
Optimization and Numerical Analysis: Solving
Linear Systems

Robert Gower

September 20, 2020
1 / 47



Table of Contents

Notation, Norms and Sensitivity

Matrix Norms

Solving linear systems
Triangular systems
Gaussian Elimination
Gauss Jordan
Cholesky Decomposition

Eigenvalues and Singular Values
Jacobi method
Convergence of Jacobi

Bibliograpy

2 / 47



The Problem: Linear Systems
One of the most common and fundamental problems in numerical
computing is to solve a linear system:

Ax = b

where x ∈ Rn is unknown, A ∈ Rm×n, and b ∈ Rm are given.

A = (aij) =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
ad1 ad2 ad3 . . . adn

 .
I Normal matrices: AA> = A>A
I Symmetric matrices: (aij) = A = A> = (aji )
I Orthogonal matrices: AA> = A>A = I ,

where I = (δij) denotes the identity matrix.
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Notation, Norms and Sensitivity

What does it mean to be close to a solution?
First we generalize the notation of distance by defining a norm

Definition

We say that the function ‖·‖ : x ∈ Rn → R+ is a norm if it is

Point separating: ‖x‖ = 0⇔ x = 0,∀x ∈ E .

Subadditive: ‖x + y‖ ≤ ‖x‖+ ‖y‖,∀x , y ∈ E

Homogeneous: ‖ax‖ = |a|‖x‖,∀x ∈ E , a ∈ R.

The L2 norm: ‖x‖2
def
=

√√√√ n∑
i=1

x2i .

The L1 norm: ‖x‖1
def
=

n∑
i=1

|xi |.

Exercise: Show that ‖Vy‖2 = ‖y‖2 for every y ∈ Rn and
orthogonal matrix V ∈ Rn×n.
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Matrix Norms

We can define an induced norm over matrices by using vector
norms. Let ‖·‖ : Rn → R+ be a norm.

‖A‖ def
= sup

x∈Rn,x 6=0

‖Ax‖
‖x‖

.

In particular the L2 induced norm is

‖A‖2
def
= sup

x∈Rn,x 6=0

‖Ax‖2
‖x‖2

.

Exercise

Show that all induced norms satisfy
‖Ax‖ ≤ ‖A‖‖x‖,∀x ∈ Rn,

and are submultiplicative. Also show that for B ∈ Rn×n we have
‖AB‖2 = ‖A‖2‖B‖2.
‖O‖2 = 1, ∀O ∈ Rn×n orthonormal matrix.
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Matrix Norms

Other Matrix Norms and Operators
If A ∈ Rn×n is a square matrix we can define:

Trace: Tr (A)
def
=

n∑
i=1

aii

Frobenius norm: ‖A‖E
def
=

√√√√ n,m∑
i ,j=1

a2ij =
√

Tr (A>A)

L1 norm: ‖A‖∞
def
= sup

x∈Rn,x 6=0

‖Ax‖1
‖x‖1

.

Exercise

Let A,B ∈ Rn×n and let O ∈ Rn×n be an orthogonal matrix. Prove

Tr (AB) = Tr (BA)

‖O>AO‖E = ‖A‖E .
6 / 47



Matrix Norms

Can we get close to a solution Ax = b?
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31

 with solution x =


1
1
1
1


Let us say we find a solution x ′ that is close in the sense that

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32.1
22.9
33.1
30.9

 with solution x ′ =


9.2
−12.6

4.5
−1.1


An error on right hand side b of the order of 1/300 has incurred a
significant error in the solution x ′ of an order of 10.
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Matrix Norms

This large error is due to the condition number of A. In algebra

A(x + δx) = b + δb. (1)

How big can ‖δx‖ be? Since we know Ax = b we have that

Aδx = δb.

Assuming A is invertible and left multiplying A−1 on both sides

δx = A−1δb ⇒ ‖δx‖ ≤ ‖A−1‖‖δb‖.
Furthermore ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ and thus

1

‖x‖
≤ ‖A‖ 1

‖b‖
.

Putting the two above equations together gives

‖δx‖
‖x‖

≤ ‖A−1‖‖A‖︸ ︷︷ ︸
def
=cond(A)

‖δb‖
‖b‖

.
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Matrix Norms

‖δx‖
‖x‖

≤ ‖A−1‖‖A‖︸ ︷︷ ︸
def
=cond(A)

‖δb‖
‖b‖

.

Definition

We call cond(A) = ‖A‖‖A−1‖ the condition number of A.

Similarly, small errors in A can also introduce large changes in x
and this also depends on the condition number through

‖δx‖
‖x + δx‖

≤ ‖A−1‖‖A‖︸ ︷︷ ︸
def
=cond(A)

‖δA‖
‖A‖

,

where δA ∈ Rm×n is the error in A.
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Matrix Norms

Properties of the Condition Number

Theorem
I cond(A) ≥ 1

I cond(A) = cond(A−1)

I cond(αA) =cond(A), for every α 6= 0.

I cond(O) =1 for every orthonormal matrix O ∈ Rn×n.
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Solving linear systems

Triangular systems

First we solve the easiest system: Triangular systems. For instance
lower triangular Ax = b where

A =


a11 a12 . . . a1n−1 a1n
0 a22 . . . a2n−1 a2n
...

...
. . .

...
...

. . . an−1n−1 an−1n
0 0 . . . 0 ann

 .
In other words

n∑
j=i

aijxj = bi , for i = 1, . . . , n. (2)

Two efficient algorithms for solving triangular linear systems:
forward substitution and backward substitution.
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Solving linear systems

Triangular systems

Backwards substitution method: Starting with i = n we have

annxn = bn.

Assuming that ann 6= 0 (otherwise there is no solution) we have
that

xn = bn/ann.

For i < n, separating out the xi term in (2) we have

n∑
j=i+1

aijxj + aiixi = bi . (3)

Assuming aii 6= 0 and isolating xi gives

xi =

bi −
n∑

j=i+1

aijxj

aii
. (4)
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Solving linear systems

Triangular systems

Algorithm 1 Backward substitution

for i = n, . . . , 1 do

xi =
bi −

∑n
j=i+1 aijxj

aii
.

Exercise

How many floating point operations does backward substitution
cost?

Proof: For a fixed i there are n − (i + 1) summations and
multiplications in

∑n
j=i+1 aijxj . Consequently there are 2(n − i)

operations to compute
bi−

∑n
j=i+1 aijxj
aii

. Summing up over i = 1, . . . n
we have a total of operations given by

n∑
i=1

2(n − i) = 2n2 − n(n + 1) = n(n − 1).
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Solving linear systems

Triangular systems

Exercise

What can we do if we find aii = 0? What does it say about this
triangular system if aii = 0?

Conclusion: Triangular linear systems are easy to solve.

Idea: Transform all linear systems into triangular systems?
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Solving linear systems

Gaussian Elimination

Can we transform A into an upper triangular matrix?

Yes, using invertible operations.

Theorem (Invertible operations)

Let P ∈ Rn×n be an invertible matrix. Show that

{x : Ax = b} = {x : PAx = Pb}

Gaussian Elimination Idea: Use sequence of invertible operations
P1, . . . ,Pk such that

Pk · · ·P2P1A = U.

Then solve
Ux = Pk · · ·P2P1b.
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Solving linear systems

Gaussian Elimination

Example of Gaussian Elimination
Consider the linear system

2x1 x2 −3x3 = 5
4x1 x2 5x3 = −1

10x1 −7x2 13x3 = −3

We want to isolate x1 on the top row.

Subtracting two times the
first row to the second row (R2 ← R2 − 2R1) gives

2x1 x2 −3x3 = 5
−x2 11x3 = −11

10x1 −7x2 13x3 = −3

Subtracting five times the first row to the third row
(R3 ← R3 − 5R1) gives

2x1 x2 −3x3 = 5
−x2 11x3 = −11
−12x2 28x3 = −28
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Solving linear systems

Gaussian Elimination

2x1 x2 −3x3 = 5
−x2 11x3 = −11
−12x2 28x3 = −28

Now isolate x2 on the second row by R3 ← R3 + 12R2 giving

2x1 x2 −3x3 = 5
−x2 11x3 = −11

−104x3 = 104

Now we have an upper triangular system! Easy to solve.
But what were these operations, e.g. R3 ← R3 + 12R2? Are they
invertible operations? YES
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Solving linear systems

Gaussian Elimination

Let A0 = A and let Ak = Pk−1A
k−1 where akij = 0 for 1 ≤ j ≤ k and i ≥ j + 1.

To generate Ak+1 from Ak we need to perform a row operation.

1 0 0 . . . 0 0

0 1 0
... 0 0

... 1 0 0
...

...
... − akk+1k

/
akkk 1

. . .
...

...
...

...
...

...
...

0 0 − aknk
/
akkk . . . 0 1





ak11 ak12 ak13 . . . ak1n

0
. . .

...
... ak2n

... 0 akkk
...

...
... 0 akk+1k . . . akk+1n
...

...
...

...
...

0 0 aknk . . . aknn



=



ak11 ak12 ak13 . . . ak1(k+1) . . . ak1n

0
. . .

... . . . ak2(k+1) . . . ak2n
... 0 akkk

...
... . . .

...
... 0 0

... ak+1
(k+1)(k+1) . . . ak+1

(k+1)n

...
...

...
...

...
0 0 0 . . . ak+1

n(k+1) . . . ak+1
nn
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Solving linear systems

Gaussian Elimination

These row operations can be represented in a much more compact.

Pk = I − vke
>
k , (5)

where ek = (0, · · · , 1
kth
, 0, · · · , 0) ∈ Rn is the kth unit coordinate

vector and vk = (0, . . . , 0,
akk+1k

akkk
(k+1)th

, . . . ,
aknk
akkk

). With this notation we

can write
PkA

k = Ak+1.

Also these row operations are invertible!

Lemma

Let Pk be the kth row operation. It follows

1 P−1k = I + vke
>
k . (Invertible)

2 P−1k−1P
−1
k = I + vke

>
k + vk−1e

>
k−1 (Compositions are lower

triangular)
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Solving linear systems

Gaussian Elimination

Lemma

Let Pk be the kth row operation. It follows

1 P−1k = I + vke
>
k .

2 P−1k−1P
−1
k = I + vke

>
k + vk−1e

>
k−1

Proof.
1 By direct computation we have

(I + vke
>
k )(I − vke

>
k ) = I + vke

>
k − vke

>
k − vke

>
k vke

>
k = I − vke

>
k vke

>
k .

The support of vk does not intersect with the support of ek thus e>k vk = 0.

2 Again by computation

P−1
k−1P

−1
k = (I+vk−1e

>
k−1)(I+vke

>
k ) = I+vk−1e

>
k−1+vke

>
k +vk−1(e

>
k−1vk )e

>
k .

This inner product e>k−1vk is between two vector with disjoint support, thus

e>k−1vk = 0 and the result follows.
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Solving linear systems

Gaussian Elimination

Gaussian Elimination overview

Gaussian elimination applies n row operations until the matrix is
upper triangular

PnPn−1 · · ·P1A = U. (6)

Then solves the upper triangular system

Ux = PnPn−1 · · ·P1b.

The cost of applying Pk is (n − k − 1)n consequently the cost of
performing (6) is

n∑
k=1

(n − k − 1)n = O(n3).
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Solving linear systems

Gaussian Elimination

Choosing a Pivot

Three strategies

I Default: Choosing akk as the pivot.

I Partial Pivot: On column k we choosing the element below
the diagonal with the largest absolute value

ipivot = arg max
i≥k
|aik |.

I Total Pivot: Choose the largest element below or to the right
of the diagonal

(ipivot, jpivot) = arg max
i ,j≥k
|aij |.

Both Partial and Total pivoting improves numerical stability of
Gaussian Elimination.
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Solving linear systems

Gaussian Elimination

Gaussian Elimination gives a Triangular Decomposition

Since by Lemma 6 the matrix Pk is invertible we have that the
product of row operations in (6) is also invertible with

(PnPn−1 · · ·P1)−1 = P−11 · · ·P
−1
n−1P

−1
n

def
= L. (7)

Again by Lemma 6 and induction we have that L is lower
triangular. Left multiplying (6) by L we have

A = LU. (8)

This is known as the LU decomposition. This decomposition can
be used to efficiently solve multiple linear systems

Ax i = bi , for = 1, . . . , 10.
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Solving linear systems

Gaussian Elimination

Each system Ax = bi can be solved with two triangular solves

First lower triangular solve : Ly = bi
Second upper triangular solve : Ux i = y

The two together give: Ly = b ⇔ L Ux i︸︷︷︸
y

= bi ⇔ Ax i = bi .

Thus cost of solving each system if O(n2).

Theorem

Let A ∈ Rn×n be an invertible matrix such that the submatrix

A1:k,1:k
def
=

a11 . . . a1k
...

...
...

ak1 . . . akk

 is invertible for k = 1, . . . , n.

Then the LU decomposition exists. If Lii = 1 is enforced, the
decomposition is unique.
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Solving linear systems

Gauss Jordan

Gauss Jordan Method for Inversion
We can use Gaussian elimination to compute the inverse of A.
Setup the systems

Ax i = ei , for i = 1, . . . , n.

In other words
AX

def
= A[x1, . . . , xn] = I .

Thus the solution is X = A−1.
Apply row operations until A is the identity matrix. That is

Pk · · ·P1A = I .

Consequently

Pk · · ·P1AX = X = Pk · · ·P1I = A−1.

Thus apply the same operations simultaneously to the identity
matrix to get A−1.
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Solving linear systems

Gauss Jordan

Example of Gauss Jordan (and Partial Pivot)

Let us invert the following matrix

x1 −3x2 14x3 = 1 0 0
x1 −2x2 10x3 = 0 1 0
−2x1 4x2 −19x3 = 0 0 1

Using a partial pivot gives (R1 ↔ R3)

−2x1 4x2 −19x3 = 0 0 1
x1 −2x2 10x3 = 0 1 0
x1 −3x2 14x3 = 1 0 0
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Solving linear systems

Gauss Jordan

−2x1 4x2 −19x3 = 0 0 1
x1 −2x2 10x3 = 0 1 0
x1 −3x2 14x3 = 1 0 0

Now isolating x1 using row operations

R2 ← R2 + 1
2R1 and

R3 ← R3 + 1
2R1 gives

−2x1 4x2 −19x3 = 0 0 1
0 0 1/2x3 = 0 1 1/2
0 −x2 9/2x3 = 1 0 1/2

Second phase: Using a total pivot gives C2 ↔ C3 and R2 ↔ R3

−2x1 −19x3 4x2 = 0 0 1
0 9/2x3 −x2 = 1 0 1/2
0 1/2x3 0 = 0 1 1/2
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Solving linear systems

Gauss Jordan

−2x1 −19x3 4x2 = 0 0 1
0 9/2x3 −x2 = 1 0 1/2
0 1/2x3 0 = 0 1 1/2

Isolating x3 gives

−2x1 0 4x2 = 38/9 0 28/9
0 9/2x3 −x2 = 1 0 1/2
0 0 1/9x2 = −1/9 1 4/9

Isolating x2 gives

−2x1 0 0 = 4 2 4
0 9/2x3 0 = 0 9 9/2
0 0 1/9x2 = −1/9 1 4/9
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Solving linear systems

Gauss Jordan

−2x1 0 0 = 4 2 4
0 9/2x3 0 = 0 9 9/2
0 0 1/9x2 = −1/9 1 4/9

Finally scaling the rows : R1 ← −1/2R1

R2 ← 2/9R2

R3 ← 9R3

and switching R2 ↔ R3 gives

x1 0 0 = −2 −1 −2
0 0 x2 = −1 9 4
0 x3 0 = 0 2 1

Consequently

A−1 =

−2 −1 −2
−1 9 4
0 2 1
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Solving linear systems

Cholesky Decomposition

Cholesky Decomposition
We say a matrix is positive definite if it is symmetric and if

v>Av > 0, ∀v 6= 0. (9)

For positive definite matrices we can efficiently compute an LU
decomposition with L = U>.

Theorem

Cholesky theorem Let A ∈ Rn×n be a symmetric positive definite
matrix. There exists a lower triangular matrix B ∈ Rn×n such that
A = BB>.

Proof.

By induction in next slides. Induction hypothesis: If rows 1 to j − 1
of B exist, then row j exists.
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Solving linear systems

Cholesky Decomposition

First we write

A =


b11 0 . . . 0

b21 b22 0
...

...
...

. . .
...

bn1 bn2 . . . bnn



b11 b21 . . . bn1

0 b22 . . .
...

...
...

. . .
...

0 0 . . . bnn


Base case 1st row: From the first column of the above we have

a:1 =


a11
a21

...
an1

 = b11


b11
b21

...
bn1

 = b11b:1.

The first line gives: b211 = a11 thus b11 =
√
a11. This gives the row

of B.

Now note that aij = b>i : bj :.
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Solving linear systems

Cholesky Decomposition

Let

BB> =


− b>1: −
− b>2: −

...
− b>n: −


 | | . . . |
b1: b2: . . . bn:
| | . . . |


Induction: Suppose we know the rows 1 to j − 1 of B. Thus we
know b1: to bj−1:. To calculate bj : we use that aij = 〈bi :, bj :〉 thus

a:j =
n∑

i=1

〈bj :, bi :〉 ei =
n∑

i=1

min{j ,i}∑
k=1

bjkbikei =

min{j ,i}∑
k=1

bjkb:k .

Isolating bj : gives

bjjb:j = a:j −
j−1∑
k=1

bjkb:k
def
= v .
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Solving linear systems

Cholesky Decomposition

Using bjjb:j = v we have that bjj =
√
vj =

√
ajj −

∑j−1
k=1 b

2
jk .

Therefore

b:j =
v
√
vj

=
a:j −

∑j−1
k=1 bjkb:k√
bjj

.

This completes the induction and provides the following algorithm

Algorithm 2 (B) =Cholesky Decomposition(A)

1: for j = 1, . . . , n do
2: Calculate v = a:j −

∑j−1
k=1 bjkb:k

3: Set b:j = v/
√
vj

Exercise

Show that the number of flops of the Cholesky algorithm is
proportional to O(n3).
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Solving linear systems

Cholesky Decomposition

Solution: The summation in computing v in

v = a:j −
j−1∑
k=1

bjkb:k

is where most of the effort goes. Since there are k elements in b:k
it costs k to add on bjkb:k .

n∑
j=1

j−1∑
k=1

k =
n∑

j=1

(j − 1)j

2

≤
n∑

j=1

j2

2
≤ 1

2

∫ n

x=0
x2dx

=
x3

6

∣∣∣∣
n

− x3

6

∣∣∣∣
0

=
n3

6
.

Using the Cholesky decomposition, we can uncover many
properties of positive definite matrices.
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Eigenvalues and Singular Values

Theorem

Let A be a positive definite matrix. It follows that

1 The Cholesky decomposition B>B = A always exists. We can
prove this by construction. That is, using induction we can
show that Algorithm 2 works. This boils down to showing
that vj 6= 0 does not occur.

2 det(A) = (b1 · · · bn)2. Indeed, using properties of the
determinant we have that

det(A) = det(B>B) = det(B>)det(B)

= det(B)2 = (b11 · · · bnn)2.
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Eigenvalues and Singular Values

Eigenvalues are important
Watch the collapse of Tacoma Narrows Bridge as it resonates in
the wind. This resonance is related to the smallest eigenvalue of
the structural equations:
https://www.youtube.com/watch?v=XggxeuFDaDU

We say that x 6= 0 ∈ Rn is an eigenvector with associated
eigenvalue λ ∈ R of A if

Ax = λx ⇔ (A− λI )x = 0.

Since x 6= 0 shows that A− λI is not invertible and consequently

det(A− λI ) = 0. (10)

Compute all eigenvalues by finding roots of this n dim polynomial.

Theorem (Abel–Ruffini theorem)

There is no exact algebraic formula for the roots of a polynomial
with degree 5 or more.
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Eigenvalues and Singular Values

Definition (Eigenpairs and Spectrum)

Let A ∈ Rn×n, x ∈ Rn and λ ∈ C. We say that x is an eigenvector
and λ an eigenvalue of A if x 6= 0 and

Ax = λx .

We also refer to (x , λ) as an eigenpair of A. We say λ(A) ⊂ C is
the spectrum of A if λ(A) contains all the eigenvalues of A, that is

λ(A)
def
= {λ | ∃x ∈ Rn such that x 6= 0, Ax = λx}.

We say that A is invertible if 0 6∈ λ(A).
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Eigenvalues and Singular Values

Exercise

If A = diag (a1, . . . , an) then

λ(A) = {a1, . . . , an}.

Exercise

If O ∈ Rn×n is an orthogonal matrix then every λ ∈ λ(O) is such
that |λ| = 1.

Proof.

Let (x , λ) be such that Ox = λx . If follows that

〈x , x〉 =
〈
x ,O>Ox

〉
= 〈Ox ,Ox〉 = ‖Ox‖22 = |λ|2 〈x , x〉 .

Dividing by 〈x , x〉 on both sides gives the result.

Maybe we should transform A into diagonal or orthogonal?
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Eigenvalues and Singular Values

Definition (Similarity transform)

We say that A ∈ Rn×n is similar to B ∈ Rn×n if there exists
P ∈ Rn×n invertible such that

A = P−1BP.

We say that A is diagonalizable when B is a diagonal matrix.

Lemma

If A,B ∈ Rn×n are similar matrices then λ(A) = λ(B).

Proof: Consider λ ∈ λ(A). Then there exists x ∈ Rn such that
Ax = λx . By the similarity of A and B we have that
P−1BPx = λx . Left multiplying by P shows that λ ∈ λ(B) with
associated eigenvector Px .
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Eigenvalues and Singular Values

Can we transform A into diagonal or orthogonal?

Theorem (Spectral Theorem for symmetric matrices)

Symmetric matrices are diagonalizable. That is, let A ∈ Rn×n with
A = A>. Then there exists an orthogonal matrix V ∈ Rn×n and
Λ = diag (λ1, . . . , λn) ∈ Rn×n such that

A = VΛV>.

Proof: See Theorem 8.1.1 and proof in Matrix
Computations, Golub & Van Loan 2013.
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Eigenvalues and Singular Values

Theorem (Singular Value Decomposition)

Let A ∈ Rm×n. There exists orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n such that

U>AV = Σ = diag(σ1, . . . , σp), where p = min{n, m},

and where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Proof: Not so easy. See Theorem 2.4.1 in the book Matrix
Computations, Golub & Van Loan 2013.
Common notation:

σmax(A) = σ1 = max
i=1,...,p

σi .

σmin(A) = σp = min
i=1,...,p

σi .
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Eigenvalues and Singular Values

Jacobi method

Let A ∈ Rn×n be a symmetric matrix.

Spectral Theorem ⇒ there exists V ∈ Rn×n and diagonal matrix
Λ = diag(λ1, . . . , λn) such that

A = VΛV> ⇒ V>AV = Λ.

Idea: Transform A into diagonal matrix using similarity transforms.
This gives the Jacobi method.

Notation: Id ∈ Rd×d is the d × d identity matrix. Thus

I2 =

[
1 0
0 1

]
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Eigenvalues and Singular Values

Jacobi method

Jacobi Method

Main idea: Iteratively minimize off–diagonal elements.
Offset: The sum of the squares of te off-diagonals element:

off(A) =
n∑

i=1

∑
j 6=i

a2ij = ‖A‖2F −
n∑

i=1

a2ii . (11)

Iteration:

1 Find largest off diagonal element

apq = max
1≤i<j≤n

|aij |.

2 Replace apq by a zero by using similarity transformations.

3 Use the Givens/Jacobi Transform for this.
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Eigenvalues and Singular Values

Jacobi method

Givens/Jacobi Transform

J(p, q, θ) =

p q

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s . . . 0
...

...
. . .

...
...

0 . . . −s . . . c . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1


p

q

Where c = cos(θ) and s = sin(θ).

Outer product version:

J(p, q, θ) = In + (c − 1)epe
>
p + (c − 1)eqe

>
q + sepe

>
q − seqe

>
p

= In −
[
ep eq

]
I2

[
e>p
e>q

]
+
[
ep eq

] [ c s
−s c

] [
e>p
e>q

]
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Eigenvalues and Singular Values

Jacobi method

Jacobia Similar Transform

Carefully choosing θ and appling Jacobi similar transform

B = J(p, q, θ)AJ(p, q, θ)>, (12)

eliminates apq (and aqp because of symmetry).
Exercise: Show that B is a similar matrix to A.

Proof: Show that J(p, q, θ) is an orthogonal matrix. Indeed, let

J = In −
[
ep eq

]
I2

[
e>p
e>q

]
+
[
ep eq

]
O

[
e>p
e>q

]
where O =

[
c s
−s c

]
.

Part I: First show that

(O)>O =

[
c −s
s c

] [
c s
−s c

]
=

[
c2 + s2 0

0 c2 + s2

]
= I2.

Thus O is an orthogonal matrix.
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Eigenvalues and Singular Values

Jacobi method

Part II: Let M
def
=
[
ep eq

]
M

[
e>p
e>q

]
for every M ∈ R2×2.

This notation gives
J = I − I 2 + O.

Part I gives that O
>
O = I 2.

Consequently

J>J = (I − I 2 + O
>

)(I − I 2 + O)

= I − I 2 + I 2 + (I − I 2)O + O
>

(I − I 2).

= I + (I − I 2)O + O
>

(I − I 2)

Now note that

(I − I 2)O + I2 = 0 = (O + I2)>(I − I 2)

because of disjoint support.
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Eigenvalues and Singular Values

Jacobi method

Choosing θ
B = J(p, q, θ)AJ(p, q, θ)>, (13)

The pth and qth row and column of B gives[
bpp bpq
bqp bqq

]
=

[
c s
−s c

]> [
app apq
aqp aqq

] [
c s
−s c

]
. (14)

Equation (16) gives diagonal terms

bpp =
[
capp + saqp capq + saqq

] [ c
−s

]
= c2app − s2aqq.

bqq =
[
−sapp + caqp −sapq + caqq

] [s
c

]
= c2aqq − s2app

bpp + bqq = (s2 − 1)app − s2aqq + (s2 − 1)aqq − s2app = app + aqq
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Eigenvalues and Singular Values

Jacobi method

Choosing θ
B = J(p, q, θ)AJ(p, q, θ)>, (15)

The pth and qth row and column of B gives[
bpp bpq
bqp bqq

]
=

[
c s
−s c

]> [
app apq
aqp aqq

] [
c s
−s c

]
. (16)

Equation (16) gives off-diagonal terms

bpq = cs(app − aqq) + (c2 − s2)apq.

Choose θ so that bpq = 0. Set to zero, divide through by c2apq :

− t2 + 2Kt + 1 = 0, (17)

where t = tan(θ) = c/s and K =
app−aqq
2apq

.

The solutions are

t = K ±
√
K 2 + 1.

In the Jacobi method choose the smallest root

t = min{K +
√
K 2 + 1,K −

√
K 2 + 1}.

41 / 47



Eigenvalues and Singular Values

Jacobi method

Choosing θ
B = J(p, q, θ)AJ(p, q, θ)>, (15)

The pth and qth row and column of B gives[
bpp bpq
bqp bqq

]
=

[
c s
−s c

]> [
app apq
aqp aqq

] [
c s
−s c

]
. (16)

Equation (16) gives off-diagonal terms

bpq = cs(app − aqq) + (c2 − s2)apq.

Choose θ so that bpq = 0. Set to zero, divide through by c2apq :

− t2 + 2Kt + 1 = 0, (17)

where t = tan(θ) = c/s and K =
app−aqq
2apq

. The solutions are

t = K ±
√
K 2 + 1.

In the Jacobi method choose the smallest root

t = min{K +
√

K 2 + 1,K −
√
K 2 + 1}.

41 / 47



Eigenvalues and Singular Values

Jacobi method

Choosing θ

Using

t = min{K +
√

K 2 + 1,K −
√
K 2 + 1},

we can then recover c and s using that

c =
1√

1 + t2
, s = ct.

This gives us the following method for calculating c and s.

Algorithm: (c, s) = Calculate Jacobi Transform(p, q,A)

1: K =
app−aqq
2apq

2: t = min{K +
√
K 2 + 1,K −

√
K 2 + 1}.

3: c = 1√
1+t2

4: s = ct
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Eigenvalues and Singular Values

Convergence of Jacobi

Applying the Jacobi transform iteratively to minimize the off
diagonal elements of A gives the Jacobi Method.

Algorithm 3 Jacobi Method(ε,A)

1: Initialize: k = 0 and A0 = A.
2: while off(Ak+1) < ε do
3:

4: Choose (p, q) so that apq = maxi 6=j |apq|
5:

6: (c , s) =Calculate Jacobi Transform((p, q,Ak))
7:

8: Ak+1 = J(p, q, θ)>AkJ(p, q, θ).
9:

Now we prove it works!
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Eigenvalues and Singular Values

Convergence of Jacobi

Lemma
1 Let

O =

[
c s
−s c

]
.

Show that O>O = OO> = I , that is, O is an orthogonal
matrix.

2 Prove that Tr (AB) = Tr (BA) for compatible matrices.

3 Let ‖A‖2F = Tr
(
A>A

)
and let J be an orthogonal matrix.

Prove that ‖J>AJ‖2F = ‖A‖2F .
4 Consider (12) and show that bii = aii for

i = {1, . . . , n} \ {p, q}.
5 Show that J(p, q, θ) is an orthogonal matrix.
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Eigenvalues and Singular Values

Convergence of Jacobi

Theorem

Let A ∈ Rn×n be a symmetric matrix. The iterates Ak of the
Jacobi method converges to a diagonal matrix at a rate of

off(Ak) ≤
(

1− 2

n(n − 1)

)k

off(A).

Proof I: Given that J ≡ J(p, q, θ) is an orthogonal matrix, for
B = J>AJ we have that

‖A‖2F = ‖B‖2F .

Applying the Frobenius norm to both sides gives

a2pp + a2qq + 2a2pq = b2pp + b2qq + 2b2pq = b2pp + b2qq. (18)
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Eigenvalues and Singular Values

Convergence of Jacobi

Proof II: Since bpq = 0 we have that

off(B) = ‖B‖2F −
n∑

i=1

b2ii

= ‖A‖2F −
n∑

i=1,i 6=p,q

b2ii − b2pp − b2qq

= ‖A‖2F −
n∑

i=1,i 6=p,q

a2ii − b2pp − b2qq

= ‖A‖2F −
n∑

i=1

a2ii + a2pp + a2qq − b2pp − b2qq

(18)
= off(A)− 2a2pq.

⇒ The off diagonal terms are decreasing.
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Eigenvalues and Singular Values

Convergence of Jacobi

Proof III:
off(B) = off(A)− 2a2pq.

Since apq is the largest it is bigger than the average

a2pq ≥
∑

i 6=j a
2
ij

n(n − 1)
=

off(A)

n(n − 1)
.

Thus finally

off(B) ≤ off(A)− 2

n(n − 1)
off(A) =

(
1− 2

n(n − 1)

)
off(A).

That is, applying k steps of Algorithm 3 we have that

off(Ak) ≤
(

1− 2

n(n − 1)

)k

off(A).
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