\vdots & \vdots & \vdots \\
a_{k 1} & \ldots & a_{k k}
\end{array}\right] \quad \text { is invertible for } k=1, \ldots, n \text {. }
$$

Then the $L U$ decomposition exists. If $L_{i i}=1$ is enforced, the decomposition is unique.

Gauss Jordan Method for Inversion

We can use Gaussian elimination to compute the inverse of A. Setup the systems

$$
A x^{i}=e_{i}, \quad \text { for } i=1, \ldots, n .
$$

Gauss Jordan Method for Inversion

We can use Gaussian elimination to compute the inverse of A.
Setup the systems

$$
A x^{i}=e_{i}, \quad \text { for } i=1, \ldots, n .
$$

In other words

$$
A X \stackrel{\text { def }}{=} A\left[x^{1}, \ldots, x^{n}\right]=I
$$

Thus the solution is $X=A^{-1}$.

Gauss Jordan Method for Inversion

We can use Gaussian elimination to compute the inverse of A.
Setup the systems

$$
A x^{i}=e_{i}, \quad \text { for } i=1, \ldots, n
$$

In other words

$$
A X \stackrel{\text { def }}{=} A\left[x^{1}, \ldots, x^{n}\right]=I
$$

Thus the solution is $X=A^{-1}$.
Apply row operations until A is the identity matrix. That is

$$
P_{k} \cdots P_{1} A=I
$$

Consequently

$$
P_{k} \cdots P_{1} A X=X=P_{k} \cdots P_{1} I=A^{-1}
$$

Thus apply the same operations simultaneously to the identity matrix to get A^{-1}.

Example of Gauss Jordan (and Partial Pivot)

Let us invert the following matrix

$$
\begin{array}{ccccccc}
x_{1} & -3 x_{2} & 14 x_{3} & = & 1 & 0 & 0 \\
x_{1} & -2 x_{2} & 10 x_{3} & = & 0 & 1 & 0 \\
-2 x_{1} & 4 x_{2} & -19 x_{3} & = & 0 & 0 & 1
\end{array}
$$

Using a partial pivot gives $\left(R_{1} \leftrightarrow R_{3}\right)$

$$
\begin{array}{ccccccc}
-2 x_{1} & 4 x_{2} & -19 x_{3} & = & 0 & 0 & 1 \\
x_{1} & -2 x_{2} & 10 x_{3} & = & 0 & 1 & 0 \\
x_{1} & -3 x_{2} & 14 x_{3} & = & 1 & 0 & 0
\end{array}
$$

$$
\begin{array}{ccccccc}
-2 x_{1} & 4 x_{2} & -19 x_{3} & = & 0 & 0 & 1 \\
x_{1} & -2 x_{2} & 10 x_{3} & = & 0 & 1 & 0 \\
x_{1} & -3 x_{2} & 14 x_{3} & = & 1 & 0 & 0
\end{array}
$$

Now isolating x_{1} using row operations

$$
\begin{array}{ccccccc}
-2 x_{1} & 4 x_{2} & -19 x_{3} & = & 0 & 0 & 1 \\
x_{1} & -2 x_{2} & 10 x_{3} & = & 0 & 1 & 0 \\
x_{1} & -3 x_{2} & 14 x_{3} & = & 1 & 0 & 0
\end{array}
$$

Now isolating x_{1} using row operations $R_{2} \leftarrow R_{2}+\frac{1}{2} R_{1}$ and $R_{3} \leftarrow R_{3}+\frac{1}{2} R_{1}$ gives

$$
\begin{array}{ccccccc}
-2 x_{1} & 4 x_{2} & -19 x_{3} & = & 0 & 0 & 1 \\
0 & 0 & 1 / 2 x_{3} & = & 0 & 1 & 1 / 2 \\
0 & -x_{2} & 9 / 2 x_{3} & = & 1 & 0 & 1 / 2
\end{array}
$$

Second phase: Using a total pivot gives $C_{2} \leftrightarrow C_{3}$ and $R_{2} \leftrightarrow R_{3}$

$$
\begin{array}{ccccccc}
-2 x_{1} & -19 x_{3} & 4 x_{2} & = & 0 & 0 & 1 \\
0 & 9 / 2 x_{3} & -x_{2} & = & 1 & 0 & 1 / 2 \\
0 & 1 / 2 x_{3} & 0 & = & 0 & 1 & 1 / 2
\end{array}
$$

$$
\begin{array}{ccccccc}
-2 x_{1} & -19 x_{3} & 4 x_{2} & = & 0 & 0 & 1 \\
0 & 9 / 2 x_{3} & -x_{2} & = & 1 & 0 & 1 / 2 \\
0 & 1 / 2 x_{3} & 0 & = & 0 & 1 & 1 / 2
\end{array}
$$

Isolating x_{3} gives

$$
\begin{array}{ccccccc}
-2 x_{1} & 0 & 4 x_{2} & = & 38 / 9 & 0 & 28 / 9 \\
0 & 9 / 2 x_{3} & -x_{2} & = & 1 & 0 & 1 / 2 \\
0 & 0 & 1 / 9 x_{2} & = & -1 / 9 & 1 & 4 / 9
\end{array}
$$

Isolating x_{2} gives

$$
\begin{array}{ccccccc}
-2 x_{1} & 0 & 0 & = & 4 & 2 & 4 \\
0 & 9 / 2 x_{3} & 0 & = & 0 & 9 & 9 / 2 \\
0 & 0 & 1 / 9 x_{2} & = & -1 / 9 & 1 & 4 / 9
\end{array}
$$

$$
\begin{array}{ccccccc}
-2 x_{1} & 0 & 0 & = & 4 & 2 & 4 \\
0 & 9 / 2 x_{3} & 0 & = & 0 & 9 & 9 / 2 \\
0 & 0 & 1 / 9 x_{2} & = & -1 / 9 & 1 & 4 / 9
\end{array}
$$

Finally scaling the rows : $R_{1} \leftarrow-1 / 2 R_{1}$
$R_{2} \leftarrow 2 / 9 R_{2}$
$R_{3} \leftarrow 9 R_{3}$
and switching $R_{2} \leftrightarrow R_{3}$ gives

$$
\begin{array}{ccccccc}
x_{1} & 0 & 0 & = & -2 & -1 & -2 \\
0 & 0 & x_{2} & = & -1 & 9 & 4 \\
0 & x_{3} & 0 & = & 0 & 2 & 1
\end{array}
$$

Consequently

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & -1 & -2 \\
-1 & 9 & 4 \\
0 & 2 & 1
\end{array}\right]
$$

Cholesky Decomposition

We say a matrix is positive definite if it is symmetric and if

$$
\begin{equation*}
v^{\top} A v>0, \quad \forall v \neq 0 \tag{9}
\end{equation*}
$$

For positive definite matrices we can efficiently compute an LU decomposition with $L=U^{\top}$.

Theorem

Cholesky theorem Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. There exists a lower triangular matrix $B \in \mathbb{R}^{n \times n}$ such that $A=B B^{\top}$.

Proof.

By induction in next slides. Induction hypothesis: If rows 1 to $j-1$ of B exist, then row j exists.

First we write

$$
A=\left[\begin{array}{cccc}
b_{11} & 0 & \ldots & 0 \\
b_{21} & b_{22} & 0 & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{21} & \ldots & b_{n 1} \\
0 & b_{22} & \ldots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & b_{n n}
\end{array}\right]
$$

Base case 1st row: From the first column of the above we have

$$
a_{: 1}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right]=b_{11}\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{n 1}
\end{array}\right]=b_{11} b_{: 1} .
$$

The first line gives: $b_{11}^{2}=a_{11}$ thus $b_{11}=\sqrt{a_{11}}$. This gives the row of B.

First we write

$$
A=\left[\begin{array}{cccc}
b_{11} & 0 & \ldots & 0 \\
b_{21} & b_{22} & 0 & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{21} & \ldots & b_{n 1} \\
0 & b_{22} & \ldots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & b_{n n}
\end{array}\right]
$$

Base case 1st row: From the first column of the above we have

$$
a_{: 1}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right]=b_{11}\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{n 1}
\end{array}\right]=b_{11} b_{: 1}
$$

The first line gives: $b_{11}^{2}=a_{11}$ thus $b_{11}=\sqrt{a_{11}}$. This gives the row of B. Now note that $a_{i j}=b_{i:}^{\top} b_{j}$:

Let

$$
B B^{\top}=\left[\begin{array}{ccc}
- & b_{1:}^{\top} & - \\
- & b_{2:}^{\top} & - \\
& \vdots & \\
- & b_{n:}^{\top} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
b_{1:} & b_{2:} & \ldots & b_{n:} \\
\mid & \mid & \ldots & \mid
\end{array}\right]
$$

Induction: Suppose we know the rows 1 to $j-1$ of B. Thus we know $b_{1 \text { : }}$ to $b_{j-1: \text { : }}$ To calculate $b_{j:}$ we use that $a_{i j}=\left\langle b_{i:}, b_{j:}\right\rangle$ thus

$$
a_{: j}=\sum_{i=1}^{n}\left\langle b_{j:}, b_{i:}\right\rangle e_{i}=\sum_{i=1}^{n} \sum_{k=1}^{\min \{j, i\}} b_{j k} b_{i k} e_{i}=\sum_{k=1}^{\min \{j, i\}} b_{j k} b_{: k} .
$$

Isolating b_{j} : gives

$$
b_{j j} b_{: j}=a_{: j}-\sum_{k=1}^{j-1} b_{j k} b_{: k} \stackrel{\text { def }}{=} v .
$$

Using $b_{j j} b_{: j}=v$ we have that $b_{j j}=\sqrt{v_{j}}=\sqrt{a_{j j}-\sum_{k=1}^{j-1} b_{j k}^{2}}$.
Therefore

$$
b_{: j}=\frac{v}{\sqrt{V_{j}}}=\frac{a_{: j}-\sum_{k=1}^{j-1} b_{j k} b_{: k}}{\sqrt{b_{j j}}}
$$

This completes the induction and provides the following algorithm

Algorithm $2(B)=$ Cholesky Decomposition (A)

1: for $j=1, \ldots, n$ do
2: \quad Calculate $v=a_{: j}-\sum_{k=1}^{j-1} b_{j k} b_{: k}$
3: \quad Set $b_{: j}=v / \sqrt{v_{j}}$

Exercise

Show that the number of flops of the Cholesky algorithm is proportional to $O\left(n^{3}\right)$.

Solution: The summation in computing v in

$$
v=a_{: j}-\sum_{k=1}^{j-1} b_{j k} b_{: k}
$$

is where most of the effort goes. Since there are k elements in $b_{: k}$ it costs k to add on $b_{j k} b_{: k}$.

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=1}^{j-1} k & =\sum_{j=1}^{n} \frac{(j-1) j}{2} \\
& \leq \sum_{j=1}^{n} \frac{j^{2}}{2} \leq \frac{1}{2} \int_{x=0}^{n} x^{2} d x \\
& =\left.\frac{x^{3}}{6}\right|_{n}-\left.\frac{x^{3}}{6}\right|_{0}=\frac{n^{3}}{6}
\end{aligned}
$$

Using the Cholesky decomposition, we can uncover many properties of positive definite matrices.

Theorem

Let A be a positive definite matrix. It follows that
(1) The Cholesky decomposition $B^{\top} B=A$ always exists. We can prove this by construction. That is, using induction we can show that Algorithm 2 works. This boils down to showing that $v_{j} \neq 0$ does not occur.
(2) $\operatorname{det}(A)=\left(b_{1} \cdots b_{n}\right)^{2}$. Indeed, using properties of the determinant we have that

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(B^{\top} B\right)=\operatorname{det}\left(B^{\top}\right) \operatorname{det}(B) \\
& =\operatorname{det}(B)^{2}=\left(b_{11} \cdots b_{n n}\right)^{2}
\end{aligned}
$$

Eigenvalues are important

Watch the collapse of Tacoma Narrows Bridge as it resonates in the wind. This resonance is related to the smallest eigenvalue of the structural equations:
https://www.youtube.com/watch?v=XggxeuFDaDU We say that $x \neq 0 \in \mathbb{R}^{n}$ is an eigenvector with associated eigenvalue $\lambda \in \mathbb{R}$ of A if

$$
A x=\lambda x \Leftrightarrow(A-\lambda I) x=0
$$

Since $x \neq 0$ shows that $A-\lambda /$ is not invertible and consequently

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{10}
\end{equation*}
$$

Compute all eigenvalues by finding roots of this n dim polynomial.

Theorem (Abel-Ruffini theorem)

There is no exact algebraic formula for the roots of a polynomial with degree 5 or more.

Definition (Eigenpairs and Spectrum)

Let $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{C}$. We say that x is an eigenvector and λ an eigenvalue of A if $x \neq 0$ and

$$
A x=\lambda x
$$

We also refer to (x, λ) as an eigenpair of A. We say $\lambda(A) \subset \mathbb{C}$ is the spectrum of A if $\lambda(A)$ contains all the eigenvalues of A, that is

$$
\lambda(A) \stackrel{\text { def }}{=}\left\{\lambda \mid \exists x \in \mathbb{R}^{n} \text { such that } x \neq 0, A x=\lambda x\right\}
$$

We say that A is invertible if $0 \notin \lambda(A)$.

Exercise

If $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ then

$$
\lambda(A)=\left\{a_{1}, \ldots, a_{n}\right\} .
$$

Exercise

If $O \in \mathbb{R}^{n \times n}$ is an orthogonal matrix then every $\lambda \in \lambda(O)$ is such that $|\lambda|=1$.

Exercise

If $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ then

$$
\lambda(A)=\left\{a_{1}, \ldots, a_{n}\right\} .
$$

Exercise

If $O \in \mathbb{R}^{n \times n}$ is an orthogonal matrix then every $\lambda \in \lambda(O)$ is such that $|\lambda|=1$.

Proof.

Let (x, λ) be such that $O x=\lambda x$. If follows that

$$
\langle x, x\rangle=\left\langle x, O^{\top} O x\right\rangle=\langle O x, O x\rangle=\|O x\|_{2}^{2}=|\lambda|^{2}\langle x, x\rangle
$$

Dividing by $\langle x, x\rangle$ on both sides gives the result.
Maybe we should transform A into diagonal or orthogonal?

Definition (Similarity transform)

We say that $A \in \mathbb{R}^{n \times n}$ is similar to $B \in \mathbb{R}^{n \times n}$ if there exists
$P \in \mathbb{R}^{n \times n}$ invertible such that

$$
A=P^{-1} B P
$$

We say that A is diagonalizable when B is a diagonal matrix.

Lemma

If $A, B \in \mathbb{R}^{n \times n}$ are similar matrices then $\lambda(A)=\lambda(B)$.

Definition (Similarity transform)

We say that $A \in \mathbb{R}^{n \times n}$ is similar to $B \in \mathbb{R}^{n \times n}$ if there exists
$P \in \mathbb{R}^{n \times n}$ invertible such that

$$
A=P^{-1} B P
$$

We say that A is diagonalizable when B is a diagonal matrix.

Lemma

If $A, B \in \mathbb{R}^{n \times n}$ are similar matrices then $\lambda(A)=\lambda(B)$.
Proof: Consider $\lambda \in \lambda(A)$. Then there exists $x \in \mathbb{R}^{n}$ such that $A x=\lambda x$. By the similarity of A and B we have that $P^{-1} B P x=\lambda x$. Left multiplying by P shows that $\lambda \in \lambda(B)$ with associated eigenvector $P x$.

Can we transform A into diagonal or orthogonal?

Theorem (Spectral Theorem for symmetric matrices)

Symmetric matrices are diagonalizable. That is, let $A \in \mathbb{R}^{n \times n}$ with $A=A^{\top}$. Then there exists an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n \times n}$ such that

$$
A=V \wedge V^{\top}
$$

Proof: See Theorem 8.1.1 and proof in Matrix
Computations, Golub \& Van Loan 2013.

Theorem (Singular Value Decomposition)

Let $A \in \mathbb{R}^{m \times n}$. There exists orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
U^{\top} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right), \quad \text { where } p=\min \{n, m\}
$$

and where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{p} \geq 0$.
Proof: Not so easy. See Theorem 2.4.1 in the book Matrix Computations, Golub \& Van Loan 2013.
Common notation:

$$
\begin{aligned}
& \sigma_{\max }(A)=\sigma_{1}=\max _{i=1, \ldots, p} \sigma_{i} \\
& \sigma_{\min }(A)=\sigma_{p}=\min _{i=1, \ldots, p} \sigma_{i}
\end{aligned}
$$

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
Spectral Theorem \Rightarrow there exists $V \in \mathbb{R}^{n \times n}$ and diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that

$$
A=V \wedge V^{\top} \quad \Rightarrow \quad V^{\top} A V=\Lambda
$$

Idea: Transform A into diagonal matrix using similarity transforms. This gives the Jacobi method.

Notation: $I_{d} \in \mathbb{R}^{d \times d}$ is the $d \times d$ identity matrix. Thus

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Jacobi Method

Main idea: Iteratively minimize off-diagonal elements.
Offset: The sum of the squares of te off-diagonals element:

$$
\begin{equation*}
\operatorname{off}(A)=\sum_{i=1}^{n} \sum_{j \neq i} a_{i j}^{2}=\|A\|_{F}^{2}-\sum_{i=1}^{n} a_{i i}^{2} \tag{11}
\end{equation*}
$$

Iteration:
(1) Find largest off diagonal element

$$
a_{p q}=\max _{1 \leq i<j \leq n}\left|a_{i j}\right|
$$

(2) Replace $a_{p q}$ by a zero by using similarity transformations.
(3) Use the Givens/Jacobi Transform for this.

Givens/Jacobi Transform

$$
J(p, q, \theta)=\left[\right] q
$$

Where $c=\cos (\theta)$ and $s=\sin (\theta)$.

Givens/Jacobi Transform

$$
J(p, q, \theta)=\left[\begin{array}{ccccccc}
& & p & & q \\
1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & & \vdots & & \vdots \\
0 & \ldots & c & \ldots & s & \ldots & 0 \\
\vdots & & \vdots & \ddots & \vdots & & \vdots \\
0 & \ldots & -s & \ldots & c & \ldots & 0 \\
\vdots & & \vdots & & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & 0 & \ldots & 1
\end{array}\right] q
$$

Where $c=\cos (\theta)$ and $s=\sin (\theta)$. Outer product version:

$$
\begin{aligned}
J(p, q, \theta) & =I_{n}+(c-1) e_{p} e_{p}^{\top}+(c-1) e_{q} e_{q}^{\top}+s e_{p} e_{q}^{\top}-s e_{q} e_{p}^{\top} \\
& =I_{n}-\left[\begin{array}{ll}
e_{p} & e_{q}
\end{array}\right] I_{2}\left[\begin{array}{l}
e_{p}^{\top} \\
e_{q}^{\top}
\end{array}\right]+\left[\begin{array}{ll}
e_{p} & e_{q}
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{c}
e_{p}^{\top} \\
e_{q}^{\top}
\end{array}\right]
\end{aligned}
$$

Jacobia Similar Transform

Carefully choosing θ and appling Jacobi similar transform

$$
\begin{equation*}
B=J(p, q, \theta) A J(p, q, \theta)^{\top} \tag{12}
\end{equation*}
$$

eliminates $a_{p q}$ (and $a_{q p}$ because of symmetry).
Exercise: Show that B is a similar matrix to A.

Jacobia Similar Transform

Carefully choosing θ and appling Jacobi similar transform

$$
\begin{equation*}
B=J(p, q, \theta) A J(p, q, \theta)^{\top} \tag{12}
\end{equation*}
$$

eliminates $a_{p q}$ (and $a_{q p}$ because of symmetry).
Exercise: Show that B is a similar matrix to A.
Proof: Show that $J(p, q, \theta)$ is an orthogonal matrix. Indeed, let
$J=I_{n}-\left[\begin{array}{ll}e_{p} & e_{q}\end{array}\right] I_{2}\left[\begin{array}{l}e_{p}^{\top} \\ e_{q}^{\top}\end{array}\right]+\left[\begin{array}{ll}e_{p} & e_{q}\end{array}\right] O\left[\begin{array}{l}e_{p}^{\top} \\ e_{q}^{\top}\end{array}\right]$ where $O=\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]$.
Part I: First show that

$$
(O)^{\top} O=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]=\left[\begin{array}{cc}
c^{2}+s^{2} & 0 \\
0 & c^{2}+s^{2}
\end{array}\right]=I_{2} .
$$

Thus O is an orthogonal matrix.

Part II: Let $\bar{M} \stackrel{\text { def }}{=}\left[\begin{array}{ll}e_{p} & e_{q}\end{array}\right] M\left[\begin{array}{l}e_{p}^{\top} \\ e_{q}^{\top}\end{array}\right]$ for every $M \in \mathbb{R}^{2 \times 2}$.
This notation gives

$$
J=I-\bar{I}_{2}+\bar{O}
$$

Part I gives that $\bar{O}^{\top} \bar{O}=\bar{I}_{2}$.

Part II: Let $\bar{M} \stackrel{\text { def }}{=}\left[\begin{array}{ll}e_{p} & e_{q}\end{array}\right] M\left[\begin{array}{l}e_{p}^{\top} \\ e_{q}^{\top}\end{array}\right]$ for every $M \in \mathbb{R}^{2 \times 2}$.
This notation gives

$$
J=I-\bar{I}_{2}+\bar{O}
$$

Part I gives that $\bar{O}^{\top} \bar{O}=\bar{I}_{2}$. Consequently

$$
\begin{aligned}
J^{\top} J & =\left(I-\bar{I}_{2}+\bar{O}^{\top}\right)\left(I-\bar{I}_{2}+\bar{O}\right) \\
& =I-\bar{I}_{2}+\bar{I}_{2}+\left(I-\bar{I}_{2}\right) \bar{O}+\bar{O}^{\top}\left(I-\bar{I}_{2}\right) \\
& =I+\left(I-\bar{I}_{2}\right) \bar{O}+\bar{O}^{\top}\left(I-\bar{I}_{2}\right)
\end{aligned}
$$

Now note that

$$
\left(I-\bar{I}_{2}\right) \overline{O+I_{2}}=0=\left(\overline{O+I_{2}}\right)^{\top}\left(I-\bar{I}_{2}\right)
$$

because of disjoint support.

Choosing θ

$$
\begin{equation*}
B=J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{13}
\end{equation*}
$$

The p th and q th row and column of B gives

$$
\left[\begin{array}{ll}
b_{p p} & b_{p q} \tag{14}\\
b_{q p} & b_{q q}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]^{\top}\left[\begin{array}{ll}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right] .
$$

Choosing θ

$$
\begin{equation*}
B=J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{13}
\end{equation*}
$$

The p th and q th row and column of B gives

$$
\left[\begin{array}{ll}
b_{p p} & b_{p q} \tag{14}\\
b_{q p} & b_{q q}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]^{\top}\left[\begin{array}{ll}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

Equation (16) gives diagonal terms

$$
\begin{aligned}
& b_{p p}=\left[\begin{array}{ll}
c a_{p p}+s a_{q p} & c a_{p q}+s a_{q q}
\end{array}\right]\left[\begin{array}{c}
c \\
-s
\end{array}\right]=c^{2} a_{p p}-s^{2} a_{q q} . \\
& b_{q q}=\left[\begin{array}{ll}
-s a_{p p}+c a_{q p} & -s a_{p q}+c a_{q q}
\end{array}\right]\left[\begin{array}{l}
s \\
c
\end{array}\right]=c^{2} a_{q q}-s^{2} a_{p p} \\
& b_{p p}+b_{q q}=\left(s^{2}-1\right) a_{p p}-s^{2} a_{q q}+\left(s^{2}-1\right) a_{q q}-s^{2} a_{p p}=a_{p p}+a_{q q}
\end{aligned}
$$

Choosing θ

$$
\begin{equation*}
B=J(p, q, \theta) A J(p, q, \theta)^{\top} \tag{15}
\end{equation*}
$$

The p th and q th row and column of B gives

$$
\left[\begin{array}{ll}
b_{p p} & b_{p q} \tag{16}\\
b_{q p} & b_{q q}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]^{\top}\left[\begin{array}{ll}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

Equation (16) gives off-diagonal terms

$$
b_{p q}=c s\left(a_{p p}-a_{q q}\right)+\left(c^{2}-s^{2}\right) a_{p q} .
$$

Choose θ so that $b_{p q}=0$. Set to zero, divide through by $c^{2} a_{p q}$:

$$
\begin{equation*}
-t^{2}+2 K t+1=0 \tag{17}
\end{equation*}
$$

where $t=\tan (\theta)=c / s$ and $K=\frac{a_{p p}-a_{q q}}{2 a_{p q}}$.

Choosing θ

$$
\begin{equation*}
B=J(p, q, \theta) A J(p, q, \theta)^{\top} \tag{15}
\end{equation*}
$$

The p th and q th row and column of B gives

$$
\left[\begin{array}{ll}
b_{p p} & b_{p q} \tag{16}\\
b_{q p} & b_{q q}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]^{\top}\left[\begin{array}{ll}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

Equation (16) gives off-diagonal terms

$$
b_{p q}=c s\left(a_{p p}-a_{q q}\right)+\left(c^{2}-s^{2}\right) a_{p q} .
$$

Choose θ so that $b_{p q}=0$. Set to zero, divide through by $c^{2} a_{p q}$:

$$
\begin{equation*}
-t^{2}+2 K t+1=0 \tag{17}
\end{equation*}
$$

where $t=\tan (\theta)=c / s$ and $K=\frac{a_{p p}-a_{q q}}{2 a_{p q}}$. The solutions are

$$
t=K \pm \sqrt{K^{2}+1}
$$

In the Jacobi method choose the smallest root

$$
t=\min \left\{K+\sqrt{K^{2}+1}, K-\sqrt{K^{2}+1}\right\} .
$$

Choosing θ

Using

$$
t=\min \left\{K+\sqrt{K^{2}+1}, K-\sqrt{K^{2}+1}\right\}
$$

we can then recover c and s using that

$$
c=\frac{1}{\sqrt{1+t^{2}}}, \quad s=c t
$$

This gives us the following method for calculating c and s.
Algorithm: $(c, s)=$ Calculate Jacobi $\operatorname{Transform}(p, q, A)$
1: $K=\frac{a_{p p}-a_{q q}}{2 a_{p q}}$
2: $t=\min \left\{K+\sqrt{K^{2}+1}, K-\sqrt{K^{2}+1}\right\}$.
3: $c=\frac{1}{\sqrt{1+t^{2}}}$
4: $s=c t$

Applying the Jacobi transform iteratively to minimize the off diagonal elements of A gives the Jacobi Method.

Algorithm 3 Jacobi Method (ϵ, A)
1: Initialize: $k=0$ and $A^{0}=A$.
2: while off $\left(A^{k+1}\right)<\epsilon$ do
3:
4: \quad Choose (p, q) so that $a_{p q}=\max _{i \neq j}\left|a_{p q}\right|$
5:
6: $\quad(c, s)=$ Calculate Jacobi Transform $\left(\left(p, q, A^{k}\right)\right)$
7:
8: $\quad A^{k+1}=J(p, q, \theta)^{\top} A^{k} J(p, q, \theta)$.
9:

Now we prove it works!

Lemma

(1) Let

$$
O=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

Show that $O^{\top} O=O O^{\top}=1$, that is, O is an orthogonal matrix.
(2) Prove that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for compatible matrices.
(3) Let $\|A\|_{F}^{2}=\operatorname{Tr}\left(A^{\top} A\right)$ and let J be an orthogonal matrix. Prove that $\left\|J^{\top} A J\right\|_{F}^{2}=\|A\|_{F}^{2}$.
(9) Consider (12) and show that $b_{i i}=a_{i i}$ for $i=\{1, \ldots, n\} \backslash\{p, q\}$.
(3) Show that $J(p, q, \theta)$ is an orthogonal matrix.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The iterates A^{k} of the Jacobi method converges to a diagonal matrix at a rate of

$$
\operatorname{off}\left(A^{k}\right) \leq\left(1-\frac{2}{n(n-1)}\right)^{k} \operatorname{off}(A)
$$

Proof I: Given that $J \equiv J(p, q, \theta)$ is an orthogonal matrix, for $B=J^{\top} A J$ we have that

$$
\|A\|_{F}^{2}=\|B\|_{F}^{2}
$$

Applying the Frobenius norm to both sides gives

$$
\begin{equation*}
a_{p p}^{2}+a_{q q}^{2}+2 a_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}+2 b_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2} \tag{18}
\end{equation*}
$$

Proof II: Since $b_{p q}=0$ we have that

$$
\begin{aligned}
\operatorname{off}(B) & =\|B\|_{F}^{2}-\sum_{i=1}^{n} b_{i i}^{2} \\
& =\|A\|_{F}^{2}-\sum_{i=1, i \neq p, q}^{n} b_{i i}^{2}-b_{p p}^{2}-b_{q q}^{2} \\
& =\|A\|_{F}^{2}-\sum_{i=1, i \neq p, q}^{n} a_{i i}^{2}-b_{p p}^{2}-b_{q q}^{2} \\
& =\|A\|_{F}^{2}-\sum_{i=1}^{n} a_{i i}^{2}+a_{p p}^{2}+a_{q q}^{2}-b_{p p}^{2}-b_{q q}^{2} \\
& \stackrel{(18)}{=} \operatorname{off}(A)-2 a_{p q}^{2} .
\end{aligned}
$$

\Rightarrow The off diagonal terms are decreasing.

Proof III:

$$
\operatorname{off}(B)=\operatorname{off}(A)-2 a_{p q}^{2}
$$

Since $a_{p q}$ is the largest it is bigger than the average

$$
a_{p q}^{2} \geq \frac{\sum_{i \neq j} a_{i j}^{2}}{n(n-1)}=\frac{\operatorname{off}(A)}{n(n-1)}
$$

Thus finally

$$
\operatorname{off}(B) \leq \operatorname{off}(A)-\frac{2}{n(n-1)} \operatorname{off}(A)=\left(1-\frac{2}{n(n-1)}\right) \operatorname{off}(A)
$$

That is, applying k steps of Algorithm 3 we have that

$$
\operatorname{off}\left(A^{k}\right) \leq\left(1-\frac{2}{n(n-1)}\right)^{k} \operatorname{off}(A)
$$

R G., R \& P Richtárik, Randomized Iterative Methods for Linear Systems arXiv:1506.03296

