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Chapter 1

Matrix Analysis - Generalities

1.1 Reminders of linear algebra

1.1.1 Adjoints

In the following, we consider R or C as a basic �eld. Let us �rst recall some
de�nitions.

Given a vector x (usually represented in this manual by a column ma-
trix), we call adjoint of x and we denote by x∗ the transposed vector of the

conjugate of x: if x =


x1

...
xi
...
xn

, then x∗ = (x1, ..., xi, ..., xn).

Remark. In R, we have: x∗ = (x1, ..., xi, ..., xn).

Le Hermitian product of two vectors x and y of dimension n is de�ned
by: (x, y) =

∑n
i=1 xiyi. If the vectors are represented by column vectors, we

have: (x, y) = x∗y, where the product is the matrix product. If the vectors
have real components, the Hermitian product becomes the Euclidean scalar
product : (x, y) =

∑n
i=1 xiyi = xty.

To a matrix A, we can associate its adjoint matrix , denoted by A∗, de�ned
as follows: if A = (ai,j) 1 6 i 6 n

1 6 j 6 p

, then A∗ = At = (aj,i) 1 6 j 6 p
1 6 i 6 n

. We have:

(A∗)∗ = A.
If x and y are two column vectors having respectively n rows and p rows

7



8 Matrix Analysis - Generalities

and A a matrix with n rows and p columns, we can check the property:
(x,Ay) = (A∗x, y).

1.1.2 Kinds of matrices

A real square matrix A is said:

• symmetric if At = A,

• normal if AAt = AtA,

• orthogonal if AAt = AtA = I, where I is the identity matrix.

In the following, the quali�ers �symmetric� and �orhogonal� only apply to
real matrices.

A complex square matrix A is said:

• Hermitian if A∗ = A,

• normal if AA∗ = A∗A.

• unitary if A∗A = AA∗ = I.

Note that a symmetric or Hermitian matrix is normal. The same applies
to an orthogonal or unitary matrix. It is recalled that the eigenvalues of a
symmetric real matrix or of a Hermitian matrix are real.

1.1.3 Spectrum of a matrix

An eigenvalue of a square matrix A is a scalar λ such that there exists a
nonzero vector x satisfying: Ax = λx. The vector x is then said eigenvector
of A.

Let A be a square matrix. The spectrum of A is the set of eigenvalues of
A. The spectral radius of A is the largest absolute value of the eigenvalues
of A; it is denoted by ρ(A).
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1.1.4 Reduction of a matrix

Two square matrices are said to be similar if they are likely to represent the
same linear application on two di�erent bases. If A and B are two similar
matrices, there is an invertible matrix P satisfying A = P−1BP ; the matrix
P is called change-of-basis matrix indexmatrix!change-of-basis. A matrix
is diagonalizable if it is similar to a diagonal matrix; this diagonal matrix
consists of the eigenvalues of A counted with their order of multiplicity.

Any real symmetric matrix is similar to a real diagonal matrix.
A square matrix is invertible if and only if it does not have an eigenvalue

equal to zero.
In fact we can also demonstrate, for the square matrices, the following

results:

Theorem:

1. Let A be any square matrix; there exists a unit matrix U such that
U−1AU is triangular.

2. Let A be a normal matrix; there is exists unitary matrix U such that
U−1AU is diagonal.

3. Let A be a symmetric matrix; there exists an orthogonal matrix O such
that O−1AO is diagonal.

Corollaries of the de�nitions and this theorem:

1. The absolute values of the eigenvalues of an orthogonal or unit matrix
are equal to 1.

2. A Hermitian (resp. symmetric) or unitary matrix is diagonalizable by
a unitary (orthogonal) change-of-basis matrix.

3. An orthogonal matrix O is diagonalizable by a matrix U , usually not
real, unitary (O = U∗DU), the diagonal elements ofD being of absolute
value 1.

1.1.5 Singular values

The matrix A∗A is normal, so it is diagonalizable. It can easily be shown
that its eigenvalues are positive or zero. The positive square roots of the
eigenvalues of A∗A are called singular values of A.
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The matrix A is invertible if and only if its singular values are all strictly
positive.

Two matrices A and B are called equivalent if there are two invertible
matrices U and V such that B = U−1AV .

Let A be a square matrix; A is equivalent to a diagonal matrix whose
diagonal consists of singular values of A. More precisely:

• if A is real, there are two orthogonal square matrices U and V and
a diagonal matrix D consisting of singular values of A such that:
A = U tDV ;

• if A is complex, there are two unitary square matrices U and V and
a diagonal matrix D consisting of singular values of A such that:
A = U∗DV .

1.2 Norms

In the following, we will need the concepts of a vector norm and of a matrix
norm.

Let x = (xi)16i6n a vector. The three most common vector norms are:

• ||x||1 =
∑n

i=1 |xi| (norm 1)

• ||x||2 =
(∑n

i=1 |xi|
2) 1

2 (norm 2, or Euclidean norm)

• ||x||∞ = max16i6n|xi| (in�nity norm)

More generally: ||x||p = (
∑n

i=1 |xi|
p)

1
p (p-norm). The proof that it is a

norm uses the following inequalities:

• Hölder inequality: if p and q are two numbers checking p > 1 and
equality 1

p
+ 1

q
= 1 (which results in q > 1), then

n∑
i=1

|xiyi| 6

(
n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

.

For p = q = 2, it gives back the Cauchy-Schwarz inequality.
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• Minkowski inequality:(
n∑
i=1

|xi + yi|p
) 1

p

6

(
n∑
i=1

|xi|p
) 1

p

+

(
n∑
i=1

|yi|p
) 1

p

.

In Rn and Cn, all norms are equivalent (two norms || || and || ||′ are
équivalent on a vector space E if there are two strictly positive constants C
and C ′ such that, for any x in E: C||x|| 6 ||x||′ 6 C ′||x||).

We call An the ring of square matrices of order n with coe�cients in R;
we use the same notation An for the ring of square matrices of order n with
coe�cients in C. We call matrix norm an application from An to R+ denoted
by || || which ful�ls the following properties:

• for any matrices A of An, ||A|| = 0⇔ A = 0

• for any α of R (or C) and for any A of An, ||αA|| = |α|||A||

• for any matrices A and B of An, ||A+B|| 6 ||A||+ ||B||

• for any matrices A and B of An, ||A×B|| 6 ||A|| × ||B||.

We can very easily build matrix norms from vectorial norms: they are then
called subordinate matrix norms . For this, we can de�ne ||A|| by the following
equivalent formulas:

||A|| = supx 6=0

||Ax||
||x||

= sup||x||=1||Ax|| = sup0<||x||61

||Ax||
||x||

.

We have: ||Ax|| 6 ||A|| ||x||.
The matrix norms subordinate to the most usual norms that we have

described above are therefore, for A = (ai,j) 1 6 i 6 n
1 6 j 6 n

:

• ||A||1 = supx 6=0

||Ax||1
||x||1

= max 16j6n

n∑
i=1

|aij|

• ||A||2 = supx 6=0

||Ax||2
||x||2

=
√
ρ(A∗A) = ||A∗||2 where ρ(A∗A) represents

the largest absolute value of A∗A (spectral radius of A∗A)
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• ||A||∞ = supx 6=0

||Ax||∞
||x||∞

= max 16i6n

n∑
j=1

|aij|.

The norm || ||2 is invariant by unitary transformation: if U is a unitary
matrix, that is, if U ful�ls the relation U∗U = I, then we have

||A||2 = ||AU ||2 = ||UA||2 = ||U∗AU ||2.

If A is normal, that is, if A ful�ls the relation A∗A = AA∗ (especially if
A is Hermitian or symmetric), then ||A||2 = ρ(A).

If A is unitary or orthogonal, ||A||2 = 1.

Remark. ||A||1 and ||A||∞ are easy to compute but not ||A||2.

Theorem

• Let || || be a subordinate norm; let B satisfying ||B|| < 1. So I +B is

invertible and ||(I +B)−1|| 6 1

1− ||B||
.

• If a matrix of the form I + B is not invertible, then, for any norm,
subordinate or not, ||B|| > 1.

Example of a non-subordinate norm: the Euclidean norm

This norm is dé�nied by: ||A||E =
(∑n

i=1

∑n
j=1 |aij|

2
) 1

2
=
√
trace (A∗A)

(remember that the trace of a matrix is the sum of its diagonal terms).
The norm ||A||E is invariant by unitary transformation; in other words,
if U∗U = I, the ||A||E = ||AU ||E = ||UA||E = ||U∗AU ||E. Moreover:
||A||2 6 ||A||E 6

√
n||A||2.

Theorem. Let || || be any norm (subordinate or not); we have: ρ(A) 6 ||A||
and, for every ε > 0, there exists a subordinate norm || ||A,ε satisfying
||A||A,ε 6 ρ(A) + ε.

1.2.1 Convergence of a sequence of vectors or a sequence

of matrices

For a sequence (xk) of vectors to converge, it is necessary and su�cient that
the components of (xk) converge. It is the same for a sequence of matrices.
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In particular, we have the following theorem for the sequence of the powers
of a matrix:

Theorem. Let B be a square matrix.

1. lim k→∞ Bk = 0⇔ ∀x, lim k→∞ Bkx = 0⇔ ρ(B) < 1⇔
for at least one subordinate norm, ||B|| < 1.

2. Let || || be any norm; then limk→∞ ||Bk|| 1k = ρ(B).
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Chapter 2

Problems of numerical analysis

The two main problems that we will study in the following of this course are
the resolution of linear systems and computation of eigenvalues and eigen-
vectors of matrices. When applying numerical analysis methods to compu-
tational problems, there are two types of �quality� to consider. This is �rstly
the aspect called complexity , that is to say the number of elementary oper-
ations to perform to obtain a result, but also it is necessary to know if the
solution is acceptable or not; in fact, two kinds of errors can be made: on
the one hand, rounding errors due to the precision of the computations and,
on the other hand, so-called truncation errors, when using iterative methods,
while of course we stop after a �nite number of iterations.

2.1 Errors

Rounding error : error due to coding where the number of digits representing
a real is limited. If the number is coded on t bits for the signi�cand, the
error on the signi�cand is upper bounded by 2−t.

Truncation error : in iterative methods, computing the limit would require
a priori an in�nite number of iterations. Since computations are inevitably
stopped after a k0 number of iterations, we make a truncation error measured
by ||x∞− xk0||, where x∞ represents the limit, xk0 the result obtained at the
kth0 iteration and ||.|| a given norm (in fact, x∞ is unknown, which makes
impossible to estimate the error).

15



16 Problems of numerical analysis

2.2 Conditioning

In all that follows, we consider a linear system written in matrix form Ax = b.
Before going into the details of the methods, which will be the subject of the
next chapter, we will deal with an important parameter of a linear system:
it is its conditioning , which is attached to the A matrix of the system. Most
often, in practice, the coe�cients of A, like the components of the vector b,
are measurement results and are therefore tainted by a certain error. It is
essential to see how a small modi�cation of A or b a�ects, regardless of the
method used, the supposedly exact solution of the system.

2.2.1 Conditioning of a linear system

Consider the following system:
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10




x1

x2

x3

x4

 =


32
23
33
31

 of solution


1
1
1
1

 .

Consider now the perturbed system by slightly modifying the vector of the
second member, the matrix remaining unchanged:

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10




x1 + δx1

x2 + δx2

x3 + δx3

x4 + δx4

 =


32, 1
22, 9
33, 1
30, 9

 of solution


9, 2
−12, 6

4, 5
−1, 1

 .

It can be seen that a relative error of the order of 1/300 on the second mem-
ber results in a relative error of the order of 10 over several coordinates of
the system solution, and therefore an ampli�cation of the relative errors of
the order of 3000.

Now consider slight modi�cations on the matrix with the system:
10 7 8, 1 7, 2

7, 08 5, 04 6 5
8 5, 98 9, 89 9

6, 99 4, 99 9 9, 98




x1 + δx1

x2 + δx2

x3 + δx3

x4 + δx4

 =


32
23
33
31

 of solution


−81
137
−34
22

 .
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We also note here that small variations of the elements of the matrix consi-
derably modify the solution of the linear system.

Suppose that we consider the system: A(x+ δx) = b+ δb, all things being
equal, and suppose the matrix A invertible. We see that we have δx = A−1δb.
If we then choose a matrix norm || || subordinate to a vector norm, we �nd
||δx|| 6 ||A−1|| ||δb|| and, in addition, ||b|| 6 ||A|| ||x|| so that x has a relative

error
||δx||
||x||

which is upper bounded by ||A|| ||A−1|| ||δb||
||b||

. We call condi-

tioning of the matrix A (relative to the norm || ||) the quantity ||A|| ||A−1||,
which we denote by cond|| ||(A) or, more simply, cond(A).

We could also prove that if we now add a small variation to the coe�cients

of A, so that this matrix becomes A+ δA, then
||δx||
||x+ δx||

is upper bounded

by ||A|| ||A−1|| ||δA||
||A||

.

These two upper bounds prove the interest of conditioning. The more
the conditioning of a matrix is close to 1, the more it is well conditioned (its
conditioning is always greater than or equal to 1).

We have mentioned here only the conditioning of a matrix with respect
to the resolution of a linear system. We will see later what conditioning is for
a problem of eigenvalues. The same matrix can be badly conditioned as the
matrix of a linear system and be well conditioned for the problem of �nding
eigenvalues, and vice versa.

The following theorem gives further information on the conditioning of a
matrix in the sense of the systems.

Theorem: Let A be an invertible matrix. We then have:

1. cond(A) > 1

2. cond(A) = cond(A−1)

3. for any α 6= 0, cond(αA) = cond(A)

4. denoting by cond2 the conditioning associated with || ||2 and denoting
respectively by µ1(A) and µn(A) the smallest and the largest singular
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values of A, cond2(A) =
µn(A)

µ1(A)

5. ifA is normal (that is to say, ful�ledAA∗ = A∗A), cond2(A) =
maxi |λi(A)|
mini |λi(A)|

where the λi(A) represent the eigenvalues of A

6. if A is unitary or orthogonal, cond2(A) = 1

7. cond2(A) is invariant by unitary or orthogonal transformation:

if UU∗ = I, then cond2(A) = cond2(AU) = cond2(UA) = cond2(U∗AU),

ifOOt = I, then cond2(A) = cond2(AO) = cond2(OA) = cond2(OtAO).

Let us compute, for example, the conditioning of the matrix used pre-
viously:

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 .

This matrix has for approximate eigenvalues:

λ1 ≈ 0, 01015 < λ2 ≈ 0, 8431 < λ3 ≈ 3, 858 < λ4 ≈ 30, 2887.

So we have: cond2(A) =
λ4

λ1

≈ 2984. The matrix A thus has a very bad

conditioning, which explains the sensitivity to the errors of the linear systems
de�ned with the matrix A.

As for all α 6= 0, cond(αA) = cond(A), we cannot hope to reduce
the conditioning of A by multiplying all its elements by the same num-
ber. On the other hand, it can be done by multiplying for example each
line (and/or each column) by an appropriate coe�cient; this is the prob-
lem of the balancing of a matrix, which can be stated as follows: given a
matrix A, determine two invertible diagonal matrices D1 and D2 satisfying:
cond(D1AD2) = inf∆1,∆2 invertible diagonalcond(∆1A∆2).

We then solve Ax = b in two steps:

• solving D1AD2y = D1b

• solving x = D2y.
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In practice, conditioning is not a simple function of the elements of D1

and D2; we try instead to minimize the ratio between the largest and the
smallest nonzero element of A′ = ∆1A∆2. Set E = {(i, j) with 1 6 i 6 n,
1 6 j 6 n and aij 6= 0}. We look for two matrices ∆1 and ∆2 diagonal and
invertible which minimize the ratio:

max(i,j)∈E|a′ij|
min(i,j)∈E|a′ij|

.

We consider now the case where A is a real matrix. Denoting by xi the
ith element of the diagonal of ∆1 and by yi the i

th element of the diagonal
of ∆2, we have: a′ij = xiaijyj. We go to logarithms by posing αij = ln |aij|,
ui = ln |xi|, vj = ln|yj|. The problem becomes:

minimize ui,vj with (i,j)∈E [ max
(i,j)∈E

(αij + ui + vj)− min
(i,j)∈E

(αij + ui + vj)],

what is rewritten as the following linear program (because, by a translation
of the values, we can restrict ourselves to the solutions where the minimum
on the ui and vj of αij + ui + vj is 0):

minimize z
with, for any (i, j) ∈ E, 0 6 αij + ui + vj 6 z
ui and vj real.

2.2.2 Conditioning of a problem of search of eigenvalues

In a search problem of eigenvalues, it is again important to know the in�uence
of a small modi�cation of the coe�cients of the matrix A on the computed
eigenvalues. This conditioning involves conditioning of the change-of-basis
matrix from A to a diagonal shape, and not A directly. The following the-
orem makes it possible to de�ne this new conditioning which will be denote
Γ(A).

Theorem: let A be a diagonalizable matrix and P a matrix such that P−1AP
is diagonal with diagonal terms λi. Let || || be a matrix norm such that, for
any diagonal matrix diag(δi):

||diag(δi)|| = maxi|δi|.

So, for any matrix δA:



20 Problems of numerical analysis

spectrum(A+ δA) ⊂
⋃n
i=1Di,

with Di = {z ∈ C such that |z − λi| 6 cond|| ||(P )||δA||}.

This means that, if A is diagonalizable, the δA perturbation globally
leaves the eigenvalues in complex disks, centered on the old eigenvalues and
radius cond|| ||(P )||δA||.

For A diagonalizable, the Γ(A) conditioning relative to the search for
eigenvalues is de�ned as the conditional minimum cond|| ||(P ) taken on ma-
trices P such that P−1AP is diagonal. The theorem above indicates that,
for A diagonalizable, we have the inclusion:

spectrum(A+ δA) ⊂
n⋃
i=1

{z ∈ C such that |z − λi| 6 Γ(A)||δA||}.

Since a normal matrix is diagonalizable with a unitary change-of-basis
matrix P , it has a Γ(A) conditioning equal to 1 for || ||2. This is therefore in
particular the case for symmetric matrices. In the latter case, we have the
theorem:

Theorem: Let A be a symmetric matrix and B = A + δA, where the δA
perturbation is also symmetric. Let α1 6 α2 6 ... 6 αn be the eigenvalues
of A and β1 6 β2 6 ... 6 βn be the eigenvalues of B. Then, we have for
1 6 i 6 n: |αi − βi| 6 ||δA||2.

This theorem expresses that, if A and δA are both symmetric, each eigen-
value of A+ δA remains in a real interval centered on the old eigenvalue and
of radius ||δA||2.



Chapter 3

Resolution of linear systems

3.1 Generalities

The problem we are interested in can be formulated as follows.

Problem: let A = (ai,j) an invertible square matrix of dimension n, x = (xi)
and b = (bi) two column vectors of dimension n; solve in x the system Ax = b.

Remarks.

1. Numerical methods of resolution do not generally use the computation
of A−1.

2. If A is in upper triangular form (the elements below the main diagonal
are all null) with non-zero diagonal terms, then the resolution is easy.
We start by solving the last relation, which is a linear equation in
the only variable xn, we transfer this value in the previous relation
which becomes an equation in xn−1, and we continue step by step up to
x1. This method, called backward substitution and summarized below,
requires n(n−1)/2 additions, n(n−1)/2 multiplications and n divisions.


a1,1x1+ ... + a1,n−1xn−1 + a1,nxn = b1

...
an−1,n−1xn−1 + an−1,nxn = bn−1

an,nxn = bn

21
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⇒



xn =
bn
an,n

xn−1 =
bn−1 − an−1,nxn

an−1,n−1

...

x1 =
b1 − a1,2x2 − ...− a1,nxn

a1,1

3.2 Gauss method

Gauss method is used when the matrix A is invertible. The principle is as
follows:

• Using linear combinations between the lines of A, we eliminate suc-
cessively some variables of relations, to obtain a form (MA)x = Mb
where MA is an upper triangular matrix. Note that in fact we do not
compute M , but we build directly MA and Mb.

• We solve (MA)x = Mb by the backward substitutions method.

3.2.1 Elimination step

• We choose in the �rst column a coe�cient ai,1 di�erent from 0; there
is always one since the matrix is invertible. This element is the pivot .

• If the pivot is not in the �rst line, the line of the pivot is exchanged
with the �rst line.

• By well-chosen linear combinations, obtained by subtracting the �rst
line multiplied by the correct coe�cient at each line, we eliminate all
the terms of the column of the pivot located under the diagonal.

• We obtain then a matrix A′ whose �rst column has only 0 under the
�rst term which, it, is non-zero.

• We consider the matrix obtained by deleting the �rst row and the �rst
column of A′. The process is repeated on this new matrix.

• We stop this process when the matrix obtained is of dimension 1.
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• Relocating deleted rows and columns, we get a triangular matrix.

Remark. The determinant of A is obtained by the product of the pivots
multiplied by (−1)p, where p represents the number of times that the pivot
was not on the diagonal.
Example 1

We consider the system:
2x1 + x2 − 3x3 = 5
4x1 + x2 + 5x3 = −1

10x1 − 7x2 + 13x3 = −3

After the �rst iteration, having chosen as pivot the value 2, in bold above,
we obtain: 

2x1 + x2 − 3x3 = 5
− 1x2 + 11x3 = −11
− 12x2 + 28x3 = −28

After the second iteration (the pivot is the coe�cient of the second row,
second column and is equal to −1), we obtain:

2x1 + x2 − 3x3 = 5
− x2 + 11x3 = −11

− 104x3 = 104

We then apply a backward substitutions method and we successively ob-
tain:

x3 = −1, x2 =
−11− 11x3

−1
= 0, x1 =

5− x2 + 3x3

2
= 1.

Remark. Since the rows have not been exchanged, the determinant of A is
equal to the determinant of the matrix corresponding to the last system. So
we have: det(A) = 2× (−1)× (−104) = 208.

Example 2
We consider the system:

2x1 + x2 − 3x3 = −3
4x1 + 2x2 − x3 = 4
6x1 + 5x2 + 8x3 = 27
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After the �rst iteration, having chosen as pivot the value 2, in bold above,
we obtain: 

2x1 + x2 − 3x3 = −3
0x2 + 5x3 = 10
2x2 + 17x3 = 36

The pivot is now necessarily the coe�cient of x2 in the last line (of value 2);
the second and third lines are exchanged; we obtain:

2x1 + x2 − 3x3 = −3
2x2 + 17x3 = 36
0x2 + 5x3 = 10

The coe�cient of x2 in the last line being zero, it remains only to perform
the backward substitutions method:

x3 = 10/5 = 2, x2 =
36− 17x3

2
= 1, x1 =

−3− x2 + 3x3

2
= 1.

Remark. As the lines have been exchanged once, the determinant of A equals
the determinant of the matrix corresponding to the last system multiplied
by −1. So we have: det(A) = (−1)× 2× 2× 5 = −20.

3.2.2 Choice of the pivot

Because of rounding errors, the choice of the pivot is important; indeed, a
pivot too small module can lead to bad solutions because of the division by
the pivot. Two strategies are in fact possible.

• Partiel pivot p: we choose in the current column the term of largest
module located under the diagonal or on this one.

• Total pivot : we choose the term of the largest module of the residual
matrix, that is to say, if we are at the step n − k + 1, the matrix
consisting of the k last lines and k last columns. This method is more
expensive in time.

3.2.3 Complexity

The number of operations needed for the Gaussian method can be estimated;
in the case where we do not choose the pivot, we do in all about n3

3
additions,
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as many multiplications, n
2

2
divisions and thus in total a number of arithmetic

operations equivalent to 2n3

3
.

3.2.4 Variant: Gauss-Jordan method

Compared to the Gaussian method, the only di�erence made by the Gauss-
Jordan method is that in the elimination phase, the terms above the diagonal
are also eliminated. This produces a diagonal matrix. This method is used
in particular for computing the inverse of a matrix. We then solve simulta-
neously the n linear systems Axj = ej, xj being the column vector of the
inverse matrix, the ej constituting the vectors of the canonical basis of Rn.

Example: the computation of the inverse of A =

 1 −3 14
1 −2 10
−2 4 −19

.

We solve the three systems:
x1 − 3x2 + 14x3 = 1 0 0
x1 − 2x2 + 10x3 = 0 1 0

−2x1 + 4x2 − 19x3 = 0 0 1

First iteration (here, with partial pivot): we exchange the �rst and the third
lines, which gives, with the pivot at the top left (in bold):

−2x1 + 4x2 − 19x3 = 0 0 1
x1 − 2x2 + 10x3 = 0 1 0
x1 − 3x2 + 14x3 = 1 0 0

The terms of the �rst column except the diagonal term are eliminated. We
obtain: 

−2x1 + 4x2 − 19 x3 = 0 0 1
0x2 + 1/2 x3 = 0 1 1/2

− x2 + 9/2 x3 = 1 0 1/2

Second iteration (now, with total pivot to illustrate this variant): the largest
coe�cient in absolute value being 9/2, bottom right, we exchange the second
and the third lines as well as the second and the third columns. We obtain:

−2x1 − 19x3 + 4x2 = 0 0 1
9/2 x3 − x2 = 1 0 1/2
1/2 x3 + 0x2 = 0 1 1/2
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The terms of the second column except the diagonal term are eliminated.
We obtain: 

−2x1 − 2/9 x2 = 38/9 0 28/9
9/2 x3 − x2 = 1 0 1/2

1/9 x2 = −1/9 1 4/9

Third and last iteration; the pivot can only be the element of the line not
yet treated: it is the 1/9 bottom right. We obtain:

−2x1 = 4 2 4
9/2 x3 = 0 9 9/2

1/9x2 = −1/9 1 4/9

We can now solve the three systems immediately:
x1 = −2 −1 −2
x2 = −1 9 4
x3 = 0 2 1

We deduce the inverse ofA from these computations: A−1 =

−2 −1 −2
−1 9 4
0 2 1

.

Since there are two exchanges of lines and one exchange of columns, the
determinant of A is: (−1)3 × (−2)× 9

2
× 1

9
= 1.

3.3 LU factorization

We assume that we apply the Gaussian method and that, in the step k
(1 6 k 6 n− 1), the pivot is always on the diagonal, that is that the term
that appears in the cell (k, k) after k − 1 steps is never equal to 0 (this is
largely the general case).

Let k be an index verifying 1 6 k 6 n.
Denote by Mk the matrix of the system obtained after k − 1 iterations,

withM1 = A; this matrix has values equal to 0 under the �rst (k−1) terms of
the diagonal (i.e. for any pair of indices (s, t) with 1 6 t 6 k− 1, s > t) and,
by hypothesis, (Mk)k,k is not equal to 0. The matrix Mn is upper triangular,
we denote it U (for upper). We now assume k 6 n − 1. For 1 6 i 6 n, let
αi = (Mk)i,k; thus, the k

e column of Mk (the pivot column) is:
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α1

...
αk 6= 0
...
αn

 .

Let Ek be the matrix that has 1 on the diagonal and elsewhere 0 except
for (Ek)i,k with i > k (part of the ke column below the diagonal) and, for
i > k, (Ek)i,k = − αi

αk
. This matrix Ek is therefore lower triangular and di�ers

from the identity matrix only by its ke column:

Ek =



1 0 ...
0 1 0 ...

... 0 ..
... 0 1 0 ...

−αk+1

αk
1 0 ...

...
−αn

αk
0 ...1


.

We have by the choice of coe�cients of Ek: EkMk = Mk+1.
With M1 = A and Mn = U , we obtain: U = En−1En−2...E1A.
Therefore: A = E−1

1 E−1
2 ...E−1

n−1U .
For 1 6 k < i 6 n, let Li,k = αi

αk
. We can easily check the equality:

E−1
k =



1 0 ...
0 1 0 ...

... 0 ..
... 0 1 0 ...

Lk+1,k 1 0 ...
...
Ln,k 0 ...1


.

and then

E−1
1 ...E−1

n−2E
−1
n−1 =


1 0 ...
L2,1 1 0 ...
L3,1 L3,2 1 0 ...

...
Ln,1 Ln,2 βn,3 ... Ln,n−1 1

 .
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Denoting by L (for lower) the matrix above, we have: A = LU .
We thus obtain the so-called LU factorization of A : A = LU , with L

lower triangular matrix with the value 1 on the diagonal and U upper trian-
gular matrix.

Example

We treat again the example 1 of the Gaussian method with: A =

 2 1 −3
4 1 5
10 −7 13

.

M1 = A.
First iteration. The pivot is of value 2, in bold above;

• we have: L2,1 =
4

2
= 2, we multiply the �rst line by L2,1 = 2 before

subtracting it from the second line.

• we have: L3,1 =
10

2
= 5, we multiply the �rst line by 5 before subtract-

ing it from the third line.

We obtain the matrix:

M2 =

2 1 −3
0 -1 11
0 −12 28

 .

Second iteration. The pivot is of value -1, we have: L3,2 =
−12

−1
= 12, we

multiply the second line by 12 before subtracting it from the third line. We

obtain the matrix: M3 =

2 1 −3
0 −1 11
0 0 −104


Conclusion. We have: U =

2 1 −3
0 −1 11
0 0 −104

 and L =

1 0 0
2 1 0
5 12 1

 .

The preceding considerations are based on the assumption that, in the
application of the Gaussian method, the pivot is on the diagonal (see above).
The following theorem gives a su�cient condition for this hypothesis to be
satis�ed.



Cholesky method 29

Theorem of existence of the factorization LU
Let A = (aij) a square matrix (invertible) such that, for every k between 1

and n, the sub-matrix

a11 ... a1k
...

...
ak1 ... akk

 is invertible. Then, the factorization

A = LU is possible (more precisely, the successive pivots can always be taken
on the diagonal, without exchange of lines). Moreover, we can choose Lii = 1
and the decomposition is then unique.

In fact, we can show that if the LU factorization fails (that is, if the pivots
cannot always be chosen on the diagonal without exchanging lines), we can
initially switch the rows of the matrix A to obtain a matrix A′ for which the
factorization LU is possible.

When several linear systems of the same matrix A have to be solved,
the factorization LU is computed during the resolution of the �rst of these
systems. The resolution of any later system Ax = b results to the resolution
of two systems of triangular matrices: the system Ly = b and then the system
Ux = y (note that it is useless to know M explicitly, whose computation is
not necessarily easy). Each system then takes only n(n−1) additions, n(n−1)
multiplications and 2n divisions.

3.4 Cholesky method

The Cholesky method gives an interesting factorization in the case of sym-
metric positive de�nite matrices. In this case, one can choose an LU factor-
ization with U = Lt while renouncing nevertheless to have diagonal terms all
equal to 1 in L.

Theorem. Let A be a symmetric positive de�nite matrix. There is a lower
triangular matrix B satisfying A = BBt. Moreover, we can impose that the
diagonal elements of the matrix B are all strictly positive and the factoriza-
tion A = BBt is then unique.

In practice, we compute the matrix B =


b11 0 ... 0
b21 b22 0 ... 0

...
bn1 bn2 ... bnn

 column
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by column, from the equalities de�ning it: for 1 6 i 6 j 6 n,

aij =
i∑

k=1

bikbjk = aji.

• For the �rst column, the formula gives

? b11 =
√
a11

? pour 2 6 i 6 n, bi1 =
ai1
b11

.

• Pour 2 6 j 6 n,

? on the diagonal, bjj =
√
ajj −

∑j−1
k=1 bjk

2

? for j < i 6 n, bij =
aij −

∑j−1
k=1 bikbjk
bjj

.

Remark.
1. The proof of the previous theorem would show that the bij thus obtained
are well de�ned, thanks to the fact that A is positive de�nite.
2. The determinant of the A matrix can be easily computed:

det(A) = (b11b22...bnn)2.

A system Ax = b then becomes BBtx = b. To solve the system, we solve
By = b and then Btx = y.

Complexity. In total (the factorization and the two resolutions), we do appro-
ximately n3/6 additions, n3/6 multiplications, n2/2 divisions, n extractions
of square roots, therefore, we do approximatively n3/3 operations, that is to
say, about half of the operations implemented by the Gaussian method. It
is therefore advantageous to apply the method of Cholesky rather than the
Gaussian method when A is symmetric de�nite positive.

Example.
Consider the following system:

4x1 − 2x2 = 4
−2x1 + 2x2 + 3x3 = −8

3x2 + 10x3 = −20
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The corresponding A matrix is: A =

 4 −2 0
−2 2 3
0 3 10

. This matrix is sym-

metric de�nite positive. Indeed, let x be a vector of Rn represented by a
column vector. We then have:

xtAx = 4x1
2 − 4x1x2 + 2x2

2 + 6x2x3 + 10x3
2

= (2x1 − x2)2 + (x2 + 3x3)2 + x3
2.

Therefore, if x is not equal to zero, xtAx is a strictly positive real.

First step. We compute B such as A = BBt with B upper triangular. The
application of the preceding formulas gives:

b11 =
√
a11 = 2

b21 =
a21

b11

= −1

b31 =
a31

b11

= 0

b22 =

√√√√a22 −
1∑

k=1

b2k
2 =
√

2− 1 = 1

b32 =
a32 −

∑1
k=1 b3kb2k

b22

=
3− 0× (−1)

1
= 3

b33 =

√√√√a33 −
2∑

k=1

b3k
2 =
√

10− 0− 9 = 1.

Therefore: B =

 2 0 0
−1 1 0
0 3 1

 and det(A) = (2× 1× 1)2 = 4.

Second step. By the backward substitutions method, we solve the two systems
By = b and Btx = y.

The system By = b is:
2y1 = 4
−y1 + y2 = −8

3y2 + y3 = −20
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which has y1 = 2, y2 = −6, y3 = −2 for solution.
The system Btx = y is:

2x1 − x2 = 2
x2 + 3x3 = −6

x3 = −2

which has x3 = −2, x2 = 0, x1 = 1 for solution.

The solution of the system is therefore: x =

 1
0
−2

.

If we had another system to solve with the same matrix A, only the second
step would be applied.



Chapter 4

Eigenvalues and eigenvectors

Let us �rst remark that the search for the eigenvalues of a matrix, unlike
the computation of its inverse, is a di�cult problem. Given the polynomial
P (λ) = λn + a1λ

n−1 + ...+ an−1λ+ an, de�ne the matrix:

−a1 −a2 −a3 ... −an−1 −an
1 0
0 1 0

0 1 0
...
0 1 0

0 1 0


Its characteristic polynomial is (−1)nP (λ); the matrix therefore has for eigen-
values the roots of P . According to Abel's theorem, it is impossible to com-
pute the roots of any polynomial from degree 5 using a �nite number of
applications of the four usual arithmetic operations plus root extraction. If
a search method of eigenvalues always converges in a �nite number of these
operations, it would be the same for the search for the roots of any polynomial
equation, which is contrary to the result of Abel.

To compute an approximation of the eigenvalues of a matrix A, the basic
idea is to look for a matrix similar to A, that is to say of the form P−1AP ,
triangular or diagonal, and whose diagonal will consist of the eigenvalues of
A. We will study in this chapter only one method, the method of Jacobi,
which applies to the case of real symmetric matrices. Remember that the
eigenvalues of such a matrix are real.

33
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4.1 Jacobi method

Let A be a symmetric real matrix, let p and q be two indices ful�lling p

<q such that the element (non diagonal) apq is not equl to zero (if there is
none, A is diagonal and the eigenvalues of A are precisely the values of the
diagonal).

Let θ be a real number; we de�ne a matrix Ω depending on θ. The
matrix Ω di�ers from the identity matrix of order n only by the following
four coe�cients:

Ωpp = Ωqq = cos θ,Ωpq = sin θ,Ωqp = − sin θ.

The matrix Ω is represented below.

Ω =



1 0 ... 0 0
0 1 ... 0 0

... ... ...
cos θ ... sin θ

1 ...
...
... 1

− sin θ ... cos θ
... ... ...

0 0 ... 1 0
0 0 ... 0 1


.

The matrix Ω is orthogonal. This is the rotation matrix of angle −θ in the
plane de�ned by the pth and qth base vectors.

We set: B = ΩtAΩ. The matrix B, also symmetric, is similar to the
matrix A and thus admits the same eigenvalues as A. The following equalities
are easily established:

si i /∈ {p, q} and j /∈ {p, q}, bij = bji = aij
si i /∈ {p, q}, bpi = bip = api cos θ − aqi sin θ
si i /∈ {p, q}, bqi = biq = api sin θ + aqi cos θ
bpp = app cos2 θ + aqq sin2 θ − apq sin 2θ
bqq = app sin2 θ + aqq cos2 θ + apq sin 2θ

bpq = bqp = apq cos 2θ +
app − aqq

2
sin 2θ.
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We notice the equivalence bpq = 0 ⇔ cot 2θ =
aqq − app

2apq
(where cot

denotes the cotangent trigonometric function). We try to make bpq = 0, so
we choose θ to satisfy the formula above. There are four solutions in the
interval ] − π, π], two successive solutions di�ering from π/2. So there is a
unique solution in the interval ]− π

4
, π

4
], this is the chosen solution.

We set: x =
aqq − app

2apq
, t = tan θ, s = sin θ, c = cos θ. The following

trigonometric relationships are recalled:

cot 2θ =
cos 2θ

sin 2θ
=

cos2 θ − sin2 θ

2 sin θ cos θ
=

1− t2

2t
.

We try to have: x =
1− t2

2t
; so, t must ful�l the equation: t2+2xt−1 = 0.

Since the product of the roots is −1 and θ is in the range ] − π
4
, π

4
], t is the

root of the equation of smaller absolute value if x 6= 0, and is 1 if x = 0.

As we have c > 0, it comes c =
1√

1 + t2
and s = ct =

t√
1 + t2

.

The coe�cients of theB matrix can actually be computed by the following
formulas, in which t, c and s are de�ned as above:

if i /∈ {p, q} and j /∈ {p, q}, bij = bji = aij
if i /∈ {p, q}, bpi = bip = capi − saqi
if i /∈ {p, q}, bqi = biq = sapi + caqi
bpp = app − tapq
bqq = aqq + tapq.

One step of Jacobi method, summary
• We choose in the current matrix two indices p and q, with p < q .

• We set x =
aqq − app

2apq
.

•We solve t2 + 2xt− 1 = 0. We retain for t the root of the smallest absolute
value if x 6= 0, and 1 if x = 0.

• We compute: c =
1√

1 + t2
and s =

t√
1 + t2

.

• The new coe�cients are computed using the above formulas that use c, s
and t.

Remark. It is natural to wonder whether, in doing this transformation which
has the merit of canceling non-diagonal elements, we do not risk, at the same
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time, making non-null elements that were previously null. This is not only
true, but even inevitable, since otherwise we would diagonalize the matrix
A with about n3 elementary operations, whereas we indicated in the initial
remark that this was impossible. There is, however, good reason to hope,
by reiterating the process, a convergence of the matrices B obtained to a
diagonal matrix, as we will explain below.

Theorem. Let A be a real symmetric matrix and let B be the matrix
obtained using the above method. We then have the relations:∑n

i=1

∑n
j=1 a

2
ij =

∑n
i=1

∑n
j=1 b

2
ij,∑n

i=1 a
2
ii + 2a2

pq =
∑n

i=1 b
2
ii.

Proof of the theorem. The �rst relation results from the conservation of the
norm || ||E by a unitary transformation. For the second, only the elements
of the rows and columns p and q are modi�ed. Therefore, diagonal elements
other than app and aqq are invariant as well as their squares. We have:

b2
pp + b2

qq = a2
pp + a2

qq + 2t2a2
pq + 2tapq(aqq − app)

= a2
pp + a2

qq + 2a2
pq + 2apq(t

2apq + t(aqq − app)− apq).

Now, the choice of t is that we have t2 + taqq−app
apq

− 1 = 0.

Hence the result stated: b2
pp + b2

qq = a2
pp + a2

qq + 2a2
pq. ♦

This theorem shows that the weight of the matrix is displaced, during
the iterations of the method of Jacobi, on the diagonal of the matrix and,
consequently, that the non-diagonal elements have a weight which decreases.
Moreover, it seems that in order to accelerate the convergence of the process,
it is advantageous to choose as the pair (p, q) the indices of a non-diagonal
element of maximum absolute value. It is indeed this choice that is often
made.
Theorem.The sequence of the matrices obtained by the method of Jacobi is
convergent and converges to a diagonal matrix containing the eigenvalues of
A.

The Jacobi method also makes it possible to obtain an approximation
of the eigenvectors of a matrix A, at least when the eigenvalues of A are
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distinct. This is what the following theorem says.

Theorem. If all the eigenvalues of the A matrix are distinct, then the se-
quence of the Ω matrix products with the new Ω matrix on the right of the
product at each step converges to an orthogonal matrix whose column vec-
tors constitute an orthonormal set of eigenvectors of the matrix A.

Example 1. Let us apply Jacobi method to �nd approximations of eigen-

values and eigenvectors of the matrix A =

1 2 0
2 1 0
0 0 5

 . There are only the

coe�cients p = 1 and q = 2 which are to be considered. With the previous
notations, we have x = 0 and so t = 1, s = c =

√
2

2
. Therefore, the matrix Ω

is: Ω =

 √2/2
√

2/2 0

−
√

2/2
√

2/2 0
0 0 1

.

Applying the previous formulas gives:
- unchanged term (here, only one a priori): b33 = a33 = 5
- �rst line and �rst column, except diagonal:
b12 = b21 = 0
b13 = b31 = ca13 − sa23 = 0
- second row and second column, except diagonal:
b23 = b32 = sa13 + ca23 = 0
- diagonal terms that change a priori :
b11 = a11 − ta12 = 1− 2 = −1
b22 = a22 + ta12 = 1 + 2 = 3.

We thus obtain: B =

−1 0 0
0 3 0
0 0 5

.

The matrix is diagonal, the Jacobi method converges here with one ite-
ration (the example is very simple) and gives us the eigenvalues (exactly)
as well as the eigenvectors of A. The eigenvalues of A are: −1, 3 and 5.
The orthonormal basis of eigenvectors consists of vectors: (

√
2/2,−

√
2/2, 0)t,

(
√

2/2,
√

2/2, 0)t, (0, 0, 1)t.

Example 2. Let us apply Jacobi method to �nd approximations of eigenvalues
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and eigenvectors of the matrix A =

1 2 4
2 −3 −1
4 −1 7

.

First step.
We choose the largest absolute value of a non-diagonal coe�cient: this is the
value 4, with p = 1, q = 3.

We compute x: x = 7−1
2×4

= 3
4
.

We solve the equation t2 + 2xt − 1 = 0, that is: t2 + 3
2
t − 1 = 0, whose

roots are t = 1/2 and t = −2. We keep the smallest root in absolute value:
t = 1/2.

We compute c and s: c =
1√

1 + t2
=

2√
5

=
2
√

5

5
and s = tc =

√
5

5
.

Then we apply the formulas giving the coe�cients of B, with of course
b13 = b31 = 0:
b22 remains unchanged: b22 = −3

b12 = b21 = ca12 − sa32 =
2
√

5

5
× 2−

√
5

5
× (−1) =

√
5

b32 = b23 = sa12 + ca32 =

√
5

5
× 2 +

2
√

5

5
× (−1) = 0

b11 = a11 − ta13 = 1− 1

2
× 4 = −1

b33 = a33 + ta13 = 7 +
1

2
× 4 = 9.

We thus obtain the matrix B:

B =

−1
√

5 0√
5 −3 0

0 0 9


and the change-of-basis matrix Ω1:

Ω1 =

2
√

5
5

0
√

5
5

0 1 0

−
√

5
5

0 2
√

5
5

 ≈
 0, 894 0 0, 447

0 1 0
−0, 447 0 0, 894

 .

Second step. We go back from the B matrix to move to a C matrix computed
with Jacobi method.

We set: p = 1, q = 2. We compute x: x = −3+1
2
√

5
= −

√
5

5
.

We solve the equation: t2−2
√

5
5
t−1 = 0 whose roots are: t =

√
5

5
(1 +

√
6)

and t =
√

5
5

(1−
√

6). The smallest root in absolute value is: t =
√

5
5

(1−
√

6),
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t ≈ −0, 648. Thus: c =
1√

1 + t2
≈ 0, 839 and s = ct ≈ −0, 544. We then

obtain:
c33 = b33 = 9
c12 = c21 = 0
c11 = b11 − tb12 = −1−

√
5

5
(1−

√
6)
√

5 = −2 +
√

6

c22 = b22 + tb12 = −3 +
√

5
5

(1−
√

6)
√

5 = −2−
√

6
c13 = c31 = cb13 − sb23 = 0
c23 = c32 = sb13 + cb23 = 0.

Therefore:

C =

−2 +
√

6 0 0

0 −2−
√

6 0
0 0 9

 .

The approximate change-of-basis Ω2 is given by:

Ω2 ≈

0, 839 −0, 544 0
0, 544 0, 839 0

0 0 1

 .

Since the C matrix is diagonal, the method is complete. The eigenvalues
of A are: −2 +

√
6, −2−

√
6, 9.

An approximate orthonormal basis of eigenvectors is obtained by com-

puting the product Ω1Ω2: Ω1Ω2 ≈

 0, 75 −0, 486 0, 447
0, 544 0, 839 0
−0, 375 0, 243 0, 894

.

Example 3. Let us apply Jacobi method to �nd approximations of eigenvalues

and eigenvectors of the matrix A =

1 2 4
2 −3 0
4 0 7

.

We choose the largest absolute value of a non-diagonal coe�cient. This
is the value 4. We set: p = 1, q = 3.

As in example 2, the following is computed: t = 1/2 , c =
2
√

5

5
and
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s =

√
5

5
.

We have:
b22 = −3
b13 = b31 = 0

b12 = b21 = ca12 − sa32 =
2
√

5

5
× 2−

√
5

5
× 0 =

4
√

5

5

b32 = b23 = sa12 + ca32 =

√
5

5
× 2 +

2
√

5

5
× 0 =

2
√

5

5
b11 = a11 − ta13 = −1
b33 = a33 + ta13 = 9.

We thus obtain: B =

−1 4
√

5
5

0

4
√

5
5
−3 2

√
5

5

0 2
√

5
5

9

.

This example shows that coe�cients can go from null to non-zero. Never-
theless, going from A to B, the weight of the matrix focused on the diagonal.
The method should be continued to compute an approximation of the eigen-
values and eigenvectors of the A matrix.



Chapter 5

Linear programming: the simplex

algorithm

5.1 Introduction

To illustrate what the linear programming (also called linear optimization)
is, let us start with a simple example. With this example, we introduce some
properties that will be useful for the simplex algorithm1. It was designed by
G. Danzig from 19472 and remains since one of the main algorithms of linear
optimization, even if other algorithms came then to compete, in particular
the method of N. Karmakar3.

A factory produces two kinds of products, p1 and p2, using two machines
m1 and m2. It is assumed that the manufactured quantity of these products
is not necessarily an integer, but only a positive real or zero. Each unit of

1The name of this method may seem a bit misleading. In geometry, a simplex of
dimension d, or d-simplex, is the convex hull of d + 1 points. Thus, a 1-simplex is a
straight line segment, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. The
simplex method is not limited to simplexes, but more generally considers polyhedron. For
this reason, perhaps the name of �polyhedron method� would have been more appropriate.

2G.B. Danzig, Linear Programming, in Problems for the Numerical Analysis of the Fu-
ture, Proceedings of Symposium on Modern Calculating Machinery and Numerical Meth-
ods, UCLA, July 29-31, 1948. See also GB Danzig and MN Thapa, Linear programming 1:
Introduction, 1997, and Linear Programming 2: Theory and Extensions, 2003, Springer-
Verlag.

3N. Karmarkar (1984). A New Polynomial Time Algorithm for Linear Programming,
Combinatorica, Vol. 4, nr. 4, p. 373-395.

41
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product being manufactured must pass on both machines in any order and
during the following times, expressed in minutes:

p1 p2

m1 30 20
m2 40 10

The machine m1 is available 6000 minutes per month and the machine
m2 is available 4000 minutes per month. The pro�t realized on a unit of the
product p1 is 400 e. The pro�t realized on a unit of the product p2 is 200 e.

We want to �nd the monthly manufacturing plan that maximizes pro�t.
For this, let us call x1 (respectively x2) the number of units of the product

p1 (respectively p2) to be produced monthly; we see that this problem can
be expressed in the following form:

Maximiser z = 400x1 + 200x2

avec les contraintes :


30x1 + 20x2 6 6000
40x1 + 10x2 6 4000
x1 > 0, x2 > 0.

The problem being in two variables, it admits a graphical solution easy to
implement, represented by the �gure 5.1.

The points (x1, x2) that ful�l the constraints belong to the OABC quadri-
lateral. Let λ be a real. The family of lines:

Dλ = {(x1, x2) with 400x1 + 200x2 = λ}
is a family of parallel lines. Among those lines that have a non-empty in-
tersection with the quadrilateral, it is the one that passes through B which
corresponds to the largest value of λ: it meets the quadrilateral of the con-
straints at the point of coordinates (40 , 240). The optimal solution of our
problem is therefore x1 = 40, x2 = 240 (et z = 64 000).

More generally, a problem of linear programming is a problem which can
be formulated as follows:

maximize a linear form of n variables x1, ..., xn:
∑n

j=1 cjxj

the variables being submitted:

• to m linear constraints: for i ∈ {1, 2, ...,m},
∑n

j=1 aijxj 6 bi

• to n positivity constraints: for j ∈ {1, 2, ..., n}, xj > 0.
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Figure 5.1: Illustration for the example.

This formulation is called the standard form of a linear programming
problem. Other formulations of the problem to be solved can be considered.
In all the following, we will not consider the case of strict inequalities (the
domain de�ned by the constraints would not be closed, the problem might
not admit an optimal solution, even if the function z is bounded from above
on this domain). On the other hand, problems where it is a question of
minimization, or for which there appear constraints of equality or non-strict
inequality in the converse sens, or for which variables have other constraints
than those to be positive or null (or are of non-constrained sign) can easily
be stated in standard form, as speci�ed by the following indications:

• to minimize a function f (linear or not) is to maximize −f , since we
have the relation: minimum of f = − maximum of (−f);

• we transform an inequality of type �>� into an inequality of type �6�
by multiplying it by −1;
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• an equality
∑n

j=1 aijxj = bi is the same as the two following inequalities:∑n
j=1 aijxj 6 bi and

∑n
j=1(−aij)xj 6 −bi;

• we replace a variable x constrained by the inequality x > α by the
variable x−α which will have to be positive or null (if there are several
constraints of this type, we only consider that with the highest value α
and we eliminate the others);

• we replace a variable x constrained by the inequality x 6 β by the
variable β−x which will have to be positive or null (if there are several
constraints of this type, we only consider the one with the lowest value
β and eliminate the others);

• we replace a variable constrained by the double inequality α 6 x 6 β
by the variable y = x − α and we add the constraints y 6 β − α and
y > 0 (if there are several constraints of this type involving the same
variable x, we keep only the most restrictive interval);

• we write a variable x that is neither positive nor negative as the di�e-
rence of two positive or zero variables: x = x+ − x− with x+ > 0 and
x− > 0.

We can then wonder if the proposed approach for the previous example
is likely to be generalized to the resolution of any problem of linear program-
ming. Since it is always possible to write a problem of linear programming
(without constraint of strict inequality) in standard form, consider a problem
set in this form:

Maximize z =
∑n

j=1 cjxj

with the constraints:

{
for i ∈ {1, 2, ...,m},

∑n
j=1 aijxj 6 bi

for j ∈ {1, 2, ..., n}, xj > 0.

The set of points of Rn of coordinates x1, ..., xn ful�lling the m + n pre-
vious constraints is a polyhedron called constraints polyhedron . This poly-
hedron is convex , that is, for every point M and any point P of the polyhe-
dron, the segment [M,P ] is entirely contained in the polyhedron. Indeed, let
M = (x1, ..., xn) and P = (y1, ..., yn) any two points of the constraints poly-
hedron; then, for any real λ verifying 0 6 λ 6 1, it is easy to check that the
point λM + (1− λ)P (of coordinates λxi + (1− λ)yi) belongs to the poly-
hedron. The n-uplets (x1, ..., xn) that ful�l the constraints are called feasible
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solutions of the problem. These are the coordinates of the points located in-
side the constraints polyhedron which, in the example, was the quadrilateral
OABC.

The development of the simplex method will show the following theorem
(we can also be convinced of this result using the two-variable example given
above):

Theorem 1. We consider a linear programming problem whose constraints
polyhedron is non-empty and whose function to be maximized is bounded from
above on this polyhedron. Then the problem admits a maximum (which is
�nite) reached in at least one vertex of the constraints polyhedron.

The idea of the simplex algorithm is to iteratively move from one vertex
of the constraints polyhedron to an adjacent vertex following edges of the
polyhedron so as to increase the value of the function to be optimized, until
�nding a vertex where the maximum is reached. It is thanks to the convexity
of the polyhedron and to the linearity of the function to maximum that we
can seek the maximum in a vertex of the polyhedron.

5.2 The simplex algorithm on an example

Let us apply the simplex algorithm to a more sophisticated example, to il-
lustrate how it works.

A textile factory produces four types of textiles: kelsch, nanzouk, shan-
tung and zenana. These textiles result from three main operations: spinning,
weaving, dyeing. They are produced in varying length, measured here in kilo-
meters. The production of one kilometer of textile requires a certain number
of hours of spinning, weaving and dyeing, these numbers depending on the
textile. In addition, the sale of these textiles brings some pro�t expressed
in euros. This data are speci�ed in the following table, for one kilometer of
fabric:

kelsch nanzouk shantung zenana
spinning 2 4 5 7
weaving 1 1 2 2
dyeing 1 2 3 3

bene�t 7 9 18 17
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Each day, the company has 42 hours of spinning, 17 hours of weaving and
24 hours of dyeing. The aim is to establish a manufacturing plan so as to
maximize the bene�t (it is assumed that it is in stable state of manufacture
and not in the initial phase where it is necessary to spin before weaving and
weaving before dyeing).

Let us call x1, x2, x3, x4 the respective lengths of kelsch, nanzouk, shan-
tung and zenana produced daily. The problem then admits the following
modeling:

Maximize z = 7x1 + 9x2 + 18x3 + 17x4

with the constraints:
2x1 + 4x2 + 5x3 + 7x4 6 42
x1 + x2 + 2x3 + 2x4 6 17
x1 + 2x2 + 3x3 + 3x4 6 24

x1 > 0, x2 > 0, x3 > 0, x4 > 0.

We recognize a linear programming problem in standard form. We will
solve this problem using the simplex algorithm that we will explain on this
example.

We introduce three non-negative variables called slack variables x5, x6,
x7, which measure for each resource the di�erence between the quantity ini-
tially available and the quantity consumed by the manufacturing plan given
by x1, x2, x3 and x4. We obtain what is called a dictionary (see below the
general de�nition), the �rst for the resolution of this problem (there will be
others):

x5 = 42 − 2x1 − 4x2 − 5x3 − 7x4

x6 = 17 − x1 − x2 − 2x3 − 2x4

x7 = 24 − x1 − 2x2 − 3x3 − 3x4

z = 7x1 + 9x2 + 18x3 + 17x4

Dictionary I

The problem can now be written:

Maximize z with xk > 0 for 1 6 k 6 7.

The constraints polyhedron is limited in R4 by the hyperplanes of equa-
tions xk = 0 for 1 6 k 6 7.

In this dictionary, the variables x5, x6 and x7 are expressed as linear
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functions of the variables x1, x2, x3 and x4; we say that the variables x5, x6

and x7 are currently the basic variables of the dictionary and the variables x1,
x2 , x3 and x4 the non-basic variables of the dictionary4. The basic solution
associated with the dictionary is the solution obtained by assigning the value
0 to all the non-basic variables; the values of the basic variables result from
it.

In order to distinguish the functions and variables from the values of
these functions and variables, we use the sign * when dealing with values:
thus x∗ will represent a value taken by the variable x. With this notation,
the equalities x∗1 = 0, x∗2 = 0, x∗3 = 0, x∗4 = 0 give x∗5 = 42, x∗6 = 17
and x∗7 = 24. The seven variables having positive or null values in this basic
solution, we say that this dictionary is feasible . We can notice that the point
of coordinates (0, 0, 0, 0) is here a vertex of the constraints polyhedron; the
basic solution associated with the dictionary then gives to z the value 0.

The following remark is the basis of the method: we consider the expres-
sion of z in the current dictionary; if, in this expression, a non-basic variable
with a strictly positive coe�cient is increased from 0 (other non-basic vari-
ables remaining zero), the value of z increases. In our example, choose the
variable x3 (we could also choose here any one of the other three non-basic
variables). Keeping x1, x2 and x4 to 0, we try to increase x3 to the maxi-
mum, while retaining the property that the point M of R4 of coordinates
(0, 0, x3, 0) remains in the polyhedron of the constraints (we move then on
an edge of the constraints polyhedron from the vertex (0, 0, 0, 0)).

The constraints on increasing variable x3 are:

x5 > 0, which results in x3 6 8.4;

x6 > 0, which results in x3 6 8.5;

x7 > 0, which results in x3 6 8.

The �rst hyperplane that the pointM meets is therefore that of equation
x7 = 0: the point M then arrived at a new vertex of the constraints polyhe-
dron, at the intersection of hyperplanes of equations x1 = 0, x2 = 0, x4 = 0,
x7 = 0. We will compute a new dictionary by switching roles of x3 and x7,
to iterate the process we have just employed. We use the equation of the
dictionary I which gives x7 to write x3 as a function of x1, x2, x4 and x7; we
then replace x3 with this expression in the other equations of the dictionary.

4The de�nition 1 precise further what is a basis.
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We thus obtain a second dictionary:

x3 = 8 − 1

3
x1 −

2

3
x2 − x4 −

1

3
x7

x5 = 2 − 1

3
x1 −

2

3
x2 − 2x4 +

5

3
x7

x6 = 1 − 1

3
x1 +

1

3
x2 +

2

3
x7

z = 144 + x1 − 3x2 − x4 − 6x7

Dictionary II

We say that we have chosen x3 as the entering variable and that x7 was
the leaving variable . The basic variables are now x3, x5 and x6, and the non-
basic variables x1, x2, x4 and x7. In the new basic solution, the function z is
equal to 144, which is obtained by giving the value 0 to non-basic variables.
We notice that we thus have a new feasible solution more interesting than
that associated with the �rst dictionary.

In the new expression of the function z, we see that only the variable
x1 has a strictly positive coe�cient: we introduce x1 into the basis (x1 is
the entering variable), and we thus go by a new edge of the constraints
polyhedron; we have the following limits on the possible increase of the value
of x1 from the null value, the other non-basic variables remaining at 0:

x3 > 0, which results in x1 6 24;
x5 > 0, which results in x1 6 6;
x6 > 0, which results in x1 6 3.
It is the third limit which is the most restrictive; x6 leaves the basis,

which leads to the following dictionary:

x1 = 3 + x2 − 3x6 + 2x7

x3 = 7 − x2 − x4 + x6 − x7

x5 = 1 − x2 − 2x4 + x6 + x7

z = 147 − 2x2 − x4 − 3x6 − 4x7

Dictionnaire III

The basic solution associated with this new dictionary gives to z the
value 147. Moreover, we see on the last line of this dictionary that, since
the variables x2, x4, x6, x7 are positive or zero, the searched optimum of z
is bounded from above by 147. The current basic solution provides us an
optimal solution for the problem:

• three kilometers of kelsch, zero of nanzouk, seven of shantung and zero
zenana must be made every day;
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• all hours of weaving and dyeing are used, while there is one hour of
spinning available;

• the maximum pro�t is equal to 147.

Remarks.
1. It turns out that the solution obtained here is integral whereas it was
not imposed by the formulation of the problem. This is not general and the
problems of integer linear programming (that is to say, linear programming
problems for which variables must be integer) can be qualitatively more com-
plicated.
2. The method consists, at each step, in choosing to enter in basis a variable
whose coe�cient in the function z to optimize is strictly positive. However,
this does not always lead up to a strict increase of z. We will return to this
phenomenon in the section on �degeneracy�.
3. Finally, we had the chance to �nd, without any di�culty, a vertex of
the constraints polyhedron or, in other words, a feasible dictionary avail-
able as starting point. Indeed, the �origin was feasible�: when the variables
x1, x2, ..., xn are equal to 0, the bi being positive or zero, the values of the
slack variable are positive or null. We will study further less favorable cases.

5.3 De�nitions and terminology

Let us go back to some de�nitions. A linear programming problem is set in
standard form if it is written in the form:

maximize a linear form z of n variables x1, ..., xn: z =
∑n

j=1 cjxj,

the variables verifying:

• m linear constraints: for i ∈ {1, 2, ...,m},
∑n

j=1 aijxj 6 bi,

• n constraints of positivity: for j ∈ {1, 2, ..., n}, xj > 0.

Any n-uplet of value (x∗1, ..., x
∗
n) satisfying the constraints is a feasible

solution . If a problem has feasible solutions, it is said feasible.
The function z is called objective function. The variables x1, ..., xn are

called decision variables or also choice variable or main variable or initial
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variables ; the variables xn+1, ..., xn+m are called the slack variables . A so-
lution x∗1, x

∗
2, ..., x

∗
n+m is feasible if and only if all its values are positive or

zero; in other words: for k ∈ {1, 2, ..., n + m}, x∗k > 0. A feasible solution
that maximizes the objective function is called optimal solution. If a lin-
ear programming problem does not admit any feasible solution, it is said to
be infeasible or not feasible. If a problem admits feasible solutions and the
objective function can take arbitrarily large values, it is said to be feasible
unbounded . So there are three types of problems:

• feasible and unbounded problems,

• feasible and bounded problems,

• infeasible problems.

A dictionary is a system of linear equations involving x1, ..., xn, xn+1, ..., xn+m

and z, and satisfying the following two properties:

• the equations constituting a dictionary must express in a unique way
z and m of the n + m variables x1, ..., xn+m according to the n other
variables and this, uniquely;

• the dictionary is equivalent to the dictionary de�ning the slack variables
and the objective function, that is to say to the dictionary:

xn+1 = b1 −
∑n

j=1 a1jxj
...
xn+i = bi −

∑n
j=1 aijxj

...
xn+m = bm −

∑n
j=1 amjxj

z =
∑n

j=1 cjxj

De�nition 1. A basis consists of m variables (basic variables or in basis
variables) which can be written, uniquely and linearly, using the n other vari-
ables (non-basic variables ), this expression being equivalent to the initial m
equality constraints.

A basis therefore de�nes a dictionary and vice versa. A basis being �xed,
we obtain the basic solution associated with this basis or, which is the same
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think, with the dictionary associated with this basis, by assigning the value
0 to all the non-basic variables. Geometrically, a solution that is both basic
and feasible corresponds in fact to a vertex of the constraints polyhedron.

The aim of the simplex algorithm is to determine an optimal solution
among the basic and feasible solutions (that is, among the vertices of the
constraints polyhedron).

5.4 Summary of an iteration

To determine such an optimal feasible basic solution, we describe an iteration
of the simplex algorithm in general. For this, we de�ne two subsets of indices,
J and I: J is the indices of the n non-basic variables in the current dictionary
and I is the indices of the m basic variables. More precisely:

• J ⊂ {1, 2, ..., n+m} with |J | = n (initially, we pose J = {1, 2, ..., n});

• I = {1, 2, ..., n+m} \ J ;

• The current dictionary is described by the following equalities: for
i ∈ I, xi = b′i +

∑
j∈J a

′
ijxj and z = z∗ +

∑
j∈J c

′
jxj; we suppose that

the dictionary is feasible: for i ∈ I, b′i > 0.

The current iteration is as follows:

• if all the coe�cients c′j are negative or null, the algorithm is �nished:
giving the value 0 to the non-basic variables, we obtain an optimal
solution;

• otherwise:

? we choose a non-basic variable xj0 with a strictly positive coe�-
cient in z; it is the entering variable ; if there are several candidate
variables to enter in basis, one can for example privilege the vari-
able having the highest coe�cient in z (�rst criterion of Danzig)
or, what is generally more e�ective, privilege the variable giving
the highest increase of z (second criterion of Danzig); we will see
another choice in the next paragraph, in case of �degeneracy�;
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? the leaving variable xi0 is computed as the basic variable that most
restricts the increase of xj0 ; for this, we consider, for i ∈ I with

a′ij0 < 0, the ratios
−b′i
a′ij0

: i0 is the index for which this ratio is the

smallest (if there are several candidate variables to get out of the
basis, we can choose an arbitrary one, we will see a systematic
choice in the following paragraph, again in case of �degeneracy�);

? we extract xj0 from the current expression of xi0 ;

? we replace xj0 by its new expression in z and in the expression of
the other basic variables; the new current dictionary is obtained;
we are ready to apply the following iteration.

Remark. When we go from the current dictionary to the next dictionary,
we are sure that this one is feasible,by the choice of the leaving variable. In
other words, we go from a feasible basic solution to another feasible basic so-
lution. It is therefore useless to check this property when the new dictionary
is obtained.

5.5 Degeneracy and cycling

De�nition 2. A feasible basic solution with one or more basic variables equal
to 0 is called degenerate. A basis whose associated basic solution is degener-
ate is called degenerate .

Example.
Consider the dictionary (not degenerate):

x4 = 1 − 2x3

x5 = 3 − 2x1 + 4x2 − 6x3

x6 = 2 + x1 − 3x2 − 4x3

z = 2x1 − x2 + 8x3

Choosing x3 as entering variable, we see that the inequalities x4 > 0,
x5 > 0, x6 > 0 all three implie: x3 6 0.5. Each of the three variables
x4, x5, x6 is therefore a candidate to leave the basis. If we choose x4, we
obtain as new dictionary:
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x3 = 0.5 − 0.5x4

x5 = − 2x1 + 4x2 + 3x4

x6 = x1 − 3x2 + 2x4

z = 4 + 2x1 − x2 − 4x4

In the basic solution associated with this dictionary, x5 and x6 have the
value zero. Due to the nullity of at least one of the basic variables, this basic
solution is degenerate.

If we do an iteration from this dictionary, we see that, putting x1 into
basis (the only variable to have a positive coe�cient in z), the inequality
x5 > 0 leads to x1 6 0. The largest value attributable to x1 is 0 and the
value z∗ will not increase during this iteration.

The disadvantage of these inevitable degenerate iterations is that they
can induce a disastrous phenomenon for the convergence of the algorithm:
cycling. We say that there is cycling when, after a �nite number of itera-
tions, we �nd a basis already met. In fact, because of the independance of
the non-basic variables, as soon as we �nd the same partition of the m + n
variables in basic variables and non-basic variables, the dictionaries are the
same (this situation is illustrated by the exercise 5.8.5).

Remark. Consider an iteration going from a dictionary D1 to another dic-
tionary D2 with an entering variable x. We assume that the value of the
function z in the basic solution associated to D2 is equal to its value in the
basic solution associated to D1. This is only possible if x is null in the basic
solutions associated to D1 and D2. Conséquently, no value of the variables
changes during this iteration. If, during a sequence of dictionaries, the value
of the function z does not increase, no variable changes; geometrically, we
remain in the same vertex of the polyhedron, the edges that we are trying to
follow are in fact of length zero.

Cycling can always be avoided by applying the rule of the lowest index
(Bland rule5): when we have a choice on the entering variable or the leaving
variable, we always choose the one of the lowest index. We will prove the
correctness of this rule.

5R. G. Bland (1977), New �nite pivoting rules for the simplex method, Mathematics
of Operations Research, 2, 103-107.
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Theorem 2 (Bland theorem). There is no cycling when, at any iteration
performed from a degenerate dictionary, the entering and leaving variables
are chosen as those of the lowest index among the candidate variables.

Proof. Suppose that, applying the Bland rule, we �nd twice the same D0

dictionary after a series of iterations having built the dictionaries D0, D1, ...,
Dk = D0; all these dictionaries are necessarily degenerate. We call versatile
variable a variable that, during these iterations, is sometimes basic, some-
times non-basic (note that there are necessarily versatile variables when there
is cycling ); let t be the highest index of versatile variables. In the dictionaries
suite D0, D1, ..., Dk, D1, ..., Dk, it necessarily exists a dictionary D

′ in which
xt is leaving (that is, it is basic in D′ and not in the following dictionary),
and then a dictionary D′′ where xt is entering; let xs be the variable that
goes into basis when, starting from D′, xt leaves (xs is not basis in D

′ but is
in the following dictionary); xs is versatile and so we have s < t.

In the dictionaries suite D0, D1, ..., Dk, D1, ..., Dk, it necessarily exists
a dictionary D′ in which xt is leaving (that is, it is basic in D′ and not in
the following dictionary), then a dictionary D′′ where xt is entering; let xs
be the variable that comes into basis when, starting from D′, xt leave (xs is
not basic in D′ but is basic in the following dictionary); xs is versatile and
so we have s < t.

Denoting by I the set of indexes of the basic variables of D′, we can write
D′ as:

for i ∈ I, xi = b′i −
∑

j /∈I a
′
ijxj

z = z∗ +
∑

j /∈I c
′
jxj

Since the variable xs is entering, we have c′s > 0 and, since the Bland rule
is used, we have, for J ∈ J verifying j < s, c′j 6 0. Since the variable xt is
leaving in D′, it comes a′ts > 0.

The last line of D′′ can be written as:

z = z∗ +
n+m∑
k=1

c′′kxk

where c′′k is zero if xk is basic and c
′′
t > 0.

For any solution (x∗1, ..., x
∗
n+m) of the constraints system, we have, since
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the value of z does not change during the cycle:

z∗ +
∑
j /∈I

c′jx
∗
j = z∗ +

n+m∑
k=1

c′′kx
∗
k.

If we de�ne a particular solution of the constraints system by giving a null
value to all non-basic variables in D′ except xs and any value x∗s to xs (the
values of the other variables are then fully determined), the above equality
becomes:

c′sx
∗
s = c′′sx

∗
s +

∑
i∈I

c′′i (b
′
i − a′isx∗s)

or still: (
c′s − c′′s +

∑
i∈I

c′′i a
′
is

)
x∗s =

∑
i∈I

c′′i b
′
i.

This equality being true for any value x∗s, it comes:

c′s − c′′s +
∑
i∈I

c′′i a
′
is = 0.

Since it is xt that is entering into D′′ and not xs while we have s < t, it
is that we have c′′s 6 0. As we have noticed the inequality c′s > 0, there is an
index r of I with c′′ra

′
rs < 0.

By de�nition of r, the variable xr was basic in D
′ and since c′′r is non-zero,

it is not basic in D′′. We deduce that xr is a versatile variable, hence the
inequality r 6 t.

Therefore, c′′t and a′ts being positive, their product is also positive and r
can not be equal to t, hence r < t.

Since xt enters in the basis of D′′ while we have r < t, xr is not entering
in D′′ so we do not have c′′r > 0; therefore we have a′rs > 0.

According to the remark above, all versatile variables keep the value zero
during cycling. The variable xr being versatile, it is equal to zero in the basic
solution associated with D′. Consequently, we have b′r = 0.

The variable xr was therefore a candidate to leave the basis of D′ as xt
and by choosing xt, with t > r, we did not apply the rule of the lowest index,
a contradiction. ♦

Remark. It is useless to apply Bland rule when the dictionary is not dege-
nerate.
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5.6 Complexity of the simplex algorithm

The complexity of an iteration comes mainly from updating the coe�cients
describing the dictionary. More precisely:

• check whether or not the last dictionary has been reached is O(n);

• the determination of an entering variable (if any) is:

? in O(n) if we apply the �rst criterion of Danzig;

? in O(nm) if we apply the second criterion of Danzig;

? in O(n) if we apply Bland rule;

• then the determination of the leaving variable is done in O(m);

• �nally, the computation of the coe�cients of the new dictionary is done
in O(nm).

The complexity of an iteration is therefore in O(nm). Now, Bland theorem
shows that the number of iterations is bounded from above by the number
of possible dictionaries. Since a dictionary is de�ned by a bipartition of the
n + m variables in n non-basic variables and m basic variables, the number

of dictionaries is bounded from above by

(
n+m
n

)
=

(
n+m
m

)
. The

complexity of the simplex algorithm can therefore be bounded from above

by a function in O

(
nm

(
n+m
n

))
. We can see that this complexity can

not be bounded from above by a polynomial in n and m (more in-depth
studies can reduce this upper bound, but without getting an upper bound
polynomial in n and m; for any dimension, V. Klee and G. Minty 6 have
created instances, whose polyhedron is called Klee-Minty cube , for which
the simplex algorithm has exponential complexity).

5.7 Search of a feasible dictionary

Here again we will use an example.

6Klee V, GJ Minty (1972) How good is the simplex algorithm? in O. Shisha, Inequalities
III, Academic Press, New York -London, pp. 159-175.
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Suppose we want to solve the following problem, written in standard form.

Maximize z = x1 − x2 + x3

with the constraints:
2x1 − x2 + 2x3 6 4
2x1 − 3x2 + x3 6 −5
−x1 + x2 − 2x3 6 −1
x1 > 0, x2 > 0, x3 > 0.

We introduce the following auxiliary problem (which we also write in
standard form).

Maximize w = −x0

with the constraints:
2x1 − x2 + 2x3 − x0 6 4
2x1 − 3x2 + x3 − x0 6 −5
−x1 + x2 − 2x3 − x0 6 −1
x0 > 0, x1 > 0, x2 > 0, x3 > 0.

In a more general way, we obtain the auxiliary problem by adding x0 to
the bi. This can be interpreted by considering that the resources are increased
by x0. It is obvious that if x0 is big enough, the new resources become all
positive or null. On the other hand, if the initial problem admits a feasible
solution, we can take x0 = 0. The question is to determine the smallest value
to assign to x0 for the problem to be feasible. We are thus led to minimize
x0, or to maximize −x0.

Remark. It is possible to remove x0 from the �rst members of the inequalities
corresponding to a negative value of the second members, as it is done in the
solution of the exercise 5.8.6.

The auxiliary problem admits feasible solutions since the solution x∗0 = 5,
x∗1 = x∗2 = x∗3 = 0 is one. It is easy to see that the initial problem admits
a feasible solution if and only if the auxiliary problem admits 0 for optimal
value of the objective function. Moreover, if the auxiliary problem admits 0
as the optimal value, any optimal solution of the auxiliary problem gives a
feasible solution of the initial problem, in �forgetting� x0 (which is equal to
0 in this case).
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We go back to the example and write the dictionary de�ning the slack
variables of the auxiliary problem:

x4 = 4 − 2x1 + x2 − 2x3 + x0

x5 = −5 − 2x1 + 3x2 − x3 + x0

x6 = −1 + x1 − x2 + 2x3 + x0

w = − x0

This dictionary is not feasible since by giving to the non-basic variables
x1, x2, x3, x0 the value 0, the slack variables x5 and x6 take negative values.
However, it can be transformed in a feasible dictionary in one iteration.
Simply, we enter x0 into the basis and choose for the leaving variable the
variable that is �most negative� (here x5).

We obtain:

x0 = 5 + 2x1 − 3x2 + x3 + x5

x4 = 9 − 2x2 − x3 + x5

x6 = 4 + 3x1 − 4x2 + 3x3 + x5

w = −5 − 2x1 + 3x2 − x3 − x5

In this dictionary, x2 is an entering variable. Determine the leaving variable:

x0 > 0 gives x2 6
5

3
;

x4 > 0 gives in x2 6
9

2
;

x6 > 0 gives in x2 6 1.

The variable x6 leaves the basis. The following dictionary is then:

x2 = 1 + 0.75x1 + 0.75x3 + 0.25x5 − 0.25x6

x0 = 2 − 0.25x1 − 1.25x3 + 0.25x5 + 0.75x6

x4 = 7 − 1.5x1 − 2.5x3 + 0.5x5 + 0.5x6

w = −2 + 0.25x1 + 1.25x3 − 0.25x5 − 0.75x6

In the next step, let x3 enter in basis: x0 leaves to give the last dictionary
of the auxiliary problem.

x3 = 1,6 − 0,2x1 + 0,2x5 + 0,6x6 − 0,8x0

x2 = 2,2 + 0,6x1 + 0,4x5 + 0,2x6 − 0,6x0

x4 = 3 − x1 − x6 + 2x0

w = − x0
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We see that the initial problem has a feasible solution given by x∗1 = 0;
x∗2 = 2,2; x∗3 = 1, 6. As mentioned above, because of the equivalence of
the dictionaries, we deduce a feasible dictionary for the initial problem in
�forgetting� x0 and choosing as basic variables x3, x2, x4 expressed above
with x1, x5, x6. It remains to express z with the same variables. Then we
have as dictionary for z:

x3 = 1,6 − 0,2x1 + 0,2x5 + 0,6x6

x2 = 2,2 + 0,6x1 + 0,4x5 + 0,2x6

x4 = 3 − x1 − x6

z = −0,6 + 0,2x1 − 0,2x5 + 0,4x6

We can now start from this dictionary, feasible, to determine the maxi-
mum of z by applying the simplex algorithm again. This method is known as
two-phases method . In chapter ??, we will see that for some problems where
the origin is not feasible (because some of the bi are negative) and where all
the coe�cients cj are negative, we can use the problem called �dual�, which
makes it possible to solve only one problem instead of two. Such a problem
is said to be dual-feasible.

5.8 Exercices

5.8.1 Exercice 1

Statement. Solve the following problem by the simplex method:

Maximize z = 3x1 + 2x2 + 4x3

with constraints:
x1 + x2 + 2x3 6 4

2x1 + 3x3 6 5
2x1 + x2 + 3x3 6 7
x1 > 0, x2 > 0, x3 > 0.

Solution. Let us introduce the slack variables of the problem. We obtain
as �rst dictionary:

x4 = 4 − x1 − x2 − 2x3

x5 = 5 − 2x1 − 3x3

x6 = 7 − 2x1 − x2 − 3x3

z = 3x1 + 2x2 + 4x3
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Since each of the three non-basic variables is a candidate to enter into the
basis, let us look for the one whose increase from 0 increases the most the
value of the objective function, which is currently 0 (second Danzig criterion).
If x1 goes into basis, as its increase is bounded by 5/2, the objective function
increases by 15/2. If x2 goes into basis, the objective function increases by
8. Finally, if it is x3, the objective function increases by 20/3. We therefore
choose to enter the variable x2. The basic variable x4, which is the basic
variable which constrains the most the increase of x2, leaves the basis. We
obtain the new dictionary:

x2 = 4 − x1 − 2x3 − x4

x5 = 5 − 2x1 − 3x3

x6 = 3 − x1 − x3 + x4

z = 8 + x1 − 2x4

Now, we no longer have the choice of the entering variable, since only x1

has a positive coe�cient in z, and x5 leaves the basis. The new dictionary is
the following:

x1 =
5

2
− 3

2
x3 − 1

2
x5

x2 =
3

2
− 1

2
x3 − x4 +

1

2
x5

x6 =
1

2
+

1

2
x3 + x4 +

1

2
x5

z =
21

2
− 3

2
x3 − 2x4 −

1

2
x5

This dictionary is the last since there is no non-basic variable whose
coe�cient in z is strictly positive. The maximum of z is therefore 21/2 and
is obtained for the following values of the variables:

x∗1 =
5

2
; x∗2 =

3

2
; x∗3 = 0.

5.8.2 Exercice 2

Statement. Solve the following problem by the simplex method:
Q1. by entering in basis the variable of greatest coe�cient in the objective
function (�rst criterion of Danzig);
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Q2. by entering in basis the variable whose increase, starting from 0, will
increase more the objective function (second criterion of Danzig).

Maximize z = 5x1 + 6x2 + 9x3 + 8x4

with the constraints:
x1 + 2x2 + 3x3 + x4 6 5
x1 + x2 + 2x3 + 3x4 6 3
x1 > 0, x2 > 0, x3 > 0, x4 > 0.

Solution. Let us introduce the slack variables of the problem. We obtain
as �rst dictionary:

x5 = 5 − x1 − 2x2 − 3x3 − x4

x6 = 3 − x1 − x2 − 2x3 − 3x4

z = 5x1 + 6x2 + 9x3 + 8x4

Q1. According to the criterion retained here to enter a variable in basis, it
is �rst the variable x3 which enters in basis. The leaving variable is x6. The
new dictionary is as follows:

x3 = 1.5 − 0.5x1 − 0.5x2 − 1.5x4 − 0.5x6

x5 = 0.5 + 0.5x1 − 0.5x2 + 3.5x4 + 1.5x6

z = 13.5 + 0.5x1 + 1.5x2 − 5.5x4 − 4.5x6

If we still choose the entering variable of greateST coe�cient, it is x2.
The leaving variable is then x5. We obtain the dictionary below:

x2 = 1 + x1 + 7x4 − 2x5 + 3x6

x3 = 1 − x1 − 5x4 + x5 − 2x6

z = 15 + 2x1 + 5x4 − 3x5

The variable x4 now enters in basis and the x3 variable leaves. We have
now:

x4 = 0.2 − 0.2x1 − 0.2x3 + 0.2x5 − 0.4x6

x2 = 2.4 − 0.4x1 − 1.4x3 − 0.6x5 + 0.2x6

z = 16 + x1 − x3 − 2x5 − 2x6
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Finally, the variable x1 comes in basis and x4 leaves. The last dictionary
is:

x1 = 1 − x3 − 5x4 + x5 − 2x6

x2 = 2 − x3 + 2x4 − x5 + x6

z = 17 − 2x3 − 5x4 − x5 − 4x6

All the coe�cients of z are negative or null: the basis {x1, x2} is therefore
optimal, with x∗1 = 1 and x∗2 = 2.

Q2. Consider now, using the table below, the four possibilities for choosing
the entering variable:

entering variable x1 x2 x3 x4

maximum increase of the variable 3 2.5 1.5 1
corresponding increase of z 15 15 13.5 8

The current criterion leads to choose x1 or x2. For example, let us enter
x1 (the conclusion will remain the same if we choose x2 here); it is then the
variable x6 that leaves; the new dictionary is:

x1 = 3 − x2 − 2x3 − 3x4 − x6

x5 = 2 − x2 − x3 + 2x4 + x6

z = 15 + x2 − x3 − 7x4 − 5x6

Only the variable x2 is candidate to enter in basis, the variable x5 leaves;
we obtain the same dictionary as above with the same conclusion.

5.8.3 Exercice 3

Statement. Give an example of a unbounded linear programming problem,
written in standard form.

Solution. Consider the problem:

Maximize z = x1 + x2

with the constraints:


x1 − x2 6 1

2x1 − 3x2 6 2
x1 > 0, x2 > 0

Any solution of the form x1 = 0, x2 = t > 0 is feasible and for these values
we have z = t. Since t is not bounded, the problem is not bounded.
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5.8.4 Exercice 4

Statement. The same question as for exercise 3, but here we want an in-
feasible problem.

Solution. Consider the problem:

Maximize z = x1 + x2

with the constraints:


−2x1 + 3x2 6 −4
x1 − x2 6 1

x1 > 0, x2 > 0.

Suppose the second constraint is satis�ed, then we have−x1 + x2 > −1,
whence: −3x1 + 3x2 > −3.

Since x1 is positive, we get: −2x1 + 3x2 > −3x1 + 3x2 > −3, a contra-
diction with the �rst constraint. The problem is therefore infeasible.

5.8.5 Exercice 5

Statement. We want to apply the simplex algorithm to the dictionary be-
low. Two strategies are considered when there are several variables candidate
for entering or leaving the basis.

x5 = − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = − 0.5x1 + 1.5x2 + 0.5x3 − x4

x7 = 1 − x1

z = 10x1 − 57x2 − 9x3 − 24x4

Q1. In the case of a choice for an entering variable, we take the candidate
variable with the highest coe�cient in z (the �rst Danzig criterion) and, in
the case of a choice for a leaving variable, we take the candidate variable of
smallest index. What do we observe?

Q2. We apply the Bland rule: in case of choice for an entering or leaving
variable, we take the candidate variable of smallest index. What do we ob-
serve?

Solution.
Q1. We start from the given dictionary.
We choose x1 as entering variable and x5 as leaving variable. After the �rst
iteration:
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x1 = 11x2 + 5x3 − 18x4 − 2x5

x6 = − 4x2 − 2x3 + 8x4 + x5

x7 = 1 − 11x2 − 5x3 + 18x4 + 2x5

z = 53x2 + 41x3 − 204x4 − 20x5

We choose x2 as entering variable and x6 as leaving variable. After the second
iteration:

x2 = − 0.5x3 + 2x4 + 0.25x5 − 0.25x6

x1 = − 0.5x3 + 4x4 + 0.75x5 − 2.75x6

x7 = 1 + 0.5x3 − 4x4 − 0.75x5 − 2.75x6

z = 14.5x3 − 98x4 − 6.75x5 − 13.25x6

The variable x3 is entering and x1 is leaving. After the third iteration:

x3 = − 2x1 + 8x4 + 1.5x5 − 5.5x6

x2 = x1 − 2x4 − 0.5x5 + 2.5x6

x7 = 1 − x1

z = − 29x1 + 18x4 + 15x5 − 93x6

We choose x4 as entering variable and x2 as leaving variable. After the fourth
iteration:

x4 = 0.5x1 − 0.5x2 − 0.25x5 + 1.25x6

x3 = 2x1 − 4x2 − 0.5x5 + 4.5x6

x7 = 1 − x1

z = − 20x1 − 9x2 + 10.5x5 − 70.5x6

We choose x5 as entering variable and x3 as leaving variable. After the �fth
iteration:

x5 = 4x1 − 8x2 − 2x3 + 9x6

x4 = − 0.5x1 + 1.5x2 + 0.5x3 − x6

x7 = 1 − x1

z = 22x1 − 93x2 − 21x3 + 24x6

We choose x6 as entering variable and x4 as leaving variable. After the sixth
iteration:

x5 = − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = − 0.5x1 + 1.5x2 + 0.5x3 − x4

x7 = 1 − x1

z = 10x1 − 57x2 − 9x3 − 24x4
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We �nd the original dictionary: we observe that there is cycling. It may
be noted that the application of the second Danzig criterion instead of the
�rst criterion for the choice of the entering variables does not avoid cycling
either, since the steps that have just been performed are compatible with
this criterion.

Q2. Bland rule gives the same �ve �rst iterations, but not the sixth. We
repeat the previous computations after the �fth iteration:

x5 = 4x1 − 8x2 − 2x3 + 9x6

x4 = − 0.5x1 + 1.5x2 + 0.5x3 − x6

x7 = 1 − x1

z = 22x1 − 93x2 − 21x3 + 24x6

We choose x1 as entering variable (and not x6) and x4 as leaving variable.
After the sixth iteration:

x1 = 3x2 + x3 − 2x4 − 2x6

x5 = 4x2 + 2x3 − 8x4 + x6

x7 = 1 − 3x2 − x3 + 2x4 + 2x6

z = − 27x2 + x3 − 44x4 − 20x6

We choose x3 as entering variable and x7 as leaving variable. After the
seventh iteration:

x3 = 1 − 3x2 + 2x4 + 2x6 − x7

x1 = 1 − x7

x5 = 2 − 2x2 − 4x4 + 5x6 − 2x7

z = 1 − 30x2 − 42x4 − 18x6 − 2x7

All coe�cients in z are negative or null, the method stops. It can be seen
that the application of the Bland rule has made it possible to avoid cycling.

5.8.6 Exercice 6

Statement.
Q1. We consider the problem below.

Maximize z = 5x1 + 3x2

with the constraints:


−4x1 + 5x2 6 −10

5x1 + 2x2 6 10
3x1 + 8x2 6 12
x1 > 0, x2 > 0.
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Show with the simplex algorithm that this problem does not admit any fea-
sible solution.
Q2. We now consider the problem below (which di�ers from the preceding
one only by a sign in the �rst constraint). Solve it using the two-phases
method.

Maximize z = 5x1 + 3x2

with the constraints:


−4x1 − 5x2 6 −10

5x1 + 2x2 6 10
3x1 + 8x2 6 12
x1 > 0, x2 > 0.

Solution.
Both optimization problems in this exercise are in standard form. We

�nd that in both cases, the solution obtained by setting the two variables x1

and x2 to zero is not feasible. The two-phase simplex method is used. The
�rst phase begins with the writing of the auxiliary problem. For this, we can
subtract a variable x0 in the �rst three members of the inequalities, as for
the example of the part 5.7; we can also subtract this variable x0 from the
�rst members of the inequalities with a negative second member. This is the
method we choose here to illustrate it.

Q1. The auxiliary problem is then written:

Maximize w = −x0

with the constraints:


−4x1 + 5x2 − x0 6 −10

5x1 + 2x2 6 10
3x1 + 8x2 6 12

x0 > 0, x1 > 0, x2 > 0.

We deduce the initial dictionary:

x3 = −10 + x0 + 4x1 − 5x2

x4 = 10 − 5x1 − 2x2

x5 = 12 − 3x1 − 8x2

w = − x0

This dictionary is not feasible, but we immediately obtain a feasible dic-
tionary by choosing x0 as entering variable and x3 as leaving variable. We
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obtain the dictionary below:

x0 = 10 − 4x1 + 5x2 + x3

x4 = 10 − 5x1 − 2x2

x5 = 12 − 3x1 − 8x2

w = −10 + 4x1 − 5x2 − x3

We choose x1 as entering variable and x4 as leaving variable; we obtain :

x1 = 2 − 2

5
x2 − 1

5
x4

x0 = 2 +
33

5
x2 + x3 +

4

5
x4

x5 = 6 − 34

5
x2 +

3

5
x4

w = −2 − 33

5
x2 − x3 −

4

5
x4

There is no more entering variable; the optimum of w is −2 and is there-
fore not zero: the studied problem does not admit a feasible solution.

Q2. In the same way as for the previous question, the auxiliary problem is
written:

Maximize w = −x0

with the constraints:


−4x1 − 5x2 − x0 6 −10
5x1 + 2x2 6 10
3x1 + 8x2 6 12
x1 > 0, x2 > 0, x0 > 0.

We obtain the following initial dictionary:

x3 = −10 + x0 + 4x1 + 5x2

x4 = 10 − 5x1 − 2x2

x5 = 12 − 3x1 − 8x2

w = − x0

This dictionary is not feasible but, again, we immediately go to a feasible
dictionary by choosing x0 as entering variable and x3 as leaving variable. We
obtain the dictionary below:
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x0 = 10 − 4x1 − 5x2 + x3

x4 = 10 − 5x1 − 2x2

x5 = 12 − 3x1 − 8x2

w = −10 + 4x1 + 5x2 − x3

We choose x1 as entering variable and x4 as leaving variable; we obtain :

x1 = 2 − 2

5
x2 − 1

5
x4

x0 = 2 − 17

5
x2 + x3 +

4

5
x4

x5 = 6 − 34

5
x2 +

3

5
x4

w = −2 +
17

5
x2 − x3 −

4

5
x4

We choose x2 as entering variable and x0 as leaving variable; we obtain :

x2 =
10

17
+

5

17
x3 +

4

17
x4 −

5

17
x0

x1 =
30

17
− 2

17
x3 −

5

17
x4 +

2

17
x0

x5 = 2 − 2x3 − x4 + 2x0

w = − x0

The optimum of the auxiliary problem is zero: the initial problem is
feasible. We can now start the second phase of the method. To obtain a
feasible dictionary of the initial problem, we use the last dictionary above,
in which we delete the variable x0 and we replace the function w by the
function z expressed with the basic variables, that is, x3 and x4. We obtain
the dictionary below:

x2 =
10

17
+

5

17
x3 +

4

17
x4

x1 =
30

17
− 2

17
x3 −

5

17
x4

x5 = 2 − 2x3 − x4

z =
180

17
+

5

17
x3 −

13

17
x4
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We choose x3 as entering variable and x5 as leaving variable. The dictio-
nary becomes:

x3 = 1 − 1

2
x4 −

1

2
x5

x2 =
15

17
+

3

34
x4 −

5

34
x5

x1 =
28

17
− 4

17
x4 +

1

17
x5

z =
185

17
− 31

34
x4 −

5

34
x5

This last dictionary is optimal; the optimal solution is therefore given by:

x∗1 =
28

17
, x∗2 =

15

17
for the decision variables;

x∗3 = 1, x∗4 = x∗5 = 0 for the slack variables;

z∗ =
185

17
for the objective function.

5.8.7 Exercice 7

Statement.We consider a linear programming problem with a single con-
straint, de�ned by:

Maximize
n∑
j=1

ujxj with
n∑
j=1

pjxj 6 P and xj > 0 for 1 6 j 6 n.

All the coe�cients uj and pj as well as P are assumed to be strictly posi-
tive and we assume the variables ranked according to the decreasing values of
the ratios uj/pj. Show that the variable x1 is entering and that, by entering
it in basis, we reaches the optimum of the objective in a single step. Express
the optimum value of the objective according to the di�erent coe�cients.

Solution. Since the coe�cient of the variable x1 is, by hypothesis, positive,
the variable x1 is entering and we therefore exchange it with the unique
variable in basis, which corresponds to the unique constraint, xn+1. We had:

xn+1 = P −
n∑
j=1

pjxj
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and after the exchange, we get:

x1 =
1

p1

(
P −

n∑
j=2

pjxj − xn+1

)
.

By putting this value in the objective function, it comes:

z =
n∑
j=1

ujxj =
u1

p1

(
P −

n∑
j=2

pjxj − xn+1

)
+

n∑
j=2

ujxj

or:

z =
u1P

p1

+
n∑
j=2

(
uj −

u1pj
p1

)
xj −

u1

p1

xn+1.

Considering the numbering adopted, the coe�cients of all variables that
occur in the writing of z are negative or null. We thus found the maximum

value of z in one iteration, and this one is equal to
u1P

v1

: this corresponds to

saturate the constraint with the variable for which the ratio uj/pj is maxi-
mum.



Chapter 6

Duality in linear programming

6.1 De�nition of the dual problem

Remark
We only consider in this chapter linear programming problems writ-

ten in standard form. To de�ne the dual problem of any linear program-
ming problem, we can put it in standard form before determining the dual
problem, as indicated in the chapter 5. An example is given in exercise.

We therefore consider the problem (P ):

Maximize z =
∑n

j=1 cjxj

with the constraints

{
for i ∈ {1, 2, ...,m},

∑n
j=1 aijxj 6 bi

for j ∈ {1, 2, ..., n}, xj > 0

If there are m real yi positive or zero such as, for any j ∈ {1, 2, ..., n},∑m
i=1 aijyi > cj, then we have, for any feasible solution (x1, ..., xn) of (P ):

n∑
j=1

cjxj 6
n∑
j=1

(
m∑
i=1

aijyi

)
xj =

m∑
i=1

(
n∑
j=1

aijxj

)
yi 6

m∑
i=1

biyi.

Hence:
n∑
j=1

cjxj 6
m∑
i=1

biyi

and this last quantity thus gives an upper bound of the objective function.
The dual problem (D) of the problem (P ) is:

71
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Minimize
∑m

i=1 biyi

with the constraints

{
for j ∈ {1, 2, ..., n},

∑m
i=1 aijyi > cj

for i ∈ {1, 2, ...,m}, yi > 0

The problem (P ) then takes the name of primal problem. We see that, for
every feasible solution y∗1, ..., y

∗
m of the dual problem (that is, satisfying the

constraints of (D)),
∑m

i=1 biy
∗
i is an upper bound of the objective function of

the primal problem.

Remark
It is easily established that the dual problem of (D) is (P ).

6.2 Theorem of duality

From the de�nition of the dual problem, we immediately deduce the following
proposition:

Proposition 3. Let (x∗1, x
∗
2, ..., x

∗
n) be a feasible solution of the primal problem

and (y∗1, y
∗
2, ..., y

∗
m) be a feasible solution of the dual problem. We have:

n∑
j=1

cjx
∗
j 6

m∑
i=1

biy
∗
i

Moreover, if the two above quantities are equal, then x∗1, x
∗
2, ..., x

∗
n constitute

an optimal solution of the primal problem and y∗1, y
∗
2, ..., y

∗
m an optimal solu-

tion of the dual problem.

Application
Due to considerations about the dual problem, it is possible to check that

we have found an optimal solution for a given problem. We will explain it
on the problem dealt with in the �rst chapter 5. The problem (P ) is:

Maximize z = 7x1 + 9x2 + 18x3 + 17x4

with the constraints
2x1 + 4x2 + 5x3 + 7x4 6 42
x1 + x2 + 2x3 + 2x4 6 17
x1 + 2x2 + 3x3 + 3x4 6 24
x1 > 0, x2 > 0, x3 > 0, x4 > 0



Theorem of duality 73

We had established that the optimum of this problem is z∗ = 147 obtained
for x∗1 = 3, x∗2 = 0, x∗3 = 7, x∗4 = 0. We want here to verify this result.

The dual problem (D) is:

Minimize 42y1 + 17y2 + 24y3

with the constraints
2y1 + y2 + y3 > 7
4y1 + y2 + 2y3 > 9
5y1 + 2y2 + 3y3 > 18
7y1 + 2y2 + 3y3 > 17
y1 > 0, y2 > 0, y3 > 0.

Recall that in the last dictionary, the objective function was written:

z = 147− 2x2 − x4 − 3x6 − 4x7.

We consider the values y∗1 = 0, y∗2 = 3, y∗3 = 4. These values are not
chosen at random: they are the opposite of the coe�cients respectively of
x5, x6, x7 in the above expression of z; we will justify this choice further.

We have: 42y∗1 + 17y∗2 + 24y∗3 = 147.
Moreover, it is easy to check that the y∗i satisfy the constraints of the

dual problem, and thus constitute a feasible solution of the dual.
The above proposition allows us to a�rm that the value 147 is the op-

timum of the primal problem: having found a feasible solution of the dual
which gives to the objective function of the dual the value found for the
objective function of the primal, we can a�rm that we had found the maxi-
mum of the objective function of the primal and that we have also found the
minimum of the objective function of the dual. This veri�cation therefore
constitutes a certi�cate of optimality of the solution found for the primal.

This proposal has the following corollary:

Proposition 4. If the primal problem admits a feasible solution and is un-
bounded, the dual problem does not admit a feasible solution.

Proof. Assume that the dual problem admits a feasible solution and let us
denote by w∗ the corresponding value of the objective function of the dual
problem. The objective function of the primal problem is then bounded from
above by w∗, which contradicts the hypothesis. ♦
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Remarks
1. If (D) is feasible, (P ) is either not feasible or feasible and bounded.
2. If (P ) admits a feasible solution and is unbounded, (D) does not admit a
feasible solution.
3. If (D) admits a feasible solution and is unbounded, (P ) does not admit a
feasible solution.
4. (P ) and (D) cannot be simultaneously feasible and unbounded.
5. There are cases where (P ) and (D) are simultaneously not feasible (see
exercise 6.6.3).

The following theorem, sometimes called fundamental theorem of duality,
generalizes the �ndings made above.

Theorem 5 (of duality). If the primal problem has an optimal solution
x∗1, x

∗
2, ..., x

∗
n, then the dual problem has an optimal solution y∗1, y

∗
2, ..., y

∗
m and∑n

j=1 cjx
∗
j =

∑m
i=1 biy

∗
i (that is, the primal maximum is equal to the dual

minimum).

We will prove this fundamental theorem at the same time as the following
proposition:

Proposition 6. If the primal problem admits an optimal solution and if
the expression of the objective function of the primal in the last dictionary
obtained by the simplex method is written:

z = z∗ +
n+m∑
k=1

dkxk

(where xn+i represents the i
th slack variable), then an optimal solution of the

dual problem is given by y∗i = −dn+i.

Proof of the theorem of duality and of the proposition
Suppose that the primal has been solved by the simplex method. To the n

initial variables of the problem we have addedm slack variables xn+1, ..., xn+m.
At the ith primal constraint are associated the slack variable xn+i and the
variable yi of the dual, which establishes a canonical link between xn+i and
yi. Consider the expression of the objective function of the primal in the last
dictionary of the primal simplex:

z = z∗ +
n+m∑
k=1

dkxk.
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The dk are all negative or null (since this is the last dictionary) and the
dk associated with the basic variables are null.

Moreover, by dé�nition of z we have z∗ =
∑n

j=1 cjx
∗
j and by dé�nition of

slack variables xn+i = bi −
∑n

j=1 aijxj .
Let us set, for i ∈ {1, ...,m}, y∗i = −dn+i; we then have: y

∗
i > 0. Moreover,

distinguishing in z the slack variables from the others:

z = z∗ +
n∑
j=1

djxj −
m∑
i=1

(
bi −

n∑
j=1

aijxj

)
y∗i ,

or:

z = z∗ −
m∑
i=1

biy
∗
i +

n∑
j=1

(
dj +

m∑
i=1

aijy
∗
i

)
xj.

But, by de�nition of z, we also have: z =
∑n

j=1 cjxj.
Because of the independence of the variables xj, we deduce from these

equalities: {
z∗ =

∑m
i=1 biy

∗
i

for j ∈ {1, ..., n}, cj = dj +
∑m

i=1 aijy
∗
i

The dj (j ∈ {1, ..., n+m}) being negative or null, we �nally get:{
for j ∈ {1, ..., n},

∑m
i=1 aijy

∗
i > cj

for i ∈ {1, ...,m}, y∗i > 0.

The numbers y∗1, y
∗
2, ..., y

∗
m thus form a feasible solution of the dual prob-

lem which gives to the objective function of the dual problem the value z∗.
The proposition at the beginning of this paragraph gives the conclusion. ♦

6.3 The complementary slackness theorem: a

certi�cate of optimality

The example developed in the preceding paragraph gives a method to demon-
strate the optimality of a solution of the primal problem but requires the
knowledge of the last dictionary of the simplex method. We will see that
we can also succeed in providing a certi�cate of optimality of the primal,
knowing only the values x∗1, ... x

∗
n that give the maximum to the objective

function of the primal.
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Theorem 7 (Complementary slackness theorem). A feasible solution x∗1, ..., x
∗
n

of the primal problem is optimal if and only there are numbers y∗1, ..., y
∗
m

which ful�ll the following:

• for i ∈ {1, ...,m}, if
∑n

j=1 aijx
∗
j < bi, then y

∗
i = 0

• for j ∈ {1, ..., n}, if x∗j > 0 , then
∑m

i=1 aijy
∗
i = cj

and is a feasible solution of the dual problem:{
for j ∈ {1, ..., n},

∑m
i=1 aijy

∗
i > cj

for i ∈ {1, ...,m}, y∗i > 0.

Moreover, these numbers y∗1, ..., y
∗
m constitute an optimal solution of the dual

problem.

Before giving the proof of this theorem, we will apply it to the example
of chapter I. The problem was written as:

Maximize z = 7x1 + 9x2 + 18x3 + 17x4

with the constraints:
2x1 + 4x2 + 5x3 + 7x4 6 42
x1 + x2 + 2x3 + 2x4 6 17
x1 + 2x2 + 3x3 + 3x4 6 24

x1 > 0, x2 > 0, x3 > 0, x4 > 0.

Consider the statement:
�x∗1 = 3, x∗2 = 0, x∗3 = 7, x∗4 = 0 constitute an optimal solution of the primal�.
It is easy to verify that these values de�ne a feasible solution of the primal
problem. We look for y∗1, y

∗
2, y

∗
3 satisfying:

y∗1 = 0 since the �rst constraint of the problem �is not saturated�
2y∗1 + y∗2 + y∗3 = 7 since x∗1 > 0
5y∗1 + 2y∗2 + 3y∗3 = 18 since x∗3 > 0.

Using the nullity of y∗1, we obtain:{
y∗2 + y∗3 = 7
2y∗2 + 3y∗3 = 18.

The resolution of this system gives y∗2 = 3, y∗3 = 4. We check that these
values satisfy the constraints of the dual problem.

4y∗1 + y∗2 + 2y∗3 = 11 > 9
and 7y∗1 + 2y∗2 + 3y∗3 = 18 > 17.
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The other two inequalities of the same type result from the system de�ning
y∗1,y

∗
2 and y∗3. Finally y

∗
1, y

∗
2, y

∗
3 are positive or null.

The proposed solution for the primal is therefore optimal.
The values y∗1, y

∗
2, y

∗
3 constitute a feasible solution of the dual problem

and gives the value 147 to the objective function of this problem. As the
optimum value of the primal problem is also 147, y∗1, y

∗
2, y

∗
3 constitute an

optimal solution of the dual problem.

Proof of the complementary slackness theorem.
The proof is immediately deducted from the result which we express and

prove below.
If we know a feasible solution (x∗j) of the primal and a feasible solution

(y∗i ) of the dual, these solutions are optimal if and only if:

• for j ∈ {1, ..., n}, x∗j = 0 or
∑m

i=1 aijy
∗
i = cj

• and, for i ∈ {1, ...,m}, y∗i = 0 or
∑n

j=1 aijx
∗
j = bi.

Indeed, according to the duality theorem, if we know a feasible solution
(x∗j) of the primal and a feasible solution (y∗i ) of the dual, these solutions are
optimal if and only if we have:

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
y.

However, we have the following inequalities (consequence of the feasibility
of the solutions):

n∑
j=1

cjx
∗
j 6

n∑
j=1

(
m∑
i=1

aijy
∗
i

)
x∗j =

m∑
i=1

(
n∑
j=1

aijx
∗
j

)
yi 6

m∑
i=1

biy
∗
i .

If, before summation, one of the inequalities was strict, it would be the
same after summation. So we see that there is equality between the limits of
this sequence if and only if we have:

• for j ∈ {1, ..., n}, x∗j = 0 or
∑m

i=1 aijy
∗
i = cj

• and, for i ∈ {1, ...,m}, y∗i = 0 or
∑n

j=1 aijx
∗
j = bi. ♦

If we can determine the y∗i and one of the required inequalities (including
the sign constraints) is not ver�ed, the solution is not optimal.
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6.4 The economic signi�cance of the dual

We will show here that knowledge of the solution of the dual problem can
make it possible to take into account economic data.

We will consider that:

• bi represents the total quantity of the resource i;

• aij represents the quantity of resource i consumed by the manufacture
of a unit of product j;

• xj represents the manufactured quantity of product j;

• cj represents the value of a unit of the product j.

The relation at optimum: z∗ =
∑n

j=1 cjx
∗
j =

∑m
i=1 biy

∗
i induces that y∗i

must represent the �unit value of the resource i�. These dual variables y∗i are
often called implicit price . The value of yi gives the maximum amount that
one would be willing to pay to obtain an additional unit of the resource i.

The inequalities
∑m

i=1 aijyi > cj, (j ∈ {1, ..., n}) can be understood using
the following schema: suppose that someone from outside the company wants
to acquire the resources of the company; it must propose for the resources a
price such that it is more interesting for the company to sell its resources than
to manufacture the products itself (cj is the expected pro�t on the product
j) and well sure it wants to make this purchase of resources at a minimum
price. Recall that the coe�cient aij represents the quantity of the resource i
required to produce a unit of the product j so that

∑m
i=1 aijyi represents the

amount to be spent to acquire the resources necessary to manufacture a unit
of the product j.

We will give a second interpretation using our example.

Problem

The tissue manufacturer of the previous chapter can have a few extra
hours at an hourly price of t for its dyeing workers. Does he or not have an
interest in using this possibility?

To solve this problem, we will express a theorem, which we will demon-
strate after solving our problem.
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Theorem 8. We consider the problem (P):

Maximize z =
∑n

j=1 cjxj

with the constraints

{
for i ∈ {1, ...,m},

∑n
j=1 aijxj 6 bi

for j ∈ {1, 2, ..., n}, xj > 0.

It is assumed that the optimal basis of (P ) is not degenerate. For variations
δbi of bi, we consider the problem (Pδ) de�ned by:

Maximize z =
∑n

j=1 cjxj

with the constraints

{
for i ∈ {1, ...,m},

∑n
j=1 aijxj 6 bi + δbi

for j ∈ {1, 2, ..., n}, xj > 0.

We assume that the δbi variations are small enough that the optimal basis
of (P ) is still feasible for (Pδ). The variation of the optimum value of the
objective function of the linear program is then

∑m
i=1 δbiy

∗
i where (y∗1, ..., y

∗
m)

is an optimal solution of the dual problem of (P ).

Remark. In deepening the proof of the duality theorem, one would obtain
that the non-degeneracy of the optimal basis of (P ) implies the uniqueness
of the solution of the dual problem.

For our problem, let us call u the number of extra hours for dyeing (with
u small). The variation of the second member is (0, 0, u). The optimal solu-
tion of the dual problem is (0, 3, 4). The variation of the objective function
is therefore 4u. This is not a net bene�t since it will cost him t.u euros. We
see that he has an interest in choosing this solution as soon as t 6 4 (he is
unlikely to convince his workers to work overtime at this price!). Here we
�nd the interpretation of y∗i : unit value of the resource.

Proof of the theorem. We consider the sequence of dictionaries obtained when
we solve (P ) by the simplex method. When we change b to b + δb, only the
constants of the second members are changed. If the last dictionary remains
feasible (that is, if the constants of the second members of the equalities
expressing the basic variables remain positive or zero), then this dictionary
remains optimal. We suppose we are in this case. The coe�cients of the
non-basic variables in the line expressing the function z being unchanged, the
solution of the dual problem is unchanged. The common optimal value of the
new primal and dual problems is:

∑m
i=1(bi + δbi)y

∗
i =

∑m
i=1 biy

∗
i +
∑m

i=1 δbiy
∗
i
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where (y∗1, ..., y
∗
m) is the optimal solution to the dual problem of P . The

variation of the optimum value of the objective function is
∑m

i=1 δbiy
∗
i . ♦

It is assumed that if the optimal basis of (P ) is non degenerate, for reasons
of continuity, there are non-zero variations of δbi small enough to maintain
the fact that the optimal basis of (P ) remains feasible.

6.5 Dual-feasible problem dual-feasible

We consider a linear programming problem where the null solution is not
feasible, but where the coe�cients cj of the objective function in the prob-
lem written in standard form are all negative or null. The use of the dual
problem makes it possible to solve this problem without using the two-phase
algorithm described in the �rst chapter.

Example
Consider the problem of linear programming:

Minimize x1 + x2

with the constraints


3x1 + x2 > 4
−7x1 + x2 > −7
x1 > 0, x2 > 0

whose writing in standard form is:

Maximize − x1 − x2

with the constraints


−3x1 − x2 6 −4
7x1 − x2 6 7
x1 > 0, x2 > 0.

The dual problem is written:

Minimize − 4y1 + 7y2

with the constraints


−3y1 + 7y2 > −1
−y1 − y2 > −1
y1 > 0, y2 > 0.

or:
Maximize 4y1 − 7y2

with the constraints


3y1 − 7y2 6 1
y1 + y2 6 1
y1 > 0, y2 > 0
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Slack variables now constitute a feasible basis: the simplex method requires
only one phase. From the solution of the dual problem, we can deduce the
solution of the primal problem.

6.6 Exercices

6.6.1 Exercice 1

Statement. We consider the problem:

Maximize z = 4x1 + 3x2

with the constraints


5x1 + 3x2 6 30
2x1 + 3x2 6 24
x1 + 3x2 6 18
x1 > 0, x2 > 0.

Q1. Graphically solve this problem .
Q2. Use the complementary slackness theorem to prove that the graphical
solution is correct.
Q3. The function z gives a pro�t in euros. It is planned to purchase one
more unit from the �rst resource at a unit price of t. Until what value of t
does this seem interesting?
Q4. We suppose we get a additional units of the �rst resource. Up to what
value of a does the optimal basis of the initial problem remain feasible (then,
this basis remains optimal)?

Solution.
Q1. We graphically represent the problem by the �gure 6.1. The graphical
solution is: x∗1 = 3, x∗2 = 5.

Q2. The solution obtained graphically is veri�ed using the complementary
slackness theorem. The solution x∗1 = 3, x∗2 = 5 is a feasible solution. We
look for y∗1, y

∗
2 and y

∗
3 ful�lling the conditions of the complementary slackness

theorem.

• With x∗1 = 3 and x∗2 = 5, we have: 2x∗1 + 3x∗2 = 21 < 24, which leads
to: y∗2 = 0.
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Figure 6.1: Graphical solution.

• Since x∗1 and x∗2 are not equal to zero, we must have:{
5y∗1 + 2y∗2 + y∗3 = 4
3y∗1 + 2y∗2 + 3y∗3 = 3

.

With y∗2 = 0, the system above has the unique solution: y∗1 = 3/4, y∗3 = 1/4.
It remains to check that the values y∗1 = 3/4, y∗2 = 0, y∗3 = 1/4 constitute
a feasible solution of the dual problem, which is immediate. The solution
determined graphically is indeed optimal.

Q3. The marginal value of the �rst resource is 3/4. Getting one more unit
from the �rst resource is interesting if its unit price is less than 0.75 euros.

Q4. We denote by x3, x4 and x5 the three slack variables We notice that in
the optimal basic solution of the initial problem, we have x∗3 = 0, x∗4 = 3,
x∗5 = 0. Adding a to the �rst resource gives:

5x1 + 3x2 + x3 = 30 + a
2x1 + 3x2 + x4 = 24
x1 + 3x2 + x5 = 18.



Exercices 83

Using the numerical solution of the initial problem, let x1 = 3 + δx1, x2 = 5 + δx2,
x4 = 3 + δx4. We have: 

5δx1 + 3δx2 = a
2δx1 + 3δx2 + δx4 = 0
δx1 + 3δx2 = 0.

This system has the solution: δx1 =
a

4
, δx2 = − a

12
, δx4 = − a

4
.

The solution is feasible if and only if :
3 +

a

4
> 0

5− a

12
> 0

3− a

4
> 0

that is, if and only if: a 6 12.

6.6.2 Exercice 2

Statement. We propose x∗1 = 0, x∗2 =
4

3
, x∗3 =

2

3
, x∗4 =

5

3
, x∗5 = 0 as an

optimal solution of the following problem:

Maximize z = 7x1 + 6x2 + 5x3 − 2x4 + 3x5

with the constraints


x1 + 3x2 + 5x3 − 2x4 + 2x5 6 4
4x1 + 2x2 − 2x3 + x4 + x5 6 3
2x1 + 4x2 + 4x3 − 2x4 + 5x5 6 5
3x1 + x2 + 2x3 − x4 − 2x5 6 1
x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0.

Is it correct ?

Solution.
The veri�cation is as follows. We �rst examine whether the proposed

solution is feasible.

• The proposed solution is positive or null.
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• We check that it satis�es the other constraints and simultaneously iden-
tify saturated and non-saturated constraints.
x∗1 + 3x∗2 + 5x∗3 − 2x∗4 + 2x∗5 = 4: saturated constraint.
4x∗1 + 2x∗2 − 2x∗3 + x∗4 + x∗5 = 3: saturated constraint.
2x∗1 + 4x∗2 + 4x∗3 − 2x∗4 + 5x∗5 = 14/3 < 5: ful�lled constraint but not
saturated.
3x∗1 + x∗2 + 2x∗3 − x∗4 − 2x∗5 = 1: saturated constraint.

• We write the equalities that the values y∗i (i = 1, 2, 3, 4) must ful�ll.

� Since the third constraint is not saturated, y∗3 = 0.

� Since x∗2 > 0, 3y∗1 + 2y∗2 + 4y∗3 + y∗4 = 6.

� Since x∗3 > 0, 5y∗1 − 2y∗2 + 4y∗3 + 2y∗4 = 5.

� Since x∗4 > 0, −2y∗1 + y∗2 − 2y∗3 − y∗4 = −2.

• We compute y∗i (i = 1, 2, 4):
3y∗1 + 2y∗2 + y∗4 = 6
5y∗1 − 2y∗2 + 2y∗4 = 5
−2y∗1 + y∗2 − y∗4 = −2

The solution of this system is: y∗1 = y∗2 = y∗4 = 1.

• We look at whether the y∗i (i = 1, 2, 3, 4) constitute a feasible solution
of the dual problem.

� They are all positive or nul.

� It remains to check the �rst and the �fth constraint of the dual
problem since the other constraints are saturated by de�nition of
y∗:

y∗1 + 4y∗2 + 2y∗3 + 3y∗4 = 8 > 7

2y∗1 + y∗2 + 5y∗3 − 2y∗4 = 1 < 3

The last dual constraint is not veri�ed: the current solution is not
optimal.

We can notice that, if we now want to �nd the optimal solution, it would
be wise to start from the basis x2, x3, x4, x8, where x8 represents the third
slack variable; this basis corresponds to the proposed solution.
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6.6.3 Exercice 3

Statement. Give an example of a problem (P ) such that neither the prob-
lem (P ) nor the dual problem of (P ) admit any feasible solution.

Solution. We consider the following problem (P ):

Maximize z = 2x1 − x2
x1 − x2 6 1
−x1 + x2 6 −2
x1 > 0, x2 > 0

The dual (Q) of (P ) is:

Minimize w = y1 − 2y2
y1 − y2 > 2
−y1 + y2 > −1
y1 > 0, y2 > 0

It is easy to check that the problems (P ) and (Q) do not admit any feasible
solution.

6.6.4 Exercice 4

Statement.
Q1. We consider the problème (P ) below :

Minimize z =
∑n

j=1 cjxj

with:


for i ∈ {1, 2, ...,m},

∑n
j=1 aijxj > bi

for i ∈ {m+ 1, ...,m+ p},
∑n

j=1 aijxj = bi.

for j ∈ {1, ..., n}, xj ∈ R.

Show that the problem (Q) dé�ned below is the dual problem of (P ) :

Maximize w =
∑m+p

i=1 biyi

with:

 for j ∈ {1, 2, ..., n},
∑m+p

i=1 aijyi = cj
for i ∈ {1, 2, ...,m}, yi > 0
for i ∈ {m+ 1, ...,m+ p}, yi ∈ R.
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Q2. Prove the following theorem (theorem of Farkas et Minkowski)1 stipu-
lating that the two propositions below are equivalent.

(i) Let x ∈ Rn; if we have:{
for i ∈ {1, 2, ...,m},

∑n
j=1 aijxj > 0

for i ∈ {m+ 1, ...,m+ p},
∑n

j=1 aijxj = 0

then :
∑n

j=1 cjxj > 0.

(ii) It exists y ∈ Rm+p ful�lling:{
for j ∈ {1, 2, ..., n},

∑m+p
i=1 aijyi = cj

for i ∈ {1, 2, ...,m}, yi > 0.

Solution.
Q1. We start by getting closer to the standard form:

Maximize
∑n

j=1(−cjxj)

with:


for i ∈ {1, 2, ...,m},

∑n
j=1(−aijxj) 6 −bi

for i ∈ {m+ 1, ...,m+ p},
∑n

j=1(−aijxj) 6 −bi
for i ∈ {m+ 1, ...,m+ p},

∑n
j=1 aijxj 6 bi

for j ∈ {1, 2, ..., n}, xj ∈ R.

Now let us reformulate the problem in standard form. For j ∈ {1, 2, ..., n},
we set: xj = x1

j − x2
j with x

1
j > 0 et x2

j > 0. We obtain:

Maximize
∑n

j=1(−cjx1
j) +

∑n
j=1 cjx

2
j

with:


for i ∈ {1, 2, ...,m},

∑n
j=1(−aijx1

j) +
∑n

j=1 aijx
2
j 6 −bi

for i ∈ {m+ 1, ...,m+ p},
∑n

j=1(−aijx1
j) +

∑n
j=1 aijx

2
j 6 −bi

for i ∈ {m+ 1, ...,m+ p},
∑n

j=1 aijx
1
j +

∑n
j=1(−aijx2

j) 6 bi
for j ∈ {1, 2, ..., n}, x1

j > 0, x2
j > 0.

1G. Farkas, �Theorie der einfachen Ungleichungen�, Journal für die reine und ange-

wandte Mathematik, 124, 1902, 1�27. H. Minkowski, �Theorie der konvexen Körper,
insbesondere Bergründung ihres Ober�ächenbegri�s�, in Gesammelte Abhandlungen Her-

mann Minkowski II, Teubner, Leipzig, 1911, 131�229. This theorem will be used in chap-
ter 8.1 to establish the conditions of Karush, Kuhn and Tucker.
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The dual problem is:

Minimize
∑m

i=1(−biyi)−
∑m+p

i=m+1 biy
1
i +

∑m+p
i=m+1 biy

2
i

with:



for j ∈ {1, 2, ..., n},∑m
i=1(−aijyi) +

∑m+p
i=m+1(−aijy1

i ) +
∑m+p

i=m+1 aijy
2
i > −cj

for j ∈ {1, 2, ..., n},∑m
i=1 aijyi +

∑m+p
i=m+1 aijy

1
i +

∑m+p
i=m+1(−aijy2

i ) > cj
for i ∈ {1, 2, ...,m}, yi > 0,
for i ∈ {m+ 1, ...,m+ p}, y1

i > 0, y2
i > 0.

This can be rewritten:

Maximize
∑m

i=1 biyi +
∑m+p

i=m+1 bi(y
1
i − y2

i )

avec :



for j ∈ {1, 2, ..., n},∑m
i=1 aijyi +

∑m+p
i=m+1 aij(y

1
i − y2

i ) 6 cj
for j ∈ {1, 2, ..., n},∑m

i=1 aijyi +
∑m+p

i=m+1 aij(y
1
i − y2

i ) > cj
for i ∈ {1, 2, ...,m}, yi > 0
for i ∈ {m+ 1, ...,m+ p}, y1

i > 0, y2
i > 0.

By setting, for i ∈ {m+1, ...,m+p}, yi = y1
i −y2

i , the variable yi is unsigned
and we can still write this dual problem as follows:

Maximize
∑m+p

i=1 biyi

with:

 for j ∈ {1, 2, ..., n},
∑m+p

i=1 aijyi = cj
for i ∈ {1, 2, ...,m}, yi > 0
for i ∈ {m+ 1, ...,m+ p}, yi ∈ R.

We obtain the problem (Q).

Q2. We use the previous question; we choose bi = 0 for i ∈ {1, ...,m + p}.
The problems (P )and (Q) become (P0) and (Q0) de�ned by:

Minimize z =
∑n

j=1 cjxj

(P0) with:

{
for i ∈ {1, 2, ...,m},

∑n
j=1 aijxj > 0

for i ∈ {m+ 1, ...,m+ p},
∑n

j=1 aijxj = 0
and

Maximize w = 0

(Q0) with:

 for j ∈ {1, 2, ..., n},
∑m+p

i=1 aijyi = cj
for i ∈ {1, ...,m}, yi > 0
for i ∈ {m+ 1, ...,m+ p}, yi ∈ R.
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Note that the origin is realizable for (P0) (and gives to z the value 0).

If proposition (i) is ful�lled, the problem (P0) is bounded from below by 0
(in fact, its minimum is 0). According to the theorem of duality, the problem
(Q0) is feasible, which means that proposition (ii) is veri�ed.

If proposition (ii) is ful�lled, the problem (Q0) is feasible, of maximum
0. From duality theorem, the problem (P0) is feasible of minimum 0, which
means that proposition (i) is checked.



Chapter 7

Non linear optimization without

constraint

7.1 Introduction

In this chapter, we are interested in optimizing functions de�ned on Rn and
with values in R.

Let f be a function from Rn to R.

De�nition 3. We say that f reaches a global minimum (respectively maxi-
mum) in a point x∗ of Rn if, for any x ∈ Rn, we have f(x) > f(x∗) (respec-
tively f(x) 6 f(x∗)).

De�nition 4. We say that f reaches a local minimum (respectively maxi-
mum) in a point x∗ of Rn if there exists a ball B centered at x∗ such that for
any x ∈ B, we have f(x) > f(x∗) (respectively f(x) 6 f(x∗)).

We will �rst study the case n = 1, i.e. one-dimensional optimization,
giving some optimization methods.

We will then go back to the general case to establish some theoretical re-
sults, in particular for the cases of quadratic functions and convex functions.
We will detail some optimization methods: the descent methods, the conju-
gate gradient method and Newton method. One-dimensional optimization
will often serve as a tool for multidimensional optimization.

Theorems and methods will be described for minimization. The case of
maximization can be deduced directly since maximizing a function is mini-
mizing its opposite: maxx∈Rnf(x) = − minx∈Rn−f(x).

89
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7.2 One-dimensional optimization

We consider here a function f from R to R which we try to minimize.

7.2.1 Newton method

We assume f of class C 2. Newton method consists of constructing a sequence
(xk) from a point x0 as follows. In the point xk, we approach f by:

q(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2.

We notice the following relation: q′(x) = f ′(xk) + f ′′(xk)(x− xk).
If f ′′(xk) > 0 (case where f is strictly convex around xk), we set:

xk+1 = xk −
f ′(xk)

f ′′(xk)

which is the point where q reaches its minimum (q′(xk+1) = 0).
If we have f ′′(xk) 6 0, the method fails.

If f is of class C3 and if x0 is chosen close enough to a local minimum
point x∗ ful�lling f ′′(x∗) > 0, then the sequence ( xk) converges quadratically
(see the de�nition in the part 7.7) to x∗. We will demonstrate this result in
the case of the functions of several real variables (part 7.10).

7.2.2 Dichotomy for a di�erentiable function

De�nition 5. We say that a function is unimodal unimodal if there is a real
x∗ for which the function is strictly decreasing over ] − ∞, x∗] and strictly
increasing on [x∗,+∞[.

The point x∗ is then an global minimum of f .
It is assumed here that f is unimodal and di�erentiable. The point x∗ is

the only point where the derivative of f is equal to 0. The �rst step is to
look for xmin and xmax such that xmin < x∗ < xmax, so that we have the two
relations f ′(xmin) < 0 and f ′(xmax) > 0.

After this �rst step, we put: x =
1

2
(xmin + xmax); if f

′(x) > 0, we replace

xmax by x, otherwise we replace xmin by x; the operation is repeated up to a
stopping criterion to be speci�ed.
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The length of the interval being at each iteration divided by 2, we can
show that the convergence is linear of rate 0.5 (see the de�nition in the
part 7.7).

To determine xmin and xmax, a good method is the following (we assume
that f ′(0) is not zero; otherwise, 0 is the solution of the problem!):

• de�ne a step length h > 0

• if f ′(0) < 0, do:

? xmin ← 0

? as long as f ′(h) < 0, do:
. xmin ← h

. h← 2h

? xmax ← h

otherwise if f ′(0) > 0, do:

? h← −h
? xmax ← 0

? as long as f ′(h) > 0, do:
. xmax ← h

. h← 2h

xmin ← h.

Remark. If f is not unimodal, the dichotomy is nevertheless applicable if
we know xmin and xmax (xmin <xmax, f

′(xmin) < 0, f ′(xmax) > 0). It then
converges to a local minimum that can be not global.

7.2.3 Quadratic interpolation

The method starts from the following principle: we �rst choose, using a
preliminary algorithm, x1, x2 and x3 ful�lling: x1 < x2 < x3 as well as the
inequalities f(x2) 6 f(x1) and f(x2) 6 f(x3). We approach f by a quadratic
function q having the same values as f in x1, x2 and x3:

q(x) = f(x1)
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ f(x2)

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)

+f(x3)
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.
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The minimum of q is reached on [x1, x3] at a point whose abscissa is
easily expressed in terms of x1, x2, x3, f(x1), f(x2) and f(x3); we denote by
x4 this point. The update of the points x1, x2 and x3 is done according to
the following rules:

• if f(x4) 6 f(x2)

? if x4 6 x2, the new triplet is (x1, x4, x2)
otherwise the new triplet is (x2, x4, x3)

otherwise

? if x4 6 x2, the new triplet is (x4, x2, x3)
otherwise the new triplet is (x1, x2, x4).

We can show that if f is fairly regular, the convergence is superlinear of
order 1,3 (see de�nition in part 7.7).

7.2.4 Dichotomy without derivation for a unimodal func-

tion

It is assumed here that f is unimodal. Initially, using a preliminary algo-
rithm, we choose a and b with a<b and such that the minimum of f is reached
between a and b. We then divide, using points d, c and e, the interval [a, b]

in four equal subintervals: c =
a+ b

2
, d =

a+ c

2
, e =

c+ b

2
.

Comparing the values taken by f in a, b, c, d and e, we can eliminate two
of the subintervals de�ned by these points and a�rm that the minimum of f
is reached in the union of two contiguous subintervals [a1, c1] and [c1, b1]. The
�gure 7.1 illustrates such a case. We start again with the interval [a1, b1]. At
each step, the length of the interval is divided by 2. The speed of convergence
is linear.

7.3 Generalities for multidimensional optimiza-

tion

We consider here functions f from Rn to R. We try to determine the points
where f reaches local or global extrema. For that, we need some de�nitions.
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Figure 7.1: Dichotomy without derivation.

7.3.1 Notions of topology

De�nition 6. A part O of Rn is open, or is an open set, if, for any x ∈ O,
there exists a ball of non-zero radius centered in x included within O.

Rn is an open set. The empty set of Rn is open. Any product of open
intervals of R is open.

De�nition 7. A part F of Rn is closed, or is a closed set, if its complemen-
tary is open.

Rn is a closed set (so it is both open and closed). Any product of closed
intervals of R is closed.

De�nition 8. A part K of Rn is compact, or is a compact set, if is closed
and bounded.

Theorem 9. A continuous function f de�ned on a compact set K of Rn

with real values reaches its bounds; in other words, there exists x1 ∈ K
(respectively x2 ∈ K) such that, for every x ∈ K, f(x) > f(x1) (respectively
f(x) 6 f(x2)): x1 is a global minimum (respectively x2 is a global maximum).

Throughout this chapter, O denotes an open set of Rn.
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7.3.2 Gradient

Let f be a function from an open set O of Rn to R admitting at a point
x ∈ O �rst-order partial derivatives. We will set x = (x1, x2, ..., xn)t (the
elements of Rn are assimilated to column vectors ).

We name gradient of f at the point x and we denote by∇f(x) the column
vector:

∇f(x) =

(
∂f

∂x1

(x), ...,
∂f

∂xn
(x)

)t

.

If F (x) = (f1(x), ..., fp(x)) is a row vector where f1, ..., fp are real func-
tions of n real variables di�erentiable at the point x, then ∇F (x) is the
matrix whose jth column is ∇fj(x).

The following formulas will be useful later: if A is a constant square
matrix of order n, if u(x) and v(x) are two column vectors depending on x,
then :

∇ (utA) = ∇ (ut)A
∇ (utv) = ∇ (ut) v +∇ (vt)u.

If f admits continuous partial derivatives in x0, we can apply the Taylor
formula to order 1 :

f(x) = f(x0) + (x− x0)t.∇f(x0) + ||x− x0||.ε(x)

where ε(x) is a function that tends toward 0 when x tends toward x0.

Remarks.
1. Suppose f of class C1. If we consider the surface S of Rn+1 of equation
xn+1 = f(x1, ..., xn), then the expression xn+1 = f(x0) + (x− x0)t.∇f(x0)
gives the equation of the hyperplane tangent to S at the point (x0, f(x0)).
2. We will thereafter be interested in the variations of f in a direction d of
Rn starting from a point x0 of Rn. For s ∈ R, let g(s) = f(x0 + s.d). We
then obtain:

g′(s) = dt.∇f(x0 + s.d)
g′(0) = dt.∇f(x0).

7.3.3 Hessian matrix

If now f admits second partial derivatives in x, we set:

∇2f(x) = ∇
(
∇f(x)t

)
,
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that is:

∇2f(x) =



∂2f

∂x2
1

(x) ...
∂2f

∂x1∂xn
(x)

∂2f

∂x2∂x1

(x) ...
∂2f

∂x2∂xn
(x)

... ... ...
∂2f

∂xn∂x1

(x) ...
∂2f

∂x2
n

(x)


;

∇2f is called the Hessian matrix of f .
If f is a function of class C2 (in other words, f admits continuous second

partial derivatives), the Hessian matrix of f is a symmetric matrix (Schwarz
theorem).

If f is a function of class C2 in x0, we can write the Taylor formula of
order 2:

f(x) = f(x0)+(x−x0)t.∇f(x0)+
1

2
(x−x0)t∇2f(x0).(x−x0)+||x−x0||2.ε(x),

where ε(x) is a function that tends towards 0 when x tends towards x0.

7.4 Necessary condition and su�cient condi-

tion for local optimality

Suppose here that f is a function from Rn to R of class C2.
We remind the following de�nitions:

De�nition 9. Let M be a real square symmetric matrix.

• M is positive semi-de�nite if, ∀h ∈ Rn, ht.M.h > 0,

• M is positive de�nite if, ∀h ∈ Rn \ {0}, ht.M.h > 0.

A symmetric square real matrix is positive semi-de�nite if and only if
its eigenvalues are positive or zero. It is positive de�nite if and only if its
eigenvalues are strictly positive.

Theorem 10 (necessary condition of optimality). If f admits a local mini-
mum in x∗, then:

1. ∇f(x∗) = 0
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2. ∇2f(x∗) is a positive semi-de�nite matrix.

Proof. According to Taylor development of order 1 in x∗, we have:

f(x) = f(x∗) + (x− x∗)t∇f(x∗) + ||x− x∗||ε(x),

where ε(x) is a function that tends towards 0 when x tends towards x∗. In
particular, by choosing x = x∗ − θ.∇f(x∗), with θ ∈ R,we obtain :

f(x)− f(x∗) = −θ||∇f(x∗)||2 + θε1(θ) = θ
(
−||∇f(x∗)||2 + ε1(θ)

)
,

where ε1(θ) is a function that tends towards 0 when θ tends towards 0. For
θ positive, f(x) − f(x∗) has the sign of −||∇f(x∗)||2 + ε1(θ). If we have
∇f(x∗) 6= 0, there exist in every neighborhood of x∗ points x satisfying
f(x) < f(x∗) (for θ small positive, f(x)− f(x∗ has the sign of −||∇f(x∗)||2,
assuming this term is nonzero), a contradiction with the local optimality of
x∗. Hence the result 1.

Suppose now that there exists h ∈ Rn such that we have the relation:
ht∇2f(x∗)h < 0. We then have, according to Taylor development of order 2:

f(x∗ + θh)− f(x∗) = θ2

(
1

2
ht∇2f(x∗)h+ ε2(θ)

)
,

where ε2(θ) is a function that tends towards 0 when θ tends towards 0.For
θ small enough, the di�erence f(x∗ + θh) − f(x∗) would be negative, which
contradicts the hypothesis on x∗. ♦

Theorem 11 (su�cient condition of optimality). If a function f ful�ls in x∗:

1. ∇f(x∗) = 0

2. ∇2f(x∗) is a positive de�nite matrix

then f admits a local minimum in x∗.

Proof. The matrix ∇2f(x∗) being positive de�nite, there exists a > 0 such
that:

∀h ∈ Rn, ht∇2f(x∗)h > a||h||2.

Indeed, let us go on the sphere S of center 0 and radius 1 and set a to
a = inf{ht∇2f(x∗)h for h ∈ S}. The sphere being a compact, the value a is
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reached: ∃ h0 ∈ S such that a = ht0∇2f(x∗)h0 > 0. It is easy to deduce the
previous result. Let x be ∈ Rn. Let us apply Taylor formula of order 2 by
setting h = x− x∗:

f(x)− f(x∗) = f(x∗ + h)− f(x∗) > ||h||2
(a

2
+ ε(h)

)
,

where ε(h) is a function that tends towards 0 when h tends towards 0, which

shows the theorem because, for h of fairly small norm,
a

2
+ ε(h) has the sign

of a, that is positive. We therefore have f(x) > f(x∗) when x tends towards
x∗: x∗ is a local minimum of f . ♦

7.5 Quadratic functions

Let A be a symmetric matrix of order n, b a column vector of order n and c
a real number. The function q from Rn to R de�ned by:

q(x) = c+ btx+
1

2
xtAx

is called quadratic function or also quadratic form.

Remark. The polynomial part of Taylor second-order development of a
function f is the quadratic function q such that the surface of equation
xn+1 = q(x) is �the closest� to the surface of equation xn+1 = f(x) near
the considered point.

We have, using the formulas given in paragraph 1:

∇q(x) = ∇(xt)b+
1

2
[∇(xt)Ax+∇((Ax)t)x].

Now, ∇(xt) is the identity matrix. We also have the following equalities:

∇((Ax)t) = ∇(xtAt) = ∇(xt)At = At = A.

Hence the expression of the gradient: ∇q(x) = b+ Ax.
Furthermore: ∇2q(x) = ∇((∇q(x))t) = ∇(bt + xtAt) = At = A. So we

�nally have: ∇2q(x) = A.
Derivatives of order at least 3 of q are null. A quadratic function coincides

with its Taylor development at order 2.
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7.6 Convex functions

De�nition 10. A part of Rn is said to be convex if it contains any segment
joining any two of its points.

De�nition 11. We say that a function f de�ned on a convex part of Rn and
with real values is convex if, for any x and any y of its domain of de�nition
and for any λ of ]0, 1[, we have: f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y). If
this inequality is strict, we say that f is strictly convex.

In all the part 7.6, we assume that f is de�ned on a convex open set O
of Rn.

Theorem 12. If f is a convex function and admits partial derivatives, then
f admits a global minimum in x∗ if and only if we have ∇f(x∗) = 0.

Proof. According to the theorem 10, if x∗ is a local minimum, we have
∇f(x∗) = 0. Let us show the converse: if ∇f(x∗) is equal to 0, then f
admits a global minimum in x∗. Let x ∈ O. For s ∈ [0, 1], let us set
g(s) = f(x∗ + s(x − x∗)). We have: g(0) = f(x∗), g(1) = f(x) and
g′(0) = (x− x∗)t∇f(x∗) = 0. Moreover, we easily check that g is a convex
function. Since the derivative of a convex function is increasing, we have, for
s ∈ [0, 1], g′(s) > 0; g is increasing for s > 0, hence g(1) > g(0): f admits a
global minimum in x∗. ♦

Theorem 13. If f is convex and has a local minimum in x∗, then f has a
global minimum in x∗.

Proof. If f has a local minimum in x∗, then ∇f(x∗) = 0. If, furthermore,
f is convex, the previous theorem leads to the conclusion that it admits a
global minimum in x∗. ♦

We will admit the following theorem.

Theorem 14. If f is twice di�erentiable with continuous second derivatives,
the following propositions are equivalent:

1. f is convex.

2. For any x0 of O, the tangent hyperplane at the point (x0, f(x0)) to the
surface of equation xn+1 = f(x) is below this surface; in other words,
for every x of O, we have: f(x) > f(x0) + (∇f(x0))t(x− x0).

3. For any x of O, ∇2f(x) is positive semi-de�nite.
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We deduce that a quadratic function q(x) = 1
2
xtAx + btx + c is convex

if and only if A is positive semi-de�nite. On the other hand, if A is positive
de�nite, then q is strictly convex and admits a single global minimum.

7.7 Generalities on methods for optimization

without constraint

It is assumed until the end of the chapter that O = Rn.
Even if we are most of the time interested in global extrema, we will

usually look for local extrema, even if we then examine (if possible) whether
it is global extrema.

When we consider fractions in what follows, we will assume that the
denominators are non-zero (the adaptations being immediate otherwise).

To determine a point where a function f reaches a local minimum, the
methods very often consist in constructing a sequence x0, x1, ..., xk, ... which
must converge to a point x∗ satisfying a necessary condition of optimality.
This condition (often ∇f(x∗) = 0) is usually not su�cient and the behavior
of f in the neighborhood of x∗ must be subject to additional study (which
can include, among other things, the Hessian matrix of f at the point x∗).

7.7.1 Descent methods

The methods used are often descent methods; we call descent method any
method where, at each stage, we set xk+1 = xk + skd

k, where sk ∈ R+ and
dk is a direction of Rn which ful�ls (dk)t∇f(xk) < 0. This last condition
means that f(xk + sdk) has a negative derivative for s = 0: starting from
xk in the direction dk, f decreases (�we descend�). The di�erence between
the various descent methods is the choice of sk and dk, which must at least
ensure f(xk+1) 6 f(xk).

7.7.2 Speed of convergence

When the convergence of an algorithm has been established, an important
quality of this algorithm is its speed of convergence .

• If we have
||xk+1 − x∗||
||xk − x∗||

6 α < 1 for k large enough, convergence is said

to be linear of rate α.
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• If
||xk+1 − x∗||
||xk − x∗||

tends towards 0 when k tends towards in�nity, we say

that the convergence is superlinear .

• If
||xk+1 − x∗||
||xk − x∗||γ

is bounded, with γ > 1, we say that the convergence is

superlinear of order γ. In the case γ = 2, we say that the convergence
is quadratic.

7.8 Gradient methods

7.8.1 Principle

It is a family of iterative methods that apply to di�erentiable functions and
use the idea below.

Let d be a vector of Rn and xk a point of Rn with ∇f(xk) 6= 0. We set,
for s ∈ R: g(s) = f(xk + sd).

We say that d is a direction of descent if g′(0) < 0. We saw the relation-
ship g′(0) = dt∇f(xk). Hence, denoting by θ the angle between ∇f(xk) and
d: g′(0) = ||∇f(xk)||||d|| cos θ.

Assuming that d is unitary, g′(0) is minimum if cos θ = −1, that is, if d is

given by the opposite of the gradient: d = − ∇f(xk)

||∇f(xk)||
. This last direction

gives what is called the direction of steepest descent . It is this choice that is
made in the gradient methods.

7.8.2 Method of steepest descent with optimal step

The method of the steepest descent with optimal step is the most widely
used gradient method. We choose here dk = −∇f(xk) to have the steepest
descent. We then set g(s) = f(xk − s∇f(xk)) and we compute sk so as
to minimize g for s > 0 (if such sk exists). We are then reduced to a one-
dimensional optimization problem. Let λ be a strictly positive constant. The
algorithm of the steepest descent can be written in the following way:

• Choose a starting point x0

• k ← 0
• repeat
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? dk ← −∇f(xk)
? de�ne the function g on [0,+∞[ by g(s) = f(xk + sdk)
? if g admits a global minimum sk on the interval [0,+∞[, xk+1 ← xk + skd

k

(we can also take for sk the �rst local minimum starting from
s = 0, especially in the case where g admits a local minimum but
no global minimum)
otherwise if g asymptotically tends towards −∞, conclude that f
has no �nite minimum and stop
otherwise (g is decreasing and tends asymptotically towards a �-
nite limit), xk+1 ← xk + λdk

? k ← k + 1

as long as a given stop test is not ful�lled.

The stopping test can be for example:

• we have exhausted a number of iterations �xed in advance;

• the gradient is very small:
n∑
i=1

(
∂f

∂xi
(xk))2 6 ε, where ε is a given parameter

(we can of course consider another norm);

• the sequence xk is �almost� stationary: |f(xk+1)− f(xk)| 6 ε, where ε
is a given parameter (we can of course consider another norm).

It can also be required that one of these tests be ful�lled on several itera-
tions or that several tests are satis�ed simultaneously. We can show that if
f(x) is a function of class C1 that tends towards in�nity when ||x|| tends
towards in�nity, this algorithm converges to a stationary point (point where
the gradient is equal to 0).

The disadvantage of this method is that the speed of convergence can be
very low (linear with a rate close to 1). This slowness can be explained

as follows: the equality
δ

δs
[f(xk − s∇f(xk))](sk) = 0 can be written :

[∇f(xk)]t∇f(xk+1) = 0 ; the successive directions of descent are orthogo-
nal. In the �gure 7.2, some contour lines and movements are represented.
There is zig-zag convergence.

7.8.3 Method of steepest descent with �xed step

This method di�ers from the previous one in that we do not look for the
minimum of the function f in the direction −∇f(xk) but that we do one
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Figure 7.2: Zig-zag convergence.

step in that direction. The length of the step is �xed in advance. The
algorithm can be written as follows:

• Set a constant λ strictly positive for the step length

• Choose a starting point x0

• k ← 0

• repeat

? dk ← −∇f(xk)

||∇f(xk)||
? xk+1 ← xk + λdk

? k ← k + 1

as long as a given stop test is not ful�lled.

7.8.4 Accelerated method of steepest descent

The accelerated method of the steepest descent is a method of descent which
is based on the method of the steepest descent with optimal step and which
accelerates it.

Let p be a �xed integer. From a point xk, we perform p iterations of the
steepest descent method; we get a point yk and we set dk = yk − xk. The
point xk+1 is the point where the function f(xk + sdk) has a minimum for
s > 0.

The �gure 7.3 illustrates this method in the case p = 2. For p = 1, we
apply the method of the steepest descent with optimal step.
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Figure 7.3: Accelerated convergence.

7.9 Conjugate gradients method

7.9.1 Case of a quadratic function

Let q(x) = 1
2
xtAx + btx + c be a quadratic function, where A is a positive

de�nite symmetric matrix.

The method consists, from a point x0, of minimizing q according to n
directions d0, d1, ..., dn−1 mutually conjugated with respect to A that is to
say satisfying: for 0 6 i < j 6 n− 1, (di)tAdj = 0.

We consider such directions d0, d1, ..., dn−1.

Having determined xk, the point xk+1 is the point: xk+1 = xk + skd
k

where sk is chosen to minimize q(xk + skd
k).

So we have : (dk)t∇q(xk + skd
k) = 0 or: (dk)t[A(xk + skd

k) + b] = 0 from

which we deduce: sk = − (dk)t(Axk + b)

(dk)tAdk
.

Lemma 15. If d0, d1, ..., dk−1 are mutually conjugated with respect to A, then
we have, for every i < k : (di)t∇q(xk) = 0.
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Proof. We have:

(di)t∇q(xk) = (di)t(Axk + b)

= (di)t

[
A

(
xi +

k−1∑
j=i

sjd
j

)
+ b

]
= (di)t(Axi + b) + si(d

i)tAdi

= 0 from the value of si computed above. ♦

Theorem 16. If the directions d0, d1, ..., dn−1 are mutually conjugated, the
point xn is the optimum of q(x) on Rn.

Proof. Since the directions d0, d1, ..., dn−1 are mutually conjugate, they form
a basis of Rn. According to the lemma 15, we have, for every i satisfying
0 6 i 6 n − 1, (di)t∇q(xn) = 0 whence ∇q(xn) = 0; with ∇2q(xn) = A and
A is positive de�nite, the theorem 11 permits to conclude. ♦

The Fletcher and Reeves method generates the directions di; it is ex-
plained below by setting: gk = ∇q(xk) = Axk + b.

• Choose a starting point x0.

• d0 ← −g0

• s0 ← −
(d0)tg0

(d0)tAd0

• x1 ← x0 + s0d
0

• For k varying from 0 to n− 2 do

? bk ←
(dk)tAgk+1

(dk)tAdk

? dk+1 ← −gk+1 + bkd
k

? sk+1 ← −
(dk+1)tgk+1

(dk+1)tAdk+1
.

? xk+2 ← xk+1 + sk+1d
k+1

To justify the method, it is enough to check that d0, d1, ...dn−1 are mutu-
ally conjugated. Let us show by induction on k that for k > 0, d0, d1, ...dk
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are mutually conjugated. There is nothing to check for k = 0. Suppose this
is true for some k, 0 6 k 6 n− 2. We then have for k + 1:

(dk)tAdk+1 = (dk)tA(−gk+1 + bkd
k)

= −(dk)tAgk+1 + bk(d
k)tAdk = 0 according to the choice of bk.

For i < k, (dk+1)tAdi = −(gk+1)tAdi + bk(d
k)tAdi = −(gk+1)tAdi.

Now: Adi = A

(
xi+1 − xi

si

)
=
Axi+1 − Axi

si
=
gi+1 − gi

si
.

On the other hand:

• si i > 1, gi = −di + bi−1d
i−1

• g0 = −d0.

According to the lemma and the recursion hypothesis, gk+1 is orthogonal
to di+1, di and di−1 ; Adi being a linear combination of these three vectors,
(gk+1)tAdi = 0, which shows the equality (dk+1)tAdi = 0 for i < k.

It follows from the above that the recurrence assumption is true for k+1.
Consequently, the directions d0, ..., dn−1 are mutually conjugate.

Finally, we demonstrate a formula that will be useful in the following
paragraph.
We have gk+1 − gk = A(xk+1 − xk) = skAd

k.

From which (dk)tAgk+1 =
(gk+1 − gk)t(gk+1)

sk
.

As gk = −dk + bk−1d
k−1, the lemma shows the equality (gk+1)22tgk = 0.

Hence, thanks to the lemma:

bk =
(dk)tAgk+1

(dk)tAdk
=

1

sk

(gk+1)tgk+1

(dk)tAdk
=

(gk+1)tgk+1

(dk)t(gk+1 − gk)
= − (gk+1)tgk+1

(dk)tgk
.

Now: (dk)tgk = (−gk + bk−1d
k−1)tgk = −(gk)tgk according to the lemma.

We deduce the result: bk =
||gk+1||2

||gk||2
.

7.9.2 Case of any function

The Fletcher and Reeves algorithm for any function is:
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• Choose a point x0

• d0 ← −∇f(x0)

• k ← 0

• repeat

? choose sk minimizing f(xk + sdk) with respect to s

? xk+1 ← xk + skd
k

? bk ←
||∇f(xk+1)||2

||∇f(xk)||2

? dk+1 ← −∇f(xk+1) + bkd
k

? k ← k + 1

until a stop test is ful�lled.

This method has the advantage of having a convergence speed much
higher than that of conventional gradient algorithms.

7.10 Newton method

Suppose here that f is of class C 3.
In the neighborhood of a point xk, we approach f by the quadratic func-

tion q given by the Taylor formula of order 2:

q(x) = f(xk) + (x− xk)t∇f(xk) +
1

2
(x− xk)t∇2f(xk)(x− xk).

We can then choose for xk+1 the point, if it exists, which minimizes q;
for this minimizing point q to exist, it is su�cient that ∇2f(xk) be positive
de�nite; it is then determined by the equation ∇q(x) = 0, which is written:

∇f(xk) +∇2f(xk)(x− xk) = 0,
from where :

xk+1 = xk − [∇2f(xk)]−1∇f(xk).

Proposition 17. If x0 is chosen su�ciently close to a local minimum x∗

whose Hessian matrix of f is positive de�nite, then the sequence (xk) has a
quadratic convergence to x∗.

Proof. We consider a vectorial norm || || and the matrix norm subordinate to
it || || (see annex A). We will establish a su�cient condition on x0 to ensure
a quadratic convergence of the sequence (xk) constructed from x0 by Newton
method. For this, we consider the following elements.
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• We know that∇2f(x∗) is positive de�nite. By continuity of the function
∇2f , there exists a ball B1 of center x

∗ and of radius r1 on which∇2f(x)
is positive de�nite and therefore invertible. We then denote by M an
upper bound of ||(∇2f)−1|| on B1 (such an upper bound exists since
(∇2f)−1 is continuous and B1 is a compact).

• Using the fact that f is of class C 3, the Taylor formula with remainder
under integral form shows that there exists a constant N strictly posi-
tive and a function φ(a, b) for which we have, if a and b are two points
of B1:

? ∇f(b) = ∇f(a) +∇2f(a)(b− a) + φ(a, b)||b− a||2

? ||φ(a, b)|| 6 N . (1)

• We set M ′ = MN .

• We consider a real r simultaneously ful�lling r 6 r1 and r <
1

M ′ ; we

call B the ball centered in x∗ and of radius r (note that B is included
in B1).

We assume that x0 is in B. We will show by induction on k that the
sequence (xk) is entirely in B. This is true for k = 0 and we assume that it
is true for k > 0.

We have: ∇f(x∗)−∇f(xk) = ∇2f(xk)(x∗ − xk) + φ(xk, x∗)||x∗ − xk||2.
Using ∇f(x∗) = 0 (consequence of the minimality of x∗):
∇2f(xk)(xk − x∗) = ∇f(xk) + φ(xk, x∗)||xk − x∗||2.

The matrix ∇2f(xk) being invertible (since we have ||xk − x∗|| 6 r1), we
obtain, by multiplying on the left the two members by [∇2f(xk)]−1:

xk − x∗ = [∇2f(xk)]−1∇f(xk) + [∇2f(xk)]−1φ(xk, x∗)||xk − x∗||2. (2)
Moreover:

xk+1 − x∗ = (xk+1 − xk) + (xk − x∗). (3)
By construction:

xk+1 − xk = −[∇2f(xk)]−1∇f(xk). (4)
Using the equalities (2), (3) and (4), we obtain:

xk+1 − x∗ = −[∇2f(xk)]−1∇f(xk)

+ [∇2f(xk)]−1∇f(xk) + [∇2f(xk)]−1φ(xk, x∗)||xk − x∗||2

= [∇2f(xk)]−1φ(xk, x∗)||xk − x∗||2.
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Hence: ||xk+1−x∗|| 6 ||[∇2f(xk)]−1||||φ(xk, x∗)|| ||xk−x∗||2; consequently,
exploiting the property (1) and the inequality r 6 r1:
||xk+1−x∗|| 6MN ||xk−x∗||2 = M ′||xk−x∗||2 = (M ′||xk−x∗||)||xk−x∗||.
As xk is in the ball B, ||xk − x∗|| 6 r <

1

M ′ ; hence M
′||xk − x∗|| < 1; so

we have : ||xk+1 − x∗|| 6 ||xk − x∗|| ; xk+1 is also in the ball B. We have
established that the whole sequence (xk) is in B.

Let us set α = M ′||x0 − x∗||. We have ||x0 − x∗|| 6 r <
1

M ′ , from which

α < 1.
We also have: M ′||xk+1−x∗|| 6 (M ′||xk−x∗||)2 ; we obtain by recurrence:

M ′||xk − x∗|| 6 (M ′||x0 − x∗||)2k = α2k ,

or: ||xk − x∗|| 6 α2k

M ′ .

The sequence xk converges to x∗.
Finally, the inequality ||xk+1 − x∗|| 6 M ′||x∗ − xk||2 shows that conver-

gence is quadratic. ♦

7.11 Exercice

Statement. We are interested in the minimum of the function f de�ned on
R2 by:

f(x, y) = ex+y + x2 + 2y2.

Apply three iterations of the method of the steepest descent with optimal
step.

Solution. The fonction f is of class C∞. Let us start by determining the
gradient and Hessian matrix of f :

∇f(x, y) =

(
ex+y + 2x
ex+y + 4y

)
, ∇2f(x, y) =

(
ex+y + 2 ex+y

ex+y ex+y + 4

)
.

The determinant of the Hessian matrix (product of eigenvalues) and its trace
(sum of eigenvalues) being strictly positive, the eigenvalues of ∇2f(x, y) are
strictly positive and ∇2f(x, y) is positive de�nite: f is therefore strictly
convex.
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We deduce that every local minimum is global, and a necessary and su�-
cient condition for x∗ to be a minimum is ∇f(x∗) = 0. As otherwise f tends
towards in�nity at in�nity, f admits a global minimum, which is sought by
the steepest descent with optimal step method.

We start from P0 =

(
0
0

)
;∇f(P0) =

(
1
1

)
; d0 =

(
−1
−1

)
.

We look for s such that g(s) = f(P0 + sd0) is minimum:
g(s) = f(−s,−s) = e−2s + 3s2.
We minimize g for example by dichotomy and we �nd s = 0.216. D'où :

P1 = P0+0.216d0 =

(
−0.216
−0.216

)
;∇f(P1) =

(
0.216
−0.216

)
; d1 =

(
−0.216
0.216

)
.

We �nd that d1 is orthogonal to d0. We set

g(s) = f(P1 + sd1)

= f(−0.216(1 + s),−0.216(1− s))
= e−2×0.216 + (0.216)2[(1 + s)2 + 2(1− s)2]

= e−2×0.216 + (0.216)2h(s)

with h(s) = [(1 + s)2 + 2(1− s)2] = 3s2 − 2s+ 3.
The minimum of h is reached for s = 1/3. From which :

P2 =

(
−0.216(1 + 1/3)
−0.216(1− 1/3)

)
=

(
−0.288
−0.144

)
;∇f(P2) =

(
0.0732
0.0732

)
;

d2 =

(
−0.0732
−0.0732

)
(again d2 is orthogonal to d1...).

We now consider:

g(s) = f(−0.288− 0, 0732s,−0.144− 0, 0732s)

= e−0.432−0.1464s + (0.288 + 0, 0732s)2 + 2(0.144 + 0, 0732s)2.

We minimize g by dichotomy and we �nd s = 0.2339, hence:

P3 =

(
−0.305
−0.161

)
.

We can continue this way to have more precision.
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Chapter 8

Non linear optimization with

constraints

8.1 Generalities

We consider functions gi (1 6 i 6 m) and hj (1 6 j 6 p) de�ned on Rn and
with real values. We set I = {1, ...,m} and J = {1, ..., p}. We consider the
set X of the elements of Rn satisfying:{

for i ∈ I, gi(x) 6 0
for j ∈ J, hj(x) = 0.

If we consider a continuous function from Rn to R, the inverse image
by this function of a closed set of R is a closed set of Rn. Moreover, the
intersection of closed sets of Rn is a closed set of Rn. Consequently, if all the
functions gi and hj are continuous, the set X is a closed set of Rn.

We now consider a function f de�ned on an open set O of Rn (we often
meet O = Rn) and with real values. We assume that O contains X.

We consider the problem (P ):

minimize f(x) for x ∈ X.

Adaptations to a constrained maximization problem are immediate.
The conditions gi(x) 6 0 and hj(x) = 0 are the constraints of the problem

(P ). Every x element of X is called feasible solution and X is the feasible
domain (we also said feasible set). If, for i ∈ I and for x ∈ X, we have
gi(x) = 0, we say that the constraint gi is saturated in x.

111
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We assume in this chapter that the functions gi (i ∈ I), hj (j ∈ J)
and f are of class C 1 on O and that the feasible domain is not
empty.

Theorem 18. If the feasible domain is bounded, then the problem (P ) admits
at least one optimal solution.

Proof. With the hypotheses, the feasible domain is a non-empty closed
bounded set of Rn, that is, a compact of Rn. The result follows immedi-
ately from the theorem 9.

De�nition 12. The function f is said to be coercive if, for every real M ,
there exists r such that for x ∈ O with ||x|| > r, we have f(x) > M (that
is, the function f tends towards in�nity if x tends towards in�nity while
remaining in O).

Theorem 19. If the function f is coercive, the problem (P ) has at least one
optimal solution.

Proof. Let x be a feasible solution. Since f is coercive, there is a ball B of Rn

centered on the origin such that for all x′ in O and not in B, f(x′) > f(x).
Since the set B ∩X is a closed bounded set of Rn, the function f reaches its
minimum on B ∩X at a point x∗. This point is also an optimal solution for
the problem (P ). ♦

De�nition 13. We say that a direction d is admissible at a point x0 ∈ X if
there is a function φ from R toRn such that:

1. φ(0) = x0

2. for all t > 0 small enough, φ(t) ∈ X
3. the right derivative of φ at the point 0 is d.

Let x0 ∈ X. We denote by A(x0) the set of admissible directions in x0;
we set I0(x0) = {i ∈ I satisfying gi(x

0) = 0}.

Proposition 20. If d is an admissible direction in x0, then:

1. for i ∈ I0(x0), dt∇gi(x0) 6 0

2. for j ∈ J, dt∇hj(x0) = 0.

Proof. Let φ be a function corresponding to the de�nition 13. We apply
Taylor formula of order 1.
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1. If gi(x
0) = 0, we have: gi(φ(t)) = tdt∇gi(x0) + tε(t) where ε(t) →

0 when t → 0. For t > 0 small enough, gi(φ(t)) 6 0 and then:
dt∇gi(x0) + ε(t) 6 0, which gives the result by passing to the limit
when t→ 0.

2. We have hj(φ(t)) = hj(x
0) + tdt∇hj(x0) + tε(t) where ε(t) → 0 when

t→ 0.

For t > 0 small enough, hj(φ(t)) = 0 and hj(x
0) = 0; we therefore have

for t > 0 small enough: dt∇hj(x0) + ε(t) = 0, which gives the result by
passing to the limit when t→ 0. ♦

We denote by B(x0) the set of directions d ful�lling:

• for i ∈ I0(x0), dt∇gi(x0) 6 0

• j ∈ J, dt∇hj(x0) = 0.

The proposition 20 is rewritten: A(x0) ⊆ B(x0).

De�nition 14. We say that the constraints are quali�ed in x0 ∈ X if any
direction in B(x0) is the limit of a sequence of directions of A(x0).

The following propositions give su�cient conditions for constraints to be
quali�ed.

Proposition 21. If:

• fonctions gi are convex,

• fonctions hj are linear,

• it exists x̃ ∈ X with,

for all i ∈ I, gi(x̃) < 0

for all j ∈ J, hj(x̃) = 0

then the constraints are quali�ed in every point of X.

Proposition 22. We assume that for j ∈ J , the functions hj are linear. If,
at the point x0 ∈ X, all the gradients

• ∇gi(x0) for i ∈ I0(x0)
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• ∇hj(x0) for j ∈ J

are linearly independent, then the constraints are quali�ed in x0.

Before proving these propositions, two lemmas are established:

Lemma 23. It is assumed that for j ∈ J , the fonctions hj are linear. Let
x0 ∈ X and d be a direction verifying:

• for i ∈ I0(x0), dt∇gi(x0) < 0

• for j ∈ J , dt∇hj(x0) = 0.

Then d is an admissible direction in x0.

Proof. For t > 0, we set: φ(t) = x0 + td. We have φ(0) = x0 and φ′(0) = d,
in other words, points 1 and 3 of the de�nition of an admissible direction are
satis�ed.

For j ∈ J , since the functions hj are supposed to be linear, we can write:
hj(φ(t)) = hj(x

0) + tdt∇hj(x0). By hypothesis on x0, we have hj(x
0) = 0

and, by hypothesis on d, we have dt∇hj(x0) = 0. Hence hj(φ(t)) = 0.
Moreover, for i ∈ I0(x0), we can write:
gi(φ(t)) = gi(x

0) + t(dt∇gi(x0) + ε(t)), where ε(t)→ 0 when t→ 0.
From gi(x

0) = 0 and dt∇gi(x0) < 0, we deduce gi(φ(t)) 6 0 for t positive
enough small.

Thus, the direction d is admissible. ♦

Lemma 24. We assume that for j ∈ J , the functions hj are linear. Let
x0 ∈ X. If there is a direction d̃ such that:

• for i ∈ I0(x0), d̃t∇gi(x0) < 0

• for j ∈ J, d̃t∇hj(x0) = 0,

then the constraints are quali�ed in x0.

Proof. Let d ∈ B(x0) and d̃ verifying the assumptions of the lemma.
For λ ∈ [0, 1[, we set dλ = λd+ (1− λ)d̃.
For i ∈ I0(x0): dtλ∇gi(x0) = λdt∇gi(x0) + (1− λ)d̃t∇gi(x0) < 0.
For j ∈ J : dtλ∇hj(x0) = λdt∇hj(x0) + (1− λ)d̃t∇hj(x0) = 0.
The lemma 23 indicates that for all λ ∈ [0, 1[, dλ is a quali�ed direction.

Considering a sequence λn of numbers tending towards 1 by lower values,
we obtain a sequence dλn of admissible directions that tends towards d: this
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shows that the constraints are quali�ed in x0. ♦

Proof of the proposition 21. Let x̃ which veri�es the hypotheses of the propo-
sition and x0 a point of X.

Using the convexity of gi, we have for i ∈ I0(x0):
0 > gi(x̃) > gi(x

0) + (x̃− x0)t∇gi(x0).
Hence, as gi(x

0) = 0, (x̃ − x0)t∇gi(x0) < 0. We set d̃ = x̃ − x0; so we have
d̃t∇gi(x0) < 0.

For j ∈ J , the fonctions hj being linear: 0 = hj(x̃) = hj(x
0) + d̃t∇hj(x0);

from which we deduce: d̃t∇hj(x0) = 0.
We use the lemma 24: the constraints are quali�ed in x0. Since x0 is

arbitrary, we conclude that the constraints are quali�ed at every point of X.
♦

Proof of the proposition 22. We consider (Q) and (R), the two linear opti-
mization problems describe below:

Maximize z =
∑

i∈I0(x0) λi

(Q) with


∑

j∈J µj∇hj(x0)−
∑

i∈I0(x0) λi∇gi(x0) = 0

for i ∈ I0(x0), λi > 0
for j ∈ J, µj ∈ Rn

Minimize w = 0

(R) with


for i ∈ I0(x0), dt∇gi(x0) 6 −1
for j ∈ J, dt∇hj(x0) = 0.
d ∈ Rn

We can easily check that the problems (Q) and (R) are dual one to each
other.

The problem (Q) is feasible since the null solution is feasible; we show that
it is bounded from above by 0. Suppose that it can take a strictly positive
value. Then, in this solution, at least one λi (i ∈ I0(x0)) is non-zero and
the vectors ∇gi(x0) (i ∈ I0(x0)) and ∇hj(x0) (j ∈ J) are linearly dependent,
which is contrary to the hypothesis. The maximum of the problem (Q) is
therefore 0.

We use the fondamental theorem of duality for linear optimization 5: the
problem (R) is feasible. d̃ is a feasible solution of (R). Then just use the
lemma 24 to conclude. ♦
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Remark. We can show that the proposition 22 is still correct if we assume
that the functions hj are linear.

An example of point where constraints are not quali�ed.
We consider in R2 the domain represented in the �gure 8.1 de�ned by:

y 6 x3

x 6 1
y > 0.

Figure 8.1: Unquali�ed constraints in (0, 0).

We set g1(x, y) = y − x3, g2(x, y) = x− 1, g3(x, y) = −y; the constraints
can be written: g1(x, y) 6 0, g2(x, y) 6 0, g3(x, y) = −y.

At point (0, 0), the constraints g1 and g3 are saturated.

∇g1(x, y) =

(
−3x

1

)
, ∇g1(0, 0) =

(
0
1

)
and ∇g3(0, 0) =

(
0
−1

)
.

The direction d =

(
−1
0

)
ful�lls dt∇g1(0, 0) = 0 and dt∇g3(0, 0) = 0,

the direction d belongs to B(0, 0). However, the only admissible direction in

(0, 0) is the direction

(
1
0

)
. The direction d is not limit of a sequence of

admissible directions.

Finally, we establish the following theorem:

Theorem 25. We suppose that the problem admits a local minimum at a
point x∗ where the constraints are quali�ed. Then, if d ∈ B(x∗):

dt∇f(x∗) > 0
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(therefore, no admissible direction in x∗ is a descent).

Proof. Let (dk) be a sequence of admissible directions tending towards d and
φk the function associated with dk. Soit t > 0. We deduce:

f [φk(t)] = f(x∗) + tdtk∇f(x∗) + tε(t)

where ε(t)→ 0 when t→ 0. If t is small enough: f [φk(t)] > f(x∗).
Then, we have: t[dtk∇f(x∗) + ε(t)] > 0 and so dtk∇f(x∗) + ε(t) > 0.
Going to the limit when t tends towards 0, we get dtk∇f(x∗) > 0.
Going to the limit when k tends towards +∞, we get dt∇f(x∗) > 0. ♦

8.2 Lagrange condition

We are interested here in the problem:

Minimize f(x)

with

{
for j ∈ J, hj(x) = 0
x ∈ Rn

where the functions f and hj (j ∈ J) are of class C1. The Lagrange condition,
given in the following theorem, provides a necessary condition for an element
of Rn to be a local minimum of (P ).

Theorem 26. Let x∗ be a local minimum of the problem. It is assumed that
the constraints are quali�ed in x∗. Then there are p real numbers µj (j ∈ J)
ful�lling:

∇f(x∗) =
∑
j∈J

µj∇hj(x∗).

Proof. Let us denote by E the subset of Rn generated by the vectors ∇hj(x∗)
(j ∈ J) and E⊥ the subspace orthogonal to E. We have:

∇f(x∗) = y + z. with y ∈ E and z ∈ E⊥.

For j ∈ J , (−z)t∇hj(x∗) = 0 since −z belongs to E⊥. Therefore, −z belongs
to B(x∗); according to the theorem 25, it follows: (−z)t∇f(x∗) > 0.

But: (−z)t∇f(x∗) = (−z)ty + (−z)tz = (−z)tz = −||z||2.
The inequality −||z||2 > 0 results in z = 0. Hence the theorem. ♦

The theorem 27, a direct consequence of the theorem 29 demonstrated
later, gives hypotheses for which the Lagrange condition is su�cient.
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Theorem 27. The Lagrange condition is su�cient when f is convex in an
open set containing X and the hj (j ∈ J) are linear.

8.3 Karush, Kuhn and Tucker conditions

We consider again the initial problem (P ):

Minimize f(x)

(P ) with


for i ∈ I, gi(x) 6 0
for j ∈ J, hj(x) = 0
x ∈ Rn

where the functions f , gi (i ∈ I) and hj (j ∈ J) are assumed of class C1.
The following conditions, called Karush, Kuhn and Tucker conditions, give
su�cient conditions of optimality and generalize the Lagrange condition:

Theorem 28. It is assumed that the constraints are quali�ed in x∗ and that
x∗ is a local minimum of the problem; then it exists:

• |I0(x∗)| positive or zero real numbers λi for i ∈ I0(x∗)

• p real numbers µj (j ∈ J)

satisfying:

∇f(x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I0(x∗)

λi∇gi(x∗).

Remark. We notice that in the expression of ∇f(x∗), only the saturated
constraints intervene.

Proof. First, we use the theorem 25.
The hypothesis d ∈ B(x∗) can be written:

• for all i ∈ I0(x∗),
∑n

k=1

∂gi
∂xk

(x∗)dk 6 0

• for all j ∈ J ,
∑n

k=1

∂hj
∂xk

(x∗)dk = 0.

The conclusion dt∇f(x∗) > 0 in the case where x∗ is a local minimum can

be written:
∑n

k=1

∂f

∂xk
(x∗)dk > 0. We set:
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• for every i ∈ I0(x∗) and for every k ∈ {1, 2, ..., n}, aik = − ∂gi
∂xk

(x∗)

• for every j ∈ J and every k ∈ {1, 2, ..., n}, bjk =
∂hj
∂xk

(x∗)

• for every k ∈ {1, 2, ..., n}, ck =
∂f

∂xk
(x∗).

With these notations, the theorem 25 can be written: for every d ∈ Rn, if
we have:

• for every i ∈ I0(x∗),
∑n

k=1 aikdk > 0

• for every j ∈ J ,
∑n

k=1 bjkdk = 0,

then
∑n

k=1 ckdk > 0.

We use the Farkas and Minkowski theorem which is the object of the
exercise 6.6.4: it exists λi for i ∈ I0(x∗) and µj for j ∈ J ful�lling:

• for k ∈ {1, ..., n},
∑

i∈I0(x∗) aikλi +
∑

j∈J bjkµj = ck

• for i ∈ I0(x∗), λi > 0.

The �rst line can be written:

• for k ∈ {1, ..., n},
∑

j∈J µj
∂hj
∂xk

(x∗)−
∑

i∈I0(x∗) λi
∂gi
∂xk

(x∗) =
∂f

∂xk
(x∗)

or �nally:
∑

j∈J µj∇hj(x∗)−
∑

i∈I0(x∗) λi∇gi(x∗) = ∇f(x∗).

With the positivity of the λi, we get the statement of Karush, Kuhn and
Tucker theorem. ♦

We illustrate below two cases where there is no equality constraint; the
conditions of Karush, Kuhn and Tucker then express that it is necessary that
∇f(x∗) be decomposed on {−∇gi(x∗)(i ∈ I0(x∗)} with positive or zero coef-
�cients.

Illustration.
? Case n = 2, p = 0 and one saturated inequality constraint

We assume that we are in R2; we denote by x1 and x2 the coordinates of
a point. We assume that only the constraint g(x1, x2) 6 0 is saturated at the
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point (x∗1, x
∗
2): g(x∗1, x

∗
2) = 0. The vector −∇g(x∗1, x

∗
2) is perpendicular to the

curve of equation g(x1, x2) = 0 and directed to the interior of the domain. If
the vector ∇f(x∗1, x

∗
2) makes a non-zero angle with −∇g(x∗1, x

∗
2), we can �nd

a direction of descent for f directed to the interior of the domain and the
point (x∗1, x

∗
2) is not a local minimum.

The �gure 8.2 illustrates this case; we remind that a direction is a direc-
tion of descent if it makes at an obtuse angle with ∇f(x∗1, x

∗
2) and that an

admissible direction makes an acute angle with −∇g(x∗1, x
∗
2).

Only the case where ∇f(x∗1, x
∗
2) makes a null angle with −∇g(x∗1, x

∗
2) is

compatible with the local optimality of (x∗1, x
∗
2).

Figure 8.2: In the plane, only one saturated constraintDans le plan, une seule
contrainte saturée.

? Case n = 2, p = 0 and two saturated inequality constraints.
On the �gure 8.3, so that no direction of descent is directed towards the

domain, it is necessary that the vector ∇f(x∗1, x
∗
2) is in the sector formed by

−∇g1(x∗1, x
∗
2) and −∇g2(x∗1, x

∗
2). This is the case in the �gure.

Figure 8.3: In the plane, two saturated constraints.
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The theorem 29 gives hypotheses for which the Karush, Kuhn and Tucker
conditions are su�cient for a local minimum.

Theorem 29. It is assumed that the constraints are quali�ed at a point x∗.
The Karush, Kuhn and Tucker conditions at the point x∗ are su�cient to have
a local minimum if there is a neighborhood of x∗ in which we simultaneously
have the functions f and gi (i ∈ I0(x∗)) convex and functions hj linear
(j ∈ J).

Proof. Suppose there are positive or zero real numbers λi (i ∈ I0(x∗)) and
real numbers µj (1 6 j 6 p) such that:

∇f(x∗) =
∑
j∈J

µj∇hj(x∗)−
∑

i∈I0(x∗)

λi∇gi(x∗).

We consider a ball B centered in x∗ in which the functions f and gi
(i ∈ I0(x∗)) are convex and the functions hj linear (j ∈ J). Let x ∈ B ∩X,
we will show the inequality f(x) > f(x∗), which will prove the theorem.

The convexity of f on B induces: f(x) > f(x∗) + (x−x∗)t∇f(x∗). Using
the Karush, Kuhn and Tucker conditions:

f(x) > f(x∗) +
∑

j∈J µj(x− x∗)t∇hj(x∗)−
∑

i∈I0(x∗) λi(x− x∗)t∇gi(x∗).
For j ∈ J : (x− x∗)t∇hj(x∗) = hj(x)− hj(x∗) = 0.
Let i ∈ I0(x∗); the function gi being convex on B:

gi(x) > gi(x
∗) + (x− x∗)t∇gi(x∗).

So we have:

(x− x∗)t∇gi(x∗) 6 gi(x)− gi(x∗).
We have λi > 0 and moreover, by hypothesis, gi(x

∗) = 0 and gi(x) 6 0,
hence:

λi(x− x∗)t∇gi(x∗) 6 0.
We �nally get f(x) > f(x∗): f admits a local minimum at the point x∗. ♦

8.4 Descent method

In this part 8.4, we consider in the following problem:

Minimize f(x)
with, for 1 6 i 6 m, gi(x) 6 0.
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To try to solve this problem, we choose a starting point x0 ∈ X and we build
iteratively a sequence xk of X satisfying f(xk+1) < f(xk), until the obtained
value is considered to be satisfying.

When we are in xk, we look for a descent direction d that does not make
�immediately� go out of X. We then seek, by moving in the direction d,
a point xk+1 of X better than xk (for example, minimizing f(xk + sd) for
s > 0, with the constraint that xk+sd belongs to X, if we know how to solve
this new problem). We start again from xk+1 as long as a certain stopping
criterion is not ful�lled.

To choose d, we can solve the problem:

Minimize dt∇f(xk)

with

{
dt∇gi(xk) 6 0 for any i such that gi(x

k) = 0
dtd = 1.

The vector d is normed so as to choose, among the possible directions, a
direction that maximizes the angle with ∇f(xk). This gives the direction
d ∈ B(xk) of greatest descent. We can replace the condition that d be of
norm 1 by a condition imposing that d is of norm bounded from above by a
�xed constant.

We can choose to replace the condition dtd = 1 by the condition: −1 6 di 6 1
(1 6 i 6 n) to have a linear problem; in this case, the selected direction will
not be exactly the direction of greatest descent.

The method, as just described, may encounter di�culties. Consider the
example shown in �gure 8.4. Any move in the direction d leeds to go out of
X. We need a projection procedure so that xk+1 is in X, a procedure that
can be schematically represented by the �gure 8.5. Note, however, that this
projection is not useful, for example, in the case where the constraints are
linear.

Another possibility to overcome this di�culty is to replace the constraints
dt∇gi(xk) 6 0 by dt∇gi(xk) 6 −ε, where ε is a positive parameter. So,
instead of accepting a direction d which starts tangentially to the level surface
gi(x) = 0, which is allowed by the constraint dt∇gi(xk) 6 0, we impose to
d to �enter�, at least locally, in the half-space of equation gi(x) < 0. The
di�culty then lies in the choice of ε.
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Figure 8.4: Exit of the feasible domain.

Figure 8.5: Projection on the feasible domain.

8.5 Case of convex functions

8.5.1 Généralities

It is assumed throughout this part that the de�nition domain O of f is a
convex open set of Rn and that:

• the fonctions gi (1 6 i 6 m) are convex on O,

• the fonctions hj (1 6 j 6 p) are linear on O,

• the fonction f is convex on its domain of de�nition O.

Remarks.
1. If g is a convex function on O, the set of x satisfying g(x) 6 0 is convex.
2. If h is a linear function on O, the set of x ful�lling h(x) 6 0 is a hyperplane,
and therefore is convex (and concave).
3. The intersection of convex domains being convex, the feasible domain X
of the problem (P ), de�ned by:

X = {x ∈ O ful�lling gi(x) 6 0 for 1 6 i 6 m and hj(x) = 0 for 1 6 j 6 p}

is convex.
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Theorem 30. If f is strictly convex, the problem (P ) admits at most an
optimal solution.

Proof. Suppose there are in X two optimal solutions x and y; we have

in particular f(x) = f(y). Let us put z =
x+ y

2
. The convexity of X

implies that z ∈ X and the strict convexity of f implies the inequality

f(z) <
f(x) + f(y)

2
= f(x), a contradiction with the supposed optimal-

ity of x. ♦

From theorems 18 and 30, we deduce:

Theorem 31. If the feasible domain is bounded and if f is strictly convex,
the problem (P ) admits a unique optimal solution.

From theorem 19 and 30, we deduce:

Theorem 32. If f is strictly convex and coercive, the problem (P ) admits a
unique optimal solution.

Theorem 33. Suppose we have a local minimum at a point x∗ where the
constraints are quali�ed. Then the problem (P ) admits a global minimum at
the point x∗.

Proof. Let x ∈ X.

We de�ne a function ψ on the interval [0, 1] by: ψ(t) = f [x∗ + t(x− x∗)].
We have: ψ(0) = f(x∗) and ψ(1) = f(x). In addition, the convexity of f

results in the convexity of ψ.

Otherwise: ψ′(0) = (x− x∗)t∇f(x∗).

The direction d = x − x∗ belongs to B(x∗) because, if it were not, we
would go out the feasible domain following the direction d from x∗. The
theorem 25 shows the inequality ψ′(0) > 0. Since the function ψ is convex
on [0, 1], ψ′(0) > 0 implies ψ(1) > ψ(0), that is: f(x) > f(x∗). Therefore,
x∗ is a global minimum of (P ). ♦

We can now give conditions for the of Karush, Kuhn and Tucker condi-
tions be su�cient for a global minimum by leaning on the theorems 29 and
33.
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Theorem 34. It is assumed that the assumptions �xed at the beginning of
the part 8.5.1 are ful�lled. If the Karush, Kuhn, and Tucker conditions are
satis�ed at a point x∗ where the constraints are quali�ed, then x∗ is a global
minimum of (P ). Moreover, if f is strictly convex, x∗ is the only point where
(P ) reaches the global minimum.

Proof. According to theorem 29, the problem (P ) reaches a local minimum
in x∗. According to the theorem 33, x∗ is a global minimum of (P ). If,
moreover, f is strictly convex, theorem 30 makes possible to conclude that
x∗ is the only global minimum of (P ). ♦

8.5.2 Linearisation: introduction

We consider a function f de�ned on an open set O of Rn with real values
and of class C1. We are interested in the problem of �nding the minimum
of f on a convex closed domain X included in O. We will �linearize� f , that
is, approach f by its Taylor development of order 1, and that in a sequence
of points built using this linearization. This leads to a simple algorithm
described below, whose limitations, however, will be noted.

We consider the following algorithm:

• x0 ← any point of X

• k ← 0

• repeat

? xk+1 ← a point that minimizes f(xk) + (x− xk)t∇f(xk) on X
? k ← k + 1

until a stop test to be speci�ed is ful�lled.

Remarks.
1) The point xk+1 is also a point that minimizes xt∇f(xk) on X since this
function di�ers from the function f(xk) + (x− xk)t∇f(xk) by a constant.
2) If the domain X is a polyhedron, the determination of xk+1 is a linear
optimization problem.

Let us apply this algorithm to the following problem in R2, denoted by
(P0):
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(P0)

Minimize f(x1, x2) = (x1 − 3)2 + (x2 − 5)2

with the constraints:


x2 − 2x1 6 0
2x1 + x2 − 20 6 0
−2x1 + 3x2 − 4 6 0
x2 > 0.

Figure 8.6 illustrates this problem. The objective function is constant on
circles centered on the point C of coordinates (3, 5). We can therefore anti-
cipate that it is minimum for the point of the domain closest to the center of

C, that is, the point (
49

13
,
50

13
). We denote by X the feasible domain, grayed

on the �gure.

Figure 8.6: Cycling with linearisation.

We have: ∇f(x1, x2) =

(
2x1 − 6
2x2 − 10

)
.

We start the algorithm from the origin O, with ∇f(0, 0) =

(
−6
−10

)
.

We are looking for the minimum on X of −6x1 − 10x2. The considerations
developed in the chapter ?? show that the minimum is reached in one of the
four vertices of X; it is easy to show that this is the point B = (7.6).
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We start again from the vertex B, with∇f(7, 6) =

(
8
2

)
. We are looking

for the minimum of 8x1 + 2x2 on X. It is reached in one of the four vertices
of X; we check that it is the point A = (1, 2).

We start again from A, with ∇f(1, 2) =

(
−4
−6

)
. We are looking for the

minimum of −4x1 − 6x2 on X. We �nd the vertex B. If we continue the
method, we alternate between A and B: the method does not converge.

8.5.3 Linéarisation: Frank and Wolfe method

Frank and Wolfe method applies in the case where X is convex and compact.
The algorithm is as follows:

• x0 ← any point of X
• k ← 0
• repeat

? x̃k ← a point that minimize xt∇f(xk) sur X

? xk+1 ← a point that minimizes f on the segment [xk, x̃k]

? k ← k + 1

until a stop test to be speci�ed is satis�ed.

In particular, the following proposition shows that the method stops if,
for a certain index k, we have xk+1 = xk.

Proposition 35. If, in Franck and Wolfe algorithm, we have xk+1 = xk,
then the problem admits a global minimum in xk.

Proof. Let x ∈ X. The convexity of the function f implies:
f(x)− f(xk) > (x− xk)t∇f(xk).

The choice of x̃k gives: xt∇f(xk) > (x̃k)t∇f(xk). From which
f(x)− f(xk) > (x̃k − xk)t∇f(xk).
Let us set also, for t ∈ [0, 1]: φ(t) = f(xk + t(x̃k − xk)).
The minimum of f on the segment [xk, x̃k] is obtained in xk+1, that is

to say in xk. The function φ thus reaches its minimum for t = 0; in addi-
tion, f being convex, the function φ is unimodal. This results in: φ′(0) > 0.
Moreover: φ′(0) = (x̃k − xk)t∇f(xk). We get: f(x)− f(xk) > 0; xk is thus a
global minimum of f on X. ♦
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Figure 8.7: Resolution of (P0) by the Frank and Wolfe method.

Let us apply this method to the previous problem (P0) from the origin
O: (0, 0). The progress of the algorithm is illustrated by the �gure 8.7.

We have: ∇f(x1, x2) =

(
2x1 − 6
2x2 − 10

)
.

Step 1.
We start from the point M0 = (0, 0).
We look for the minimum on X of (x1, x2)t∇f(0, 0) = −6x1 − 10x2. The

point that reaches this minimum is the point B = (7.6).
We look for the minimum of f on the segment [O,B]. We parametrize

this segment by x1 = 7t, x2 = 6t (0 6 t 6 1) and we set: φ1(t) = f(7t, 6t),
which gives:

φ1(t) = (7t− 3)2 + (6t− 5)2

= 49t2 − 42t+ 9 + 36t2 − 60t+ 25

= 85t2 − 102t+ 34.

Therefore: φ′1(t) = 170t− 102.

The minimum of φ1 is obtained for t1 =
3

5
= 0.6.

The function f thus reaches its minimum on the segment [O,B] at the
point: M1 = (7× 0.6, 6× 0.6) = (4.2, 3.6).
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Step 2.
We start from the point M1 = (4.2, 3.6).
We look for the minimum on X of (x1, x2)t∇f(4.2, 3.6) = 2.4x1 − 2.8x2.

The point that reaches this minimum is the point A = (1, 2).
The function l2(x1, x2) = 2.4x1 − 2.8x2 has its minimum on X at the

point A = (1, 2).
We look for the minimum of f on the segment [M1, A].

We parametrize this segment by:

{
x1 = t+ 4.2(1− t)
x2 = 2t+ 3.6(1− t) (0 6 t 6 1)

or:

{
x1 = −3.2t+ 4.2
x2 = −1.6t+ 3.6

(0 6 t 6 1).

We set: φ2(t) = f(−3.2t+ 4.2 ;−1.6t+ 3.6), which gives:

φ2(t) = (−3.2t+ 1.2)2 + (−1.6t− 1.4)2

= 10.24t2 − 7.68t+ 1.44 + 2.56t2 + 4.48t+ 1.96

= 12.8t2 − 3.2t+ 3.4.

Hence φ′2(t) = 25.6t− 3.2.

The minimum of φ2 is obtained for t =
3.2

25.6
= 0.125.

The function f thus reaches its minimum on the segment [M1, A] at the
point M2 = (−0.125× 3.2 + 4.2,−0.125× 1.6 + 3.6) = (3.8, 3.4).

Step 3.
We start from the point M2 = (3.8, 3.4).
We look for the minimum on X of (x1, x2)t∇f(3.8, 3.4) = 1.6x1 − 3.2y2.

The point that reaches this minimum is the point B = (7, 6).
We look for the minimum of f on the segment [M2B].

We parametrize this segment by:

{
x1 = 3.8t+ 7(1− t)
x2 = 3.4t+ 6(1− t) (0 6 t 6 1)

or:

{
x1 = −3.2t+ 7
x2 = −2.6t+ 6

(0 6 t 6 1).

We set: φ3(t) = f(−3.2t+ 7,−2.6t+ 6), which gives:

φ3(t) = (−3.2t+ 4)2 + (−2.6t+ 1)2

= 10.24t2 − 25.6t+ 16 + 6.76t2 − 5.2t+ 1

= 17t2 − 30.8t+ 17.

Hence: φ′3(t) = 34t− 30.8.
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The minimum of φ3 is obtained for t =
30.8

34
' 0.9059.

The function f thus reaches its minimum on the segment [M2, B] at the

point M3 = (−30.8

34
× 3.2 + 7,−30.8

34
× 2.6 + 6) ' (4.10, 3.64).

We can continue this way. The theorem 36 below will show that the se-
quence of points Mk converges to the global minimum of the problem.

However, we could have chosen another starting point. For example, let
us restart the algorithm by starting at the point M ′

0 = A.

Step 1.
We start from the point A = (1, 2).
We look for the minimum on X of (x1, x2)t∇f(1, 2) = −4x1 − 6x2. The

point that reaches this minimum is the point B = (7, 6).
We look for the minimum of f on the segment [A,B].

We parametrize this segment by:

{
x1 = t+ 7(1− t)
x2 = 2t+ 6(1− t) (0 6 t 6 1)

or

{
x1 = −6t+ 7
x2 = −4t+ 6

(0 6 t 6 1).

We set: φ1(t) = f(−6t+ 7,−4t+ 6), which gives:

φ1(t) = f(−6t+ 7,−4t+ 6)

= 36t2 − 48t+ 16 + 16t2 − 8t+ 1

= 52t2 − 56t+ 17.

Hence: φ′1(t) = 104t− 56.

The minimum of φ1 is obtained for t =
56

104
=

7

13
' 0.538.

The function f thus reaches its minimum on the segment [A,B] at the

point M ′
1 = (− 7

13
× 6 + 7,− 7

13
× 4 + 6) = (

49

13
,
50

13
) ' (3.769, 3.846).

Step 2.

We start from the point M ′
1 = (

49

13
,
50

13
).

We look for the minimum on X of:

(x1, x2)t∇f(
49

13
,
50

13
) =

20

13
x1 −

30

13
x2 =

10

13
(2x1 − 3x2).
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The point that reaches this minimum is the point B = (7, 6).

The previous function is constant on the segment [A,B] (its value is −40

3
)

and its minimum on X is obtained on this whole segment. Any point of this
segment can be chosen as a minimum; we choose the point M ′

1.
We look for the minimum of f on the segment [M ′

1,M
′
1], reduced to a

point: the sequence of points (M ′
k) is stationary (in M ′

1) and the algorithm
ends. We can immediately check that the condition of Karush, Kuhn and
Tucker are ful�lled at the point M ′

1. The condition being su�cient here, the
optimum has been obtained.

Theorem 36. Let f be a function de�ned on a convex open set O of Rn

with real values, of class C1; we assume that f is strictly convex and that
X is a compact convex polyhedron of Rn included in O. Frank and Wolfe
method applied to the problem (P ) of minimization of f over X converges to
the single global minimum of (P ).

Remark. X being a polyhedron, we can limit ourselves, when we look for x̃k,
to the vertices of X.

We �rst establish the following lemma.

Lemma 37. With the hypotheses of the theorem, let (xk)k∈N be a sequence of
points of X such that the sequence f(xk)k∈N is decreasing. Suppose that the
sequence (xk)k∈N has a subsequence (xk)k∈K⊂N converging to a global mini-
mum of f . Then the sequence (xk)k∈N also converges to this global minimum.

Proof of the lemma. Let x∗ be the limit of the subsequence (xk)k∈K ; assume
that the sequence (xk)k∈N does not converge to x∗. Then, there exists ε > 0
such that, for every N ∈ N, there exists k > N with ||xk−x∗|| > ε; we deduce
that there exists an in�nite subsequence (xk)k∈U⊂N of the sequence (xk)k∈N
satisfying, for all k ∈ U, ||xk−x∗|| > ε. Since X is a compact, we can extract
from the sequence (xk)k∈U a convergent subsequence (xk)k∈V⊂U ; let y∗ be
the limit of this subsequence. By going to the limit, we have ||y∗ − x∗|| > ε
and so y∗ 6= x∗.

Since the function f is continuous, the sequences (f(xk))k∈K and (f(xk))k∈V
are respectively convergent to f(x∗) and f(y∗). The point x∗ giving a global
minimum of f , we have: f(y∗) > f(x∗). Suppose we have f(y∗) > f(x∗).
There exists k0 ∈ K such that f(xk0) < f(y∗). Let k ∈ V satisfy k > k0.
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Since the sequence f(xk) is decreasing, f(xk) 6 f(xk0), this which implies:
f(xk) < f(y∗), a contradiction with the fact that the sequence (f(xk))k∈V
converges by decreasing to f(y∗).

We thus have: f(y∗) = f(x∗), which is impossible since the function f
has a single global minimum on X (see the theorem 31 ). ♦

Proof of the theorem. The theorem 31 already shows the existence and
uniqueness of a global minimum. If the sequence built by the method be-
comes stationary after a �nite number of steps, the proposition 35 shows that
this stationary point is the global minimum.

We assume that this is not the case and we denote by (xk)k∈N the sequence
built by Frank and Wolfe method. Since this sequence is in X which is
compact, it has a convergent subsequence (xk)k∈K⊂N; denote by x

∗ the limit
of this sequence. The sequence (x̃k)k∈K obtained by the linearization takes
each of its values in one of the vertices of the polyhedron; the number of
vertices of the polyhedron being �nite, we can extract from the sequence
(xk)k∈K a subsequence (xk)k∈H⊂K such that the sequence (x̃k)k∈H is constant;
we name x̃ this constant value.

The sequence (xk)k∈H converges to x∗; let us show that x∗ constitutes the
global minimm of the problem (P ).

Let t ∈ [0, 1] and k ∈ H. The linearization in xk takes its minimum
in x̃k = x̃; the method then looks for the minimum of f on the segment
[xk, x̃k] = [xk, x̃] and obtains the point xk+1; we have:

f(xk + t(x̃− xk)) > f(xk+1).
Let h(k) ∈ H be among the indices h ∈ H satisfying h > k + 1; the

sequence f(xk)k∈N being decreasing by construction of xk:
f(xk + t(x̃− xk)) > f(xh(k)+1).
By going to the limit for k in H that tends to in�nity, we get:

f(x∗ + t(x̃− x∗)) > f(x∗).
We write the Taylor formula of the function t→ f(x∗ + t(x̃− x∗)) in the

neighborhood of 0, at order 1:
f(x∗ + t(x̃− x∗)) = f(x∗) + t(x̃− x∗)t∇f(x∗) + tε(t)

where ε(t) tends towards 0 when t tends towards 0.
Using the inequality obtained above, it comes:

t(x̃− x∗)t∇f(x∗) + tε(t) > 0.
or, for t > 0 : (x̃− x∗)t∇f(x∗) + ε(t) > 0.

When t tends towards 0, we obtain: (x̃ − x∗)t∇f(x∗) > 0, that we can
write:



Case of convex functions 133

x̃t∇f(x∗) > (x∗)t∇f(x∗). (1)
Let k ∈ H and x ∈ X. By construction of x̃k = x̃, we have:

xt∇f(xk) > x̃t∇f(xk).
By going to the limit for k in H that tends to in�nity, we get:

xt∇f(x∗) > x̃t∇f(x∗). (2)
Using the inequalities (1) and (2), we obtain:

xt∇f(x∗) > (x∗)t∇f(x∗),
or: (x− x∗)t∇f(x∗) > 0.

The function f being convex, it comes: (x− x∗)t∇f(x∗) 6 f(x)− f(x∗).
We now have f(x)−f(x∗) > 0, which shows that x∗ is the optimal solution

of the problem (P ).
The lemma 37 shows that (xk)k∈N also converges to x∗. ♦

8.5.4 Linéarisation : Kelley cutting-plane method

The Kelley cutting-plane method searches the minimum of f on a convex
domain. The problem is solved using linear optimization.

Remark. Consider the problem:

Minimize f(x)
with, for 1 6 i 6 m, gi(x) 6 0

where the functions f and gi, 1 6 i 6 m, are convex. This problem can be
solved by adding a real variable y in the following form:

Minimize y

with the constraints:

{
for 1 6 i 6 m, gi(x) 6 0
f(x)− y 6 0.

Indeed, at the optimum, we will have y = f(x) since y only intervenes in
the constraint f(x)− y 6 0. Minimizing y is equivalent to minimizing f(x).

We thus reduce the problem to the optimization of a linear function on a
convex domain.

On the basis of the above remark, Kelley cutting-plane method will be
described as the minimization of a linear function on a domain de�ned by
inequalities of type gi(x) 6 0 where the functions gi are convex:
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(P )
Minimize f(x)
with, for 1 6 i 6 m, gi(x) 6 0

where the function f is linear and the functions gi, 1 6 i 6 m, are convex.

We denote by X the feasible domain .

At each step k, the algorithm includes X in a polyhedron Qk and looks
for the minimum of f in Qk; we thus resolve a linear optimization problem.
We make sure to always have Qk+1 ⊂ Qk. The step k is described below.

Initialization of the algorithm.
We choose any point x0 in Rn.
We consider the polyhedron Q0 de�ned by:

for 1 6 i 6 m, gi(x
0) + (x− x0)t∇gi(x0) 6 0.

Let x ∈ X and i be between 1 and m. We have gi(x) 6 0 and, since the
function gi is convex:

gi(x) > gi(x
0) + (x− x0)t∇gi(x0).

So : gi(x
0) + (x− x0)t∇gi(x0) 6 0. Therefore we have : X ⊂ Q0.

We solve the problem of minimizing the function f on the domain Q0.
This is a linear optimization problem that we know how to solve with the
simplex algorithm.

If the linear optimization problem is not bounded, the initialization en-
counters a problem. We then make the domain bounded by choosing a �large�
valueM and adding the 2n inequalities −M 6 xi 6M for 1 6 i 6 n. If, dur-
ing the method generating the sequence xk, a point of the sequence saturates
one of these added constraints, we start from the initialization with a greater
value of M , for example by doubling the previous value of M . We can notice
that, if we know at �rst that X is bounded, it may be interesting to add at
the beginning such constraints by ensuring that X is strictly included in the
block de�ned by the added constraints. One can also, when the initialization
has led to an unbounded problem, try another starting point.

Suppose now that the linear optimization problem admits a solution, de-
noted it by x1. We �nish the initialization by k ← 1.
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Description of the step k (k > 1).
The previous step de�ned a new point xk which gives the optimum of the

problem on the polyhedron Qk−1.
If xk belongs to X, xk gives the solution of the problem since the inclusion

X ⊂ Qk−1 gives the following relations: f(xk) = minQk−1
f 6 minX f 6 f(xk).

The algorithm ends. Suppose that xk does not belong to X.
There is at least one of the m constraints of the problem that is not

satis�ed. We choose a constraint, gik , which maximizes gi(x
k): for 1 6 i 6 m,

gi(x
k) 6 gik(xk), which results in gik(xk) > 0.
We consider the inequality gik(xk) + (x− xk)t∇gik(xk) 6 0 which de�nes

a half-space Ek. As for initialization, the X domain is included in the hy-
perplan Ek. On the other hand, the point xk does not belong to Ek: the
hyperplane which has the equation gik(xk) + (x−xk)t∇gik(xk) = 0 separates
the point xk from the domain X.

We consider the polyhedron Qk = Qk−1 ∩ Ek.
We solve the problem of minimizing the function f on the domain Qk.

The problem is bounded from below since the minimum on Qk is bounded
from below by the minimum on Qk−1. Let x

k+1 be a point that reaches the
minimum. We end the step by incrementing k by 1.

Illustration.
We consider in R2 the problem:

Minimize f(x1, x2) = −x1 + x2

with

{
x2

1 + (x2 + 3)2 6 10
x2

1 + (x2 − 2)2 6 5.

We set: g1(x1, x2) = x2
1 + (x2 + 3)2 − 10 and g2(x1, x2) = x2

1 + (x2 − 2)2 − 5.
We deduce:

∇g1(x1, x2) =

(
2x1

2x2 + 6

)
, ∇g2(x1, x2) =

(
2x1

2x2 − 4

)
.

The domain is illustrated by the �gure 8.8.
We try to initialize the method from the point O = (0, 0). We obtain:
g1(0, 0) + ((x1, x2)− (0, 0))t∇g1(0, 0) = 6x2 − 1
and g2(0, 0) + ((x1, x2)− (0, 0))t∇g2(0, 0) = −4x2 − 1.
The domain Q1 is then de�ned by: x2 6 1/6 and x2 > 1/4; the function

f is not bounded from below in this domain.
We try another starting point, the point M0 = (2,−1).
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Figure 8.8: Kelley cutting-plane method.

Initialization.
g1(2,−1) + ((x1, x2)− (2,−1))t∇g1(2,−1) = 4x1 + 4x2 − 6

g2(2,−1) + ((x1, x2)− (2,−1))t∇g2(2,−1) = 4x1 − 6x2 − 6.

We denote by ∆1 the line of equation 4x1 + 4x2 − 6 = 0 and ∆2 the line
of equation 4x1 − 6x2 − 6 = 0.

We then solve the problem:
Minimize f(x1, x2) = −x1 + x2

with

{
4x1 + 4x2 6 6
4x1 − 6x2 6 6.

The solution is M1 = (
3

2
, 0).

Step 1.

We have: g1(M1) = g2(M1) =
5

4
.

Both constraints are violated at the point M1 and take the same value.
One or the other can be chosen as the most violated constraint. We choose

g1. We have: ∇g1(
3

2
, 0) =

(
3
6

)

g1(
3

2
, 0) + ((x1 −

3

2
, x2))t∇g1(

3

2
, 0) =

5

4
+ 3x1 −

9

2
+ 6x2

= 3x1 + 6x2 −
13

4
.
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We denote by ∆3 the line of equation 3x1 + 6x2 =
13

4
.

We then solve the problem:

Minimize f(x1, x2) = −x1 + x2

with


4x1 + 4x2 6 6
4x1 − 6x2 6 6

3x1 + 6x2 6
13

4
.

The solution is at the intersection of ∆2 and ∆3, which is the point

M2 = (
37

28
,− 5

42
) ' (1.3214,−0.1190).

Étape 2.
We continue with the approximate values to simplify the computations.

We have g1(M2) ' −0.0462 and g2(M2) ' 1.2362.
Both constraints are violated at the point M2 and the most violated

constraint is g2, which is retained. We have:

∇g2(1.3214,−0.1190)) =

(
2.6428
−4, 2380

)
.

Hence:
g2(M2)(x1 − 1.3214, x2 + 0.1190)t∇g2(M2) = 2.6428x1 − 4.238x2 − 2.7603.

We denote by ∆4 the line of equation 2.6428x1 − 4.238x2 = 2.7603.
We then solve the problem:

Minimize f(x1, x2) = −x1 + x2

with


4x1 + 4x2 6 6
4x1 − 6x2 6 6
3x1 + 6x2 6 3.25
2.6428x1 − 4.238x2 6 2.7603

The solution is at the intersection of the lines ∆3 and ∆4, that is to say
the pointt M3 ' (1.057, 0.013).

We stop here the algorithm. The optimum of the problem is at the point
(1, 0), this résult can be veri�ed with the conditions of Karush, Kuhn and
Tucker, which are su�cient here. It follows that the sequence of points ap-
proaches the point which gives the optimum of the problem.

We �nally establish the theorem below.
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Theorem 38. If the problem (P) admits a minimum at a �nite distance, then
any accumulation point of the sequence (xk) generated by Kelley cutting-plane
method is a solution of the problem (P).

Proof. We place ourselves in the case where the method does not �nd the
solution after a �nite number of steps.

Let x̃ be an accumulation point of the sequence (xk)k∈N. We can extract
from this sequence a subsequence (xk)k∈K⊂N converging towards x̃.

Let x∗ be a point of X reaching the minimum.

For any k ∈ K, we have f(xk) 6 f(x∗) since X ⊂ Qk. Going to the
limit when k ∈ K tends to in�nity, we get: f(x̃) 6 f(x∗). We will show that
x̃ ∈ X.

We denote by ik the index of the constraint retained in the step k, that
is to say a most violated constraint in this step. The sequence (ik)k∈K takes
all its values in the �nite set {1, 2, ...,m}. We can thus extract a constant
subsequence (ih)h∈H⊂K , we denote by i0 the constant.

Let h ∈ H. We denote by r(h) the smallest index r of H satisfying r > h.
The point xr(h) is in the half space Eh:

gi0(x
h) + (xr(h) − xh)t∇gi0(xh) 6 0.

Hence, using the fact that the constraint gi0 is not satis�ed by xh:

0 < gi0(x
h) 6 −(xr(h) − xh)t∇gi0(xh) 6 ||(xr(h) − xh||||∇gi0(xh)||.

When h ∈ H tends towards in�nity, r(h) also tends to in�nity.

Moreover, when h ∈ H tends towards in�nity, xh → x̃ and xr(h) → x̃.
Hence: ||xr(h) − xh|| → 0.

Furthermore, ∇gi0(xh) → ∇gi0(x̃), which implies that ||∇gi0(xh)|| is
bounded. Therefore :

||xr(h) − xh||||∇gi0(xh)|| → 0, doù gi0(x
h)→ 0.

As gi0(x
h) → gi0(x̃), we have: gi0(x̃) = 0. The point x̃ satis�es the

constraint i0.

Now let i ∈ {1, 2, ...,m}. The constraint gi0 being the most violated, for
h ∈ H, gi(xh) 6 gi0(x

h). When h ∈ H tends to in�nity, we get: gi(x̃) 6 0.
The point x̃ satis�es all the constraints, it belongs to X. As the inequality
f(x̃) 6 f(x∗) has been shown, x̃ gives the minimum of f on X. ♦

Remark. The points generated by Kelley cutting-plane method provide lower
bounds of the problem whereas Frank and Wolfe method gives upper bounds.
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8.6 Exercice

Statement. We are interested in the optimization problem de�ned on R2

as follows:
Minimize 2x2

1 + x4
2

with the constraints

{
x1 > 1
x1 + ax2 > a+ 1

where a is a real parameter.

Q1. For what values of a can we say that the minimum is reached at the
point (1, 1)? For these values, is the minimum also reached at another point?

Q2. Solve the following problem using the descent method from point (1, 1):
Minimize 2x2

1 + x4
2

with the constraints

{
x1 > 1
2x1 + x2 > 3.

The result will be indicated in an interval of length 0.00001.

Solution. Q1. Let:
f(x1, x2) = 2x2

1 + x4
2,

g1(x1, x2) = 1− x1

g2(x1, x2) = a+ 1− x1 − ax2.

The problem can be written:
Minimize f(x1, x2)
with the constraints :{
g1(x1, x2) 6 0
g2(x1, x2) 6 0.

The Hessian matrix ∇2f(x1, x2) =

(
4 0
0 12x2

2

)
is positive: the function

f is convex on R2 and it is strictly convex on the open half-plane de�ned by
x1 > 0, domain that contains the feasible domain.

On the other hand, a linear function is convex (and indeed also concave):
g1 and g2 are convex. In addition, the interior of the feasible domain is non-
empty, it contains for example the point (2, 1). The proposition 21 shows
that the constraints are quali�ed at every point of R2. Therefore, according
to the theorem 34, the point (1, 1) is a global minimum of the problem
if and only if the Karush, Kuhn and Tucker conditions are ful�lled at the
point (1, 1). At this point the two constraints are saturated; to say that the
Karush, Kuhn and Tucker conditions are ful�lled is to show that there are
two real numbers positive or zero λ1 and λ2 such as:
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∇f(1, 1) = −λ1∇g1(1, 1)− λ2∇g2(1, 1).
Now, we have:

∇f(x1, x2) =

(
4x1

4x3
2

)
, ∇f(1, 1) =

(
4
4

)
,

∇g1(1, 1) =

(
−1
0

)
, ∇g2(1, 1) =

(
−1
−a

)
.

Let us �nd coe�cients λ1 and λ2 satisfying:(
4
4

)
= λ1

(
1
0

)
+ λ2

(
1
a

)
,

what is written: {
λ1 + λ2 = 4
aλ2 = 4.

For there to be a solution, it is necessary and su�cient to have a 6= 0 and
then:

λ1 = 4

(
1− 1

a

)
, λ2 =

4

a
.

The Karush, Kuhn and Tucker conditions are ful�lled if and only if λ1 and
λ2 are positive or null, that is, if and only if we have a > 1.

The theorem 30 shows that there is at most a global minimum. When
there is a global minimum, it is a unique global minimum.

Q2.The problem of this question corresponds to the initial problem with
a = 1/2: the minimum is not reached at the point (1,1).

Let us apply the descent method starting from point (1,1): let us search
for the admissible direction of greatest descent for f at this point (see �gure8.9).

Figure 8.9: Graphic solution.
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We can see graphically that the direction d = (1,−2) is appropriate.
Then let us �nd the minimum of φ(s) = f [(1, 1) + s(1,−2)] for s positive; by
noticing that we do not go out of the domain:

φ(s) = 2(1 + s)2 + (1− 2s)4 .
Hence, φ′(s) = 4(1 + s)− 8(1− 2s)3.
The function φ is convex because f is convex. So we try to have φ′(s) = 0

(or nearly), which we do by a dichotomous type method:
φ′(0) = −4 < 0, φ′(1/2) = 6 > 0, φ′(0.25) > 0, φ′(0.125) > 0, φ′(0.06) < 0,
φ′(0.09) < 0, φ′(0.1) > 0, φ′(0.095) > 0, φ′(0.0925) > 0, φ′(0.092) > 0,
φ′(0.091) < 0, φ′(0.0915) > 0, φ′(0.0913) < 0, φ′(0.0914) < 0, φ′(0.09145) >
0, φ′(0.09142) > 0, φ′(0.09141) > 0:

0.09140 < smin < 0.09141.
The minimum of f in the direction d is reached at the point (1.0914,

0.8172).
Only the constraint g2 is saturated at this point. Let us see if Karush,

Kuhn and Tucker conditions are now satis�ed:

∇f(1.0914, 0.8172) =

(
4.3656
2.18296

)
∇g2(1.0914, 0.8172) =

(
−1
−1/2

)
=
−1

4.3656

(
4.3656
2.18296

)
.

Therefore, ∇f(1.0914, 0.8172) and ∇g2 are collinear of opposite direc-
tions: Karush, Kuhn, and Tucker conditions are ful�lled and the point
(1.0914, 0.8172) is the global minimum of the problem. condition
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Appendix A

Norm

Let x = (xi)16i6n a vector. The three most common vector norms are:

• ||x||1 =
∑n

i=1 |xi| (norm 1)

• ||x||2 =
(∑n

i=1 |xi|
2) 1

2 (norm 2, or Euclidean norm)

• ||x||∞ = max16i6n|xi| (in�nity norm)

More generally: ||x||p = (
∑n

i=1 |xi|
p)

1
p (p-norm).

In Rn and Cn, all norms are equivalent (two norms || || and || ||′ are
équivalent on a vector space E if there are two strictly positive constants C
and C ′ such that, for all x in E: C||x|| 6 ||x||′ 6 C ′||x||).

We can also use matrix norms. We call An the ring of the square matrices
of order n with coe�cients in R or C. We call matrix norm an application
from An to R+ denoted by || || which ful�ls the following properties:

• for all matrices A of An, ||A|| = 0⇔ A = 0

• for all α of R (or C) and for all A of An, ||αA|| = |α|||A||

• for all matrices A and B of An, ||A+B|| 6 ||A||+ ||B||

• for all matrices A and B of An, ||A×B|| 6 ||A|| × ||B||.
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We can very easily build matrix norms from vectorial norms: they are then
called subordinate matrix norms . For this, we can de�ne ||A|| by the following
equivalent formulas:

||A|| = supx 6=0

||Ax||
||x||

= sup||x||=1||Ax|| = sup0<||x||61

||Ax||
||x||

.

We have: ||Ax|| 6 ||A|| ||x||.
The matrix norms subordinate to the most usual norms that we have

described above are therefore, for A = (ai,j) 1 6 i 6 n
1 6 j 6 n

:

• ||A||1 = supx 6=0

||Ax||1
||x||1

= max 16j6n

n∑
i=1

|aij|

• ||A||2 = supx 6=0

||Ax||2
||x||2

=
√
ρ(A∗A) = ||A∗||2 where ρ(A∗A) represents

the largest absolute value of A∗A (spectral radius of A∗A)

• ||A||∞ = supx 6=0

||Ax||∞
||x||∞

= max 16i6n

n∑
j=1

|aij|.

The norm || ||2 is invariant by unitary transformation: if U is a unitary
matrix, that is, satis�es U∗U = I, then we have

||A||2 = ||AU ||2 = ||UA||2 = ||U∗AU ||2.

If A is normal, that is, if A ful�ls the relation A∗A = AA∗ (especially if
A is Hermitian or symmetric), then ||A||2 = ρ(A).

If A est unitary or orthogonal, ||A||2 = 1.

Remark. ||A||1 and ||A||∞ are easy to compute but not ||A||2.

Theorem

• Let || || be a subordinate norm; let B satisfying ||B|| < 1. So I +B is

invertible and ||(I +B)−1|| 6 1

1− ||B||
.

• If a matrix of the form I + B is not invertible, then, for any norm,
subordinate or not, ||B|| > 1.
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Example of a non-subordinate norm: the Euclidean norm

This norm is dé�nied by: ||A||E =
(∑n

i=1

∑n
j=1 |aij|

2
) 1

2
=
√
trace (A∗A)

(remember that the trace of a matrix is the sum of its diagonal terms).
The norm ||A||E is invariant by unitary transformation; in other words, if
U∗U = I, then ||A||E = ||AU ||E = ||UA||E = ||U∗AU ||E.
Moreover: ||A||2 6 ||A||E 6

√
n||A||2.


