Optimization and Numerical Analysis: Solving Linear Systems

Robert Gower

September 20, 2020

Table of Contents

Notation, Norms and Sensitivity

Matrix Norms

Solving linear systems

Triangular systems

Gaussian Elimination

Gauss Jordan

Cholesky Decomposition

Eigenvalues and Singular Values

Jacobi method

Convergence of Jacobi

Bibliograpy

The Problem: Linear Systems

One of the most common and fundamental problems in numerical computing is to solve a linear system:

$$Ax = b$$

where $x \in \mathbb{R}^n$ is *unknown*, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$ are given.

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{d1} & a_{d2} & a_{d3} & \dots & a_{dn} \end{bmatrix}.$$

- Normal matrices: $AA^{\top} = A^{\top}A$
- Symmetric matrices: $(a_{ij}) = A = A^{\top} = (a_{ji})$
- ▶ Orthogonal matrices: $AA^{\top} = A^{\top}A = I$,

where $I = (\delta_{ij})$ denotes the identity matrix.

What does it mean to be close to a solution?

First we generalize the notation of distance by defining a norm

Definition

We say that the function $\|\cdot\|: x \in \mathbb{R}^n \to R_+$ is a norm if it is

Point separating: $||x|| = 0 \Leftrightarrow x = 0, \forall x \in E$.

Subadditive: $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$

Homogeneous: $||ax|| = |a|||x||, \forall x \in E, a \in \mathbb{R}.$

The L2 norm:
$$\|x\|_2 \stackrel{\text{def}}{=} \sqrt{\sum_{i=1}^n x_i^2}$$
.

The L1 norm: $\|x\|_1 \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i|$.

The L1 norm:
$$||x||_1 \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i|$$
.

What does it mean to be close to a solution?

First we generalize the notation of distance by defining a norm

Definition

We say that the function $\|\cdot\|: x \in \mathbb{R}^n \to R_+$ is a norm if it is

Point separating: $||x|| = 0 \Leftrightarrow x = 0, \forall x \in E$.

Subadditive: $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$

Homogeneous: $||ax|| = |a|||x||, \forall x \in E, a \in \mathbb{R}.$

The L2 norm:
$$||x||_2 \stackrel{\text{def}}{=} \sqrt{\sum_{i=1}^n x_i^2}$$
.
The L1 norm: $||x||_1 \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i|$.

The L1 norm:
$$||x||_1 \stackrel{\text{def}}{=} \sum_{i=1}^{n} |x_i|$$
.

Exercise: Show that $||Vy||_2 = ||y||_2$ for every $y \in \mathbb{R}^n$ and orthogonal matrix $V \in \mathbb{R}^{n \times n}$.

We can define an *induced* norm over matrices by using vector norms. Let $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}_+$ be a norm.

$$||A|| \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||}{||x||}.$$

In particular the L2 induced norm is

$$||A||_2 \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_2}{||x||_2}.$$

Exercise

Show that all induced norms satisfy

$$||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n,$$

and are submultiplicative. Also show that for $B \in \mathbb{R}^{n \times n}$ we have

$$||AB||_2 = ||A||_2 ||B||_2.$$

$$||O||_2 = 1, \quad \forall O \in \mathbb{R}^{n \times n}$$
 orthonormal matrix.

Other Matrix Norms and Operators

If $A \in \mathbb{R}^{n \times n}$ is a square matrix we can define:

Trace:
$$\operatorname{Tr}(A) \stackrel{\text{def}}{=} \sum_{i=1}^{n} a_{ii}$$

Frobenius norm:
$$||A||_E \stackrel{\text{def}}{=} \sqrt{\sum_{i,j=1}^{n,m} a_{ij}^2} = \sqrt{\text{Tr}(A^\top A)}$$

L1 norm:
$$||A||_{\infty} \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_1}{||x||_1}$$
.

Exercise

Let $A, B \in \mathbb{R}^{n \times n}$ and let $O \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Prove

$$Tr(AB) = Tr(BA)$$

$$||O^{\top}AO||_{E} = ||A||_{E}.$$

Can we get close to a solution Ax = b?

$$\begin{bmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 32 \\ 23 \\ 33 \\ 31 \end{bmatrix} \text{ with solution } x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Let us say we find a solution x' that is *close* in the sense that

$$\begin{bmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 32.1 \\ 22.9 \\ 33.1 \\ 30.9 \end{bmatrix}$$
 with solution $x' = \begin{bmatrix} 9.2 \\ -12.6 \\ 4.5 \\ -1.1 \end{bmatrix}$

An error on right hand side b of the order of 1/300 has incurred a significant error in the solution x' of an order of 10.

This large error is due to the *condition number* of A. In algebra

$$A(x + \delta x) = b + \delta b. \tag{1}$$

How big can $\|\delta x\|$ be? Since we know Ax = b we have that

$$A\delta x = \delta b$$
.

Assuming A is invertible and left multiplying A^{-1} on both sides

$$\delta x = A^{-1}\delta b \quad \Rightarrow \quad \|\delta x\| \le \|A^{-1}\| \|\delta b\|.$$

Furthermore $||b|| = ||Ax|| \le ||A|| ||x||$ and thus

$$\frac{1}{\|x\|} \le \|A\| \frac{1}{\|b\|}.$$

Putting the two above equations together gives

$$\frac{\|\delta x\|}{\|x\|} \leq \underbrace{\|A^{-1}\|\|A\|}_{\stackrel{\text{def}}{=}\mathsf{cond}(A)} \frac{\|\delta b\|}{\|b\|}.$$

$$\frac{\|\delta x\|}{\|x\|} \leq \underbrace{\|A^{-1}\|\|A\|}_{\stackrel{\text{def}}{=}\mathsf{cond}(A)} \frac{\|\delta b\|}{\|b\|}.$$

Definition

We call $cond(A) = ||A|| ||A^{-1}||$ the *condition number* of A.

Similarly, small errors in A can also introduce large changes in x and this also depends on the condition number through

$$\frac{\|\delta x\|}{\|x+\delta x\|} \leq \underbrace{\|A^{-1}\| \|A\|}_{\stackrel{\text{def}}{=} \mathsf{cond}(A)} \frac{\|\delta A\|}{\|A\|},$$

where $\delta A \in \mathbb{R}^{m \times n}$ is the error in A.

Properties of the Condition Number

Theorem

- ightharpoonup cond(A) ≥ 1
- ightharpoonup cond(A) = cond(A⁻¹)
- ▶ $cond(\alpha A) = cond(A)$, for every $\alpha \neq 0$.
- ▶ cond(O) = 1 for every orthonormal matrix $O \in \mathbb{R}^{n \times n}$.

First we solve the easiest system: Triangular systems. For instance lower triangular Ax = b where

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n-1} & a_{1n} \\ 0 & a_{22} & \dots & a_{2n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ & & \dots & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & \dots & 0 & a_{nn} \end{bmatrix}.$$

In other words

$$\sum_{j=i}^{n} a_{ij} x_j = b_i, \quad \text{for } i = 1, \dots, n.$$
 (2)

Two efficient algorithms for solving triangular linear systems: **forward substitution** and **backward substitution**.

Backwards substitution method: Starting with i = n we have

$$a_{nn}x_n=b_n.$$

Assuming that $a_{nn} \neq 0$ (otherwise there is no solution) we have that

$$x_n = b_n/a_{nn}$$
.

For i < n, separating out the x_i term in (2) we have

$$\sum_{j=i+1}^{n} a_{ij} x_j + a_{ii} x_i = b_i.$$
 (3)

Assuming $a_{ii} \neq 0$ and isolating x_i gives

$$x_{i} = \frac{b_{i} - \sum_{j=i+1}^{n} a_{ij}x_{j}}{a_{ii}}.$$

$$(4)$$

Algorithm 1 Backward substitution

for
$$i = n, ..., 1$$
 do
$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}.$$

Exercise

How many floating point operations does backward substitution cost?

Proof: For a fixed i there are n-(i+1) summations and multiplications in $\sum_{j=i+1}^n a_{ij} x_j$. Consequently there are 2(n-i) operations to compute $\frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}$. Summing up over $i=1,\ldots n$ we have a total of operations given by

$$\sum_{i=1}^{n} 2(n-i) = 2n^2 - n(n+1) = n(n-1).$$

Exercise

What can we do if we find $a_{ii} = 0$? What does it say about this triangular system if $a_{ii} = 0$?

Conclusion: Triangular linear systems are easy to solve.

Idea: Transform all linear systems into triangular systems?

Can we transform A into an upper triangular matrix?

Can we transform A into an upper triangular matrix?

Yes, using invertible operations.

Theorem (Invertible operations)

Let $P \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that

$$\{x : Ax = b\} = \{x : PAx = Pb\}$$

Gaussian Elimination Idea: Use sequence of invertible operations P_1, \ldots, P_k such that

$$P_k \cdots P_2 P_1 A = U$$
.

Then solve

$$Ux = P_k \cdots P_2 P_1 b.$$

Example of Gaussian Elimination

Consider the linear system

We want to isolate x_1 on the top row.

Example of Gaussian Elimination

Consider the linear system

$$2x_1$$
 x_2 $-3x_3$ = 5
 $4x_1$ x_2 $5x_3$ = -1
 $10x_1$ $-7x_2$ $13x_3$ = -3

We want to isolate x_1 on the top row. Subtracting two times the first row to the second row $(R_2 \leftarrow R_2 - 2R_1)$ gives

Example of Gaussian Elimination

Consider the linear system

$$2x_1$$
 x_2 $-3x_3$ = 5
 $4x_1$ x_2 $5x_3$ = -1
 $10x_1$ $-7x_2$ $13x_3$ = -3

We want to isolate x_1 on the top row. Subtracting two times the first row to the second row $(R_2 \leftarrow R_2 - 2R_1)$ gives

$$\begin{array}{rclcrcr}
2x_1 & x_2 & -3x_3 & = & 5 \\
 & -x_2 & 11x_3 & = & -11 \\
10x_1 & -7x_2 & 13x_3 & = & -3
\end{array}$$

Subtracting five times the first row to the third row $(R_3 \leftarrow R_3 - 5R_1)$ gives

$$\begin{array}{rclrcl}
2x_1 & x_2 & -3x_3 & = & 5 \\
 & -x_2 & 11x_3 & = & -11 \\
 & -12x_2 & 28x_3 & = & -28
\end{array}$$

Solving linear systems
Gaussian Elimination

$$\begin{array}{rclrcl}
2x_1 & x_2 & -3x_3 & = & 5 \\
 & -x_2 & 11x_3 & = & -11 \\
 & -12x_2 & 28x_3 & = & -28
\end{array}$$

Now isolate x_2 on the second row by $R_3 \leftarrow R_3 + 12R_2$ giving

$$\begin{array}{rclrcl}
2x_1 & x_2 & -3x_3 & = & 5 \\
 & -x_2 & 11x_3 & = & -11 \\
 & -12x_2 & 28x_3 & = & -28
\end{array}$$

Now isolate x_2 on the second row by $R_3 \leftarrow R_3 + 12R_2$ giving

$$\begin{array}{rcl}
2x_1 & x_2 & -3x_3 & = & 5 \\
-x_2 & 11x_3 & = & -11 \\
-104x_3 & = & 104
\end{array}$$

Now we have an upper triangular system! Easy to solve. But what were these operations, e.g. $R_3 \leftarrow R_3 + 12R_2$? Are they invertible operations? YES

Let $A^0 = A$ and let $A^k = P_{k-1}A^{k-1}$ where $a_{ij}^k = 0$ for $1 \le j \le k$ and $i \ge j+1$. To generate A^{k+1} from A^k we need to perform a *row operation*.

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \vdots & 0 & 0 \\ \vdots & & 1 & 0 & 0 & \vdots \\ \vdots & \vdots & -a_{k+1k}^k/a_{kk}^k & 1 & \ddots & \vdots \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -a_{nk}^k/a_{kk}^k & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11}^k & a_{12}^k & a_{13}^k & \dots & a_{1n}^k \\ 0 & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & 0 & a_{kk}^k & \vdots & \vdots \\ \vdots & 0 & a_{k+1k}^k & \dots & a_{k+1n}^k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & a_{nk}^k & \dots & a_{nn}^k \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}^k & a_{12}^k & a_{13}^k & \dots & a_{1(k+1)}^k & \dots & a_{1n}^k \\ 0 & \ddots & \vdots & \dots & a_{2(k+1)}^k & \dots & a_{2n}^k \\ \vdots & 0 & a_{kk}^k & \vdots & \vdots & \dots & \vdots \\ \vdots & 0 & 0 & \vdots & a_{(k+1)(k+1)}^{k+1} & \dots & a_{(k+1)n}^{k+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{n(k+1)}^{k+1} & \dots & a_{nn}^{k+1} \end{bmatrix}$$

These row operations can be represented in a much more compact.

$$P_k = I - v_k e_k^{\top}, \tag{5}$$

where $e_k = (0, \cdots, \frac{1}{kth}, 0, \cdots, 0) \in \mathbb{R}^n$ is the kth unit coordinate

vector and $v_k = (0, \dots, 0, \frac{a_{k+1k}^k}{a_{kk}^k}, \dots, \frac{a_{nk}^k}{a_{kk}^k})$. With this notation we $\binom{k+1}{k}$

can write

$$P_k A^k = A^{k+1}.$$

Also these row operations are invertible!

Lemma

Let P_k be the kth row operation. It follows

- $P_{k-1}^{-1}P_k^{-1} = I + v_k e_k^\top + v_{k-1} e_{k-1}^\top$ (Compositions are lower triangular)

Lemma

Let P_k be the kth row operation. It follows

- $P_k^{-1} = I + v_k e_k^{\top}.$
- $P_{k-1}^{-1}P_k^{-1} = I + v_k e_k^\top + v_{k-1}e_{k-1}^\top$

Proof.

1 By direct computation we have

$$(I + v_k e_k^{\top})(I - v_k e_k^{\top}) = I + v_k e_k^{\top} - v_k e_k^{\top} - v_k e_k^{\top} v_k e_k^{\top} = I - v_k e_k^{\top} v_k e_k^{\top}.$$

The support of v_k does not intersect with the support of e_k thus $e_k^\top v_k = 0$.

2 Again by computation

$$P_{k-1}^{-1}P_k^{-1} = (I + v_{k-1}e_{k-1}^\top)(I + v_ke_k^\top) = I + v_{k-1}e_{k-1}^\top + v_ke_k^\top + v_{k-1}(e_{k-1}^\top v_k)e_k^\top.$$

This inner product $\mathbf{e}_{k-1}^{\top} v_k$ is between two vector with disjoint support, thus $\mathbf{e}_{k-1}^{\top} v_k = 0$ and the result follows.

Gaussian Elimination overview

Gaussian elimination applies n row operations until the matrix is upper triangular

$$P_n P_{n-1} \cdots P_1 A = U. \tag{6}$$

Then solves the upper triangular system

$$Ux = P_n P_{n-1} \cdots P_1 b.$$

The cost of applying P_k is (n-k-1)n consequently the cost of performing (6) is

$$\sum_{k=1}^{n} (n-k-1)n = O(n^3).$$

Choosing a Pivot

Three strategies

- ▶ Default: Choosing a_{kk} as the pivot.
- ▶ Partial Pivot: On column *k* we choosing the element below the diagonal with the largest absolute value

$$i_{\text{pivot}} = \arg \max_{i > k} |a_{ik}|.$$

► Total Pivot: Choose the largest element below or to the right of the diagonal

$$(i_{\mathsf{pivot}}, j_{\mathsf{pivot}}) = \arg\max_{i,j \geq k} |a_{ij}|.$$

Both Partial and Total pivoting improves numerical stability of Gaussian Elimination.

Gaussian Elimination gives a Triangular Decomposition

Since by Lemma 6 the matrix P_k is invertible we have that the product of row operations in (6) is also invertible with

$$(P_n P_{n-1} \cdots P_1)^{-1} = P_1^{-1} \cdots P_{n-1}^{-1} P_n^{-1} \stackrel{\text{def}}{=} L.$$
 (7)

Again by Lemma 6 and induction we have that L is lower triangular. Left multiplying (6) by L we have

$$A = LU. (8)$$

This is known as the LU decomposition. This decomposition can be used to efficiently solve multiple linear systems

$$Ax^{i} = b_{i}, \text{ for } = 1, \dots, 10.$$

Each system $Ax = b_i$ can be solved with two triangular solves

First lower triangular solve : $Ly = b_i$ Second upper triangular solve : $Ux^i = y$ Each system $Ax = b_i$ can be solved with two triangular solves

First lower triangular solve :
$$Ly = b_i$$

Second upper triangular solve : $Ux^i = y$

The two together give: $Ly = b \Leftrightarrow L\underbrace{Ux^i}_{V} = b_i \Leftrightarrow Ax^i = b_i.$

Thus cost of solving each system if $O(n^2)$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix such that the submatrix

$$A_{1:k,1:k} \stackrel{def}{=} \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \vdots & \vdots \\ a_{k1} & \dots & a_{kk} \end{vmatrix}$$
 is invertible for $k = 1, \dots, n$.

Then the LU decomposition exists. If $L_{ii} = 1$ is enforced, the decomposition is unique.

Gauss Jordan Method for Inversion

We can use Gaussian elimination to compute the inverse of A. Setup the systems

$$Ax^i = e_i, \quad \text{for } i = 1, \dots, n.$$

Gauss Jordan Method for Inversion

We can use Gaussian elimination to compute the inverse of A. Setup the systems

$$Ax^i = e_i$$
, for $i = 1, \ldots, n$.

In other words

$$AX \stackrel{\mathsf{def}}{=} A[x^1, \dots, x^n] = I.$$

Thus the solution is $X = A^{-1}$.

Gauss Jordan Method for Inversion

We can use Gaussian elimination to compute the inverse of *A*. Setup the systems

$$Ax^i = e_i$$
, for $i = 1, \ldots, n$.

In other words

$$AX \stackrel{\text{def}}{=} A[x^1, \dots, x^n] = I.$$

Thus the solution is $X = A^{-1}$.

Apply row operations until A is the identity matrix. That is

$$P_k \cdots P_1 A = I$$
.

Consequently

$$P_k \cdots P_1 AX = X = P_k \cdots P_1 I = A^{-1}.$$

Thus apply the same operations simultaneously to the identity matrix to get A^{-1} .

Example of Gauss Jordan (and Partial Pivot)

Let us invert the following matrix

$$x_1$$
 $-3x_2$ $14x_3$ = 1 0 0
 x_1 $-2x_2$ $10x_3$ = 0 1 0
 $-2x_1$ $4x_2$ $-19x_3$ = 0 0 1

Using a partial pivot gives $(R_1 \leftrightarrow R_3)$

└─ Solving linear systems └─ Gauss Jordan

Now isolating x_1 using row operations

Now isolating x_1 using row operations $R_2 \leftarrow R_2 + \frac{1}{2}R_1$ and $R_3 \leftarrow R_3 + \frac{1}{2}R_1$ gives

Second phase: Using a total pivot gives $C_2 \leftrightarrow C_3$ and $R_2 \leftrightarrow R_3$

Isolating x₃ gives

Isolating x_2 gives

Finally scaling the rows : $R_1 \leftarrow -1/2R_1$

$$R_2 \leftarrow 2/9R_2$$

 $R_3 \leftarrow 9R_3$

and switching $R_2 \leftrightarrow R_3$ gives

Consequently

$$A^{-1} = \begin{bmatrix} -2 & -1 & -2 \\ -1 & 9 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$

Cholesky Decomposition

We say a matrix is positive definite if it is symmetric and if

$$v^{\top} A v > 0, \quad \forall v \neq 0. \tag{9}$$

For positive definite matrices we can efficiently compute an LU decomposition with $L = U^{T}$.

Theorem

Cholesky theorem Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. There exists a lower triangular matrix $B \in \mathbb{R}^{n \times n}$ such that $A = BB^{\top}$.

Proof.

By induction in next slides. Induction hypothesis: If rows 1 to j-1 of B exist, then row j exists.

First we write

$$A = \begin{bmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & 0 & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{21} & \dots & b_{n1} \\ 0 & b_{22} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{nn} \end{bmatrix}$$

Base case 1st row: From the first column of the above we have

$$a_{:1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} = b_{11} \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{bmatrix} = b_{11}b_{:1}.$$

The first line gives: $b_{11}^2 = a_{11}$ thus $b_{11} = \sqrt{a_{11}}$. This gives the row of B.

First we write

$$A = \begin{bmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & 0 & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{21} & \dots & b_{n1} \\ 0 & b_{22} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{nn} \end{bmatrix}$$

Base case 1st row: From the first column of the above we have

$$a_{:1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} = b_{11} \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{bmatrix} = b_{11}b_{:1}.$$

The first line gives: $b_{11}^2 = a_{11}$ thus $b_{11} = \sqrt{a_{11}}$. This gives the row of B. Now note that $a_{ij} = b_{i:}^{\top} b_{j:}$.

Let

$$BB^{ op} = egin{bmatrix} - & b_{1:}^{ op} & - \ - & b_{2:}^{ op} & - \ dots \ dots \ - & b_{n:}^{ op} & - \ \end{pmatrix} egin{bmatrix} | & | & | & | & | & | \ b_{1:} & b_{2:} & \dots & b_{n:} \ | & | & | & | & | \end{bmatrix}$$

Induction: Suppose we know the rows 1 to j-1 of B. Thus we know b_1 : to b_{j-1} . To calculate b_j : we use that $a_{ij} = \langle b_{i:}, b_{j:} \rangle$ thus

$$a_{:j} = \sum_{i=1}^{n} \langle b_{j:}, b_{i:} \rangle e_i = \sum_{i=1}^{n} \sum_{k=1}^{\min\{j,i\}} b_{jk} b_{ik} e_i = \sum_{k=1}^{\min\{j,i\}} b_{jk} b_{:k}.$$

Isolating $b_{j:}$ gives

$$b_{jj}b_{:j} = a_{:j} - \sum_{k=1}^{j-1} b_{jk}b_{:k} \stackrel{\text{def}}{=} v.$$

Using $b_{jj}b_{:j}=v$ we have that $b_{jj}=\sqrt{v_j}=\sqrt{a_{jj}}-\sum_{k=1}^{j-1}b_{jk}^2$.

Therefore

$$b_{:j} = \frac{v}{\sqrt{v_j}} = \frac{a_{:j} - \sum_{k=1}^{j-1} b_{jk} b_{:k}}{\sqrt{b_{jj}}}.$$

This completes the induction and provides the following algorithm

Algorithm 2 (B) = Cholesky Decomposition(A)

- 1: **for** j = 1, ..., n **do**
- 2: Calculate $v = a_{:j} \sum_{k=1}^{j-1} b_{jk} b_{:k}$
- 3: Set $b_{:j} = v/\sqrt{v_j}$

Exercise

Show that the number of flops of the Cholesky algorithm is proportional to $O(n^3)$.

Solution: The summation in computing v in

$$v = a_{:j} - \sum_{k=1}^{j-1} b_{jk} b_{:k}$$

is where most of the effort goes. Since there are k elements in $b_{:k}$ it costs k to add on $b_{jk}b_{:k}$.

$$\sum_{j=1}^{n} \sum_{k=1}^{j-1} k = \sum_{j=1}^{n} \frac{(j-1)j}{2}$$

$$\leq \sum_{j=1}^{n} \frac{j^2}{2} \leq \frac{1}{2} \int_{x=0}^{n} x^2 dx$$

$$= \frac{x^3}{6} \left| -\frac{x^3}{6} \right|_{2} = \frac{n^3}{6}.$$

Using the Cholesky decomposition, we can uncover many properties of positive definite matrices.

Theorem

Let A be a positive definite matrix. It follows that

- The Cholesky decomposition $B^{\top}B = A$ always exists. We can prove this by construction. That is, using induction we can show that Algorithm 2 works. This boils down to showing that $v_j \neq 0$ does not occur.
- ② $det(A) = (b_1 \cdots b_n)^2$. Indeed, using properties of the determinant we have that

$$det(A) = det(B^{\top}B) = det(B^{\top})det(B)$$
$$= det(B)^{2} = (b_{11} \cdots b_{nn})^{2}.$$

Eigenvalues are important

Watch the collapse of Tacoma Narrows Bridge as it resonates in the wind. This resonance is related to the smallest eigenvalue of the structural equations:

https://www.youtube.com/watch?v=XggxeuFDaDU We say that $x \neq 0 \in \mathbb{R}^n$ is an eigenvector with associated eigenvalue $\lambda \in \mathbb{R}$ of A if

$$Ax = \lambda x \Leftrightarrow (A - \lambda I)x = 0.$$

Since $x \neq 0$ shows that $A - \lambda I$ is not invertible and consequently

$$\det(A - \lambda I) = 0. \tag{10}$$

Compute all eigenvalues by finding roots of this n dim polynomial.

Theorem (Abel-Ruffini theorem)

There is no exact algebraic formula for the roots of a polynomial with degree 5 or more.

Definition (Eigenpairs and Spectrum)

Let $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$ and $\lambda \in \mathbb{C}$. We say that x is an eigenvector and λ an eigenvalue of A if $x \neq 0$ and

$$Ax = \lambda x.$$

We also refer to (x, λ) as an eigenpair of A. We say $\lambda(A) \subset \mathbb{C}$ is the spectrum of A if $\lambda(A)$ contains all the eigenvalues of A, that is

$$\lambda(A) \stackrel{\text{def}}{=} \{\lambda \mid \exists x \in \mathbb{R}^n \text{ such that } x \neq 0, \ Ax = \lambda x\}.$$

We say that A is invertible if $0 \notin \lambda(A)$.

Exercise

If $A = diag(a_1, \ldots, a_n)$ then

$$\lambda(A)=\{a_1,\ldots,a_n\}.$$

Exercise

If $O \in \mathbb{R}^{n \times n}$ is an orthogonal matrix then every $\lambda \in \lambda(O)$ is such that $|\lambda| = 1$.

Exercise

If $A = diag(a_1, \ldots, a_n)$ then

$$\lambda(A) = \{a_1, \ldots, a_n\}.$$

Exercise

If $O \in \mathbb{R}^{n \times n}$ is an orthogonal matrix then every $\lambda \in \lambda(O)$ is such that $|\lambda| = 1$.

Proof.

Let (x, λ) be such that $Ox = \lambda x$. If follows that

$$\langle x, x \rangle = \langle x, O^{\top} O x \rangle = \langle O x, O x \rangle = \|O x\|_2^2 = |\lambda|^2 \langle x, x \rangle.$$

Dividing by $\langle x, x \rangle$ on both sides gives the result.

Definition (Similarity transform)

We say that $A \in \mathbb{R}^{n \times n}$ is similar to $B \in \mathbb{R}^{n \times n}$ if there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$A = P^{-1}BP$$
.

We say that A is diagonalizable when B is a diagonal matrix.

Lemma

If $A, B \in \mathbb{R}^{n \times n}$ are similar matrices then $\lambda(A) = \lambda(B)$.

Definition (Similarity transform)

We say that $A \in \mathbb{R}^{n \times n}$ is similar to $B \in \mathbb{R}^{n \times n}$ if there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$A = P^{-1}BP$$
.

We say that A is diagonalizable when B is a diagonal matrix.

Lemma

If $A, B \in \mathbb{R}^{n \times n}$ are similar matrices then $\lambda(A) = \lambda(B)$.

Proof: Consider $\lambda \in \lambda(A)$. Then there exists $x \in \mathbb{R}^n$ such that $Ax = \lambda x$. By the similarity of A and B we have that $P^{-1}BPx = \lambda x$. Left multiplying by P shows that $\lambda \in \lambda(B)$ with associated eigenvector Px. \square

Can we transform A into diagonal or orthogonal?

Theorem (Spectral Theorem for symmetric matrices)

Symmetric matrices are diagonalizable. That is, let $A \in \mathbb{R}^{n \times n}$ with $A = A^{\top}$. Then there exists an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ and $\Lambda = diag(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n \times n}$ such that

$$A = V \Lambda V^{\top}$$
.

Proof: See Theorem 8.1.1 and proof in *Matrix Computations*, Golub & Van Loan 2013.

Theorem (Singular Value Decomposition)

Let $A \in \mathbb{R}^{m \times n}$. There exists orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$U^{\top}AV = \Sigma = diag(\sigma_1, \dots, \sigma_p), \quad where \ p = \min\{n, m\},$$

and where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$.

Proof: Not so easy. See Theorem 2.4.1 in the book *Matrix Computations*, Golub & Van Loan 2013.

Common notation:

$$\sigma_{\max}(A) = \sigma_1 = \max_{i=1,\dots,p} \sigma_i.$$

$$\sigma_{\min}(A) = \sigma_p = \min_{i=1,\dots,p} \sigma_i.$$

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

Spectral Theorem \Rightarrow there exists $V \in \mathbb{R}^{n \times n}$ and diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ such that

$$A = V \Lambda V^{\top} \quad \Rightarrow \quad V^{\top} A V = \Lambda.$$

Idea: Transform A into diagonal matrix using similarity transforms. This gives the Jacobi method.

Notation: $I_d \in \mathbb{R}^{d \times d}$ is the $d \times d$ identity matrix. Thus

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Jacobi Method

Main idea: Iteratively minimize off-diagonal elements.

Offset: The sum of the squares of te off-diagonals element:

off(A) =
$$\sum_{i=1}^{n} \sum_{j \neq i} a_{ij}^2 = ||A||_F^2 - \sum_{i=1}^{n} a_{ii}^2$$
. (11)

Iteration:

1 Find largest off diagonal element

$$a_{pq} = \max_{1 \le i < j \le n} |a_{ij}|.$$

- 2 Replace a_{pq} by a zero by using similarity transformations.
- Use the Givens/Jacobi Transform for this.

Givens/Jacobi Transform

$$J(p,q,\theta) = \begin{bmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & \dots & c & \dots & s & \dots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \dots & -s & \dots & c & \dots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{bmatrix}^{p}$$

Where $c = \cos(\theta)$ and $s = \sin(\theta)$.

Givens/Jacobi Transform

Where $c = \cos(\theta)$ and $s = \sin(\theta)$. Outer product version:

$$J(p,q, heta) = I_n + (c-1)e_p e_p^ op + (c-1)e_q e_q^ op + se_p e_q^ op - se_q e_p^ op \ = I_n - egin{bmatrix} e_p & e_q \end{bmatrix} I_2 egin{bmatrix} e_p^ op \ e_q^ op \end{bmatrix} + egin{bmatrix} e_p & e_q \end{bmatrix} egin{bmatrix} c & s \ -s & c \end{bmatrix} egin{bmatrix} e_p^ op \ e_q^ op \end{bmatrix}$$

Jacobia Similar Transform

Carefully choosing θ and appling Jacobi similar transform

$$B = J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{12}$$

eliminates a_{pq} (and a_{qp} because of symmetry).

Exercise: Show that B is a similar matrix to A.

Jacobia Similar Transform

Carefully choosing θ and appling Jacobi similar transform

$$B = J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{12}$$

eliminates a_{pq} (and a_{qp} because of symmetry).

Exercise: Show that B is a similar matrix to A.

Proof: Show that $J(p, q, \theta)$ is an orthogonal matrix. Indeed, let

$$J = I_n - \begin{bmatrix} e_p & e_q \end{bmatrix} I_2 \begin{bmatrix} e_p^\top \\ e_q^\top \end{bmatrix} + \begin{bmatrix} e_p & e_q \end{bmatrix} O \begin{bmatrix} e_p^\top \\ e_q^\top \end{bmatrix} \text{ where } O = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}.$$

Part I: First show that

$$(O)^{\top}O = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} c^2 + s^2 & 0 \\ 0 & c^2 + s^2 \end{bmatrix} = I_2.$$

Thus O is an orthogonal matrix.

Part II: Let
$$\overline{M} \stackrel{\text{def}}{=} \begin{bmatrix} e_p & e_q \end{bmatrix} M \begin{bmatrix} e_p^\top \\ e_q^\top \end{bmatrix}$$
 for every $M \in \mathbb{R}^{2 \times 2}$.

This notation gives

$$J=I-\overline{I}_2+\overline{O}.$$

Part I gives that $\overline{O}^{\top}\overline{O} = \overline{I}_2$.

Part II: Let $\overline{M} \stackrel{\text{def}}{=} \begin{bmatrix} e_p & e_q \end{bmatrix} M \begin{bmatrix} e_p^{\top} \\ e_q^{\top} \end{bmatrix}$ for every $M \in \mathbb{R}^{2 \times 2}$.

This notation gives

$$J=I-\overline{I}_2+\overline{O}.$$

Part I gives that $\overline{O}^{\top}\overline{O} = \overline{I}_2$. Consequently

$$J^{\top}J = (I - \overline{I}_2 + \overline{O}^{\top})(I - \overline{I}_2 + \overline{O})$$

$$= I - \overline{I}_2 + \overline{I}_2 + (I - \overline{I}_2)\overline{O} + \overline{O}^{\top}(I - \overline{I}_2).$$

$$= I + (I - \overline{I}_2)\overline{O} + \overline{O}^{\top}(I - \overline{I}_2)$$

Now note that

$$(I - \overline{I}_2)\overline{O + I_2} = 0 = (\overline{O + I_2})^{\top}(I - \overline{I}_2)$$

because of disjoint support.

$$B = J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{13}$$

The pth and qth row and column of B gives

$$\begin{bmatrix} b_{pp} & b_{pq} \\ b_{qp} & b_{qq} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^{\top} \begin{bmatrix} a_{pp} & a_{pq} \\ a_{qp} & a_{qq} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}.$$
(14)

$$B = J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{13}$$

The pth and qth row and column of B gives

$$\begin{bmatrix} b_{pp} & b_{pq} \\ b_{qp} & b_{qq} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^{\top} \begin{bmatrix} a_{pp} & a_{pq} \\ a_{qp} & a_{qq} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}.$$
(14)

Equation (16) gives diagonal terms

$$b_{pp} = \begin{bmatrix} ca_{pp} + sa_{qp} & ca_{pq} + sa_{qq} \end{bmatrix} \begin{bmatrix} c \\ -s \end{bmatrix} = c^2 a_{pp} - s^2 a_{qq}.$$

$$b_{qq} = \begin{bmatrix} -sa_{pp} + ca_{qp} & -sa_{pq} + ca_{qq} \end{bmatrix} \begin{bmatrix} s \\ c \end{bmatrix} = c^2 a_{qq} - s^2 a_{pp}$$

$$b_{pp} + b_{qq} = (s^2 - 1)a_{pp} - s^2a_{qq} + (s^2 - 1)a_{qq} - s^2a_{pp} = a_{pp} + a_{qq}$$

$$B = J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{15}$$

The pth and qth row and column of B gives

$$\begin{bmatrix} b_{pp} & b_{pq} \\ b_{qp} & b_{qq} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^{\top} \begin{bmatrix} a_{pp} & a_{pq} \\ a_{qp} & a_{qq} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}.$$
(16)

Equation (16) gives off-diagonal terms

$$b_{pq} = cs(a_{pp} - a_{qq}) + (c^2 - s^2)a_{pq}.$$

Choose θ so that $b_{pq} = 0$. Set to zero, divide through by $c^2 a_{pq}$:

$$-t^2 + 2Kt + 1 = 0, (17)$$

where
$$t = \tan(\theta) = c/s$$
 and $K = \frac{a_{pp} - a_{qq}}{2a_{pq}}$.

$$B = J(p, q, \theta) A J(p, q, \theta)^{\top}, \tag{15}$$

The pth and qth row and column of B gives

$$\begin{bmatrix} b_{pp} & b_{pq} \\ b_{qp} & b_{qq} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^{\top} \begin{bmatrix} a_{pp} & a_{pq} \\ a_{qp} & a_{qq} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}.$$
(16)

Equation (16) gives off-diagonal terms

$$b_{pq} = cs(a_{pp} - a_{qq}) + (c^2 - s^2)a_{pq}.$$

Choose θ so that $b_{pq}=0$. Set to zero, divide through by c^2a_{pq} :

$$-t^2 + 2Kt + 1 = 0. (17)$$

where $t = \tan(\theta) = c/s$ and $K = \frac{a_{pp} - a_{qq}}{2a_{pq}}$. The solutions are

$$t = K \pm \sqrt{K^2 + 1}.$$

In the Jacobi method choose the smallest root

$$t = \min\{K + \sqrt{K^2 + 1}, K - \sqrt{K^2 + 1}\}.$$

Using

$$t = \min\{K + \sqrt{K^2 + 1}, K - \sqrt{K^2 + 1}\},\$$

we can then recover c and s using that

$$c=\frac{1}{\sqrt{1+t^2}},\quad s=ct.$$

This gives us the following method for calculating c and s.

Algorithm: (c, s) =Calculate Jacobi Transform(p, q, A)

1:
$$K = \frac{a_{pp} - a_{qq}}{2a_{pq}}$$

2:
$$t = \min\{K + \sqrt{K^2 + 1}, K - \sqrt{K^2 + 1}\}.$$

3:
$$c = \frac{1}{\sqrt{1+t^2}}$$

4:
$$s = \dot{c}\dot{t}$$

Applying the Jacobi transform iteratively to minimize the off diagonal elements of A gives the Jacobi Method.

Algorithm 3 Jacobi Method (ϵ, A)

```
1: Initialize: k = 0 and A^0 = A.

2: while off(A^{k+1}) < \epsilon do

3:

4: Choose (p,q) so that a_{pq} = \max_{i \neq j} |a_{pq}|

5:

6: (c,s) = \text{Calculate Jacobi Transform}((p,q,A^k))

7:

8: A^{k+1} = J(p,q,\theta)^{\top} A^k J(p,q,\theta).
```

Now we prove it works!

Lemma

Let

$$O = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}.$$

Show that $O^{\top}O = OO^{\top} = I$, that is, O is an orthogonal matrix.

- 2 Prove that Tr(AB) = Tr(BA) for compatible matrices.
- **3** Let $||A||_F^2 = Tr(A^TA)$ and let J be an orthogonal matrix. Prove that $||J^TAJ||_F^2 = ||A||_F^2$.
- Consider (12) and show that $b_{ii} = a_{ii}$ for $i = \{1, ..., n\} \setminus \{p, q\}$.
- **5** Show that $J(p, q, \theta)$ is an orthogonal matrix.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The iterates A^k of the Jacobi method converges to a diagonal matrix at a rate of

$$off(A^k) \le \left(1 - \frac{2}{n(n-1)}\right)^k off(A).$$

Proof I: Given that $J \equiv J(p, q, \theta)$ is an orthogonal matrix, for $B = J^{\top}AJ$ we have that

$$||A||_F^2 = ||B||_F^2$$
.

Applying the Frobenius norm to both sides gives

$$a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2 = b_{pp}^2 + b_{qq}^2 + 2b_{pq}^2 = b_{pp}^2 + b_{qq}^2.$$
 (18)

Proof II: Since $b_{pq} = 0$ we have that

off(B) =
$$||B||_F^2 - \sum_{i=1}^n b_{ii}^2$$

= $||A||_F^2 - \sum_{i=1, i \neq p, q}^n b_{ii}^2 - b_{pp}^2 - b_{qq}^2$
= $||A||_F^2 - \sum_{i=1, i \neq p, q}^n a_{ii}^2 - b_{pp}^2 - b_{qq}^2$
= $||A||_F^2 - \sum_{i=1}^n a_{ii}^2 + a_{pp}^2 + a_{qq}^2 - b_{pp}^2 - b_{qq}^2$
(18) = off(A) $-2a_{pq}^2$.

 \Rightarrow The off diagonal terms are decreasing.

Proof III:

$$\mathrm{off}(B) = \mathrm{off}(A) - 2a_{pq}^2.$$

Since a_{pq} is the largest it is bigger than the average

$$a_{pq}^2 \geq \frac{\sum_{i \neq j} a_{ij}^2}{n(n-1)} = \frac{\mathsf{off}(A)}{n(n-1)}.$$

Thus finally

$$\operatorname{off}(B) \leq \operatorname{off}(A) - \frac{2}{n(n-1)}\operatorname{off}(A) = \left(1 - \frac{2}{n(n-1)}\right)\operatorname{off}(A).$$

That is, applying k steps of Algorithm 3 we have that

$$\operatorname{off}(A^k) \leq \left(1 - \frac{2}{n(n-1)}\right)^k \operatorname{off}(A).$$

G.,R & P Richtárik, Randomized Iterative Methods for Linear Systems arXiv:1506.03296