
MDI210 : Linear Programming

Robert M. Gower
 



Linear Programming History (1939)

Berkley

● 1947: George Dantzig, advising 
U.S. Air Force, invents Simplex.

● Assignment 70 people to 70 jobs 
(more possibilities than particles). 



Linear Programming History (1941)

?

?



Army Builds Killing Machine (1949)

1949 SCOOP: Scientific Computation Of Optimal Programs

Mathematical Programming: Math used to figured out Flight 
and logistic programs/schedules 



Dantzig the Urban Legend

Dantzig, George B. "On the Non-Existence of Tests of 'Student's' 
Hypothesis Having Power Functions Independent of Sigma." Annals 
of Mathematical Statistics. No. 11; 1940 (pp. 186-192).

Dantzig, George B. and Abraham Wald. "On the Fundamental Lemma of 
Neyman and Pearson." Annals of Mathematical Statistics. No. 22; 
1951 (pp. 87-93).
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The Problem: Linear Programming

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0,

where c , x ∈ Rn, A ∈ Rm×n, and b ∈ Rm. Equivalently

max
x

z
def
=

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi , for i = 1, . . . ,m.

x ≥ 0.
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Simple 2D problem

First example Simplex

The problem

max 4x1 + 2x2

3x1 + 2x2 ≤ 600

4x1 + 1x2 ≤ 400

x1 ≥ 0, x2 ≥ 0.

We can solve this graphically:

With level sets ⇒
How to do this systematically?
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Simple 2D problem

First example Simplex
The problem

max 4x1 + 2x2

3x1 + 2x2 ≤ 600

4x1 + 1x2 ≤ 400

x1 ≥ 0, x2 ≥ 0.

Can be transformed into

max 4x1 + 2x2

x3 = 600 − 3x1 − 2x2

x4 = 400 − 4x1 − x2,

where x3 and x4 are slack variables. This is known as the the dictionary
format and is often written as:

x3 = 600 − 3x1 − 2x2
x4 = 400 − 4x1 − x2
z = 4x1 + 2x2
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Simple 2D problem

First example Simplex
The dictionary format

x3 = 600 − 3x1 − 2x2
x4 = 400 − 4x1 − x2
z = 4x1 + 2x2

admits obvious solution

(x∗1 , x
∗
2 , x
∗
3 , x
∗
4 ) = (0, 0, 600, 400).

The objective z will improve if x1 > 0. Increasing x1 as much as possible

x3 ≥ 0 ⇒ 600− 3x1 ≥ 0 ⇒ x1 ≤ 200,
x4 ≥ 0 ⇒ 400− 4x1 ≥ 0 ⇒ x1 ≤ 100.

Thus x1 ≤ 100 to guarantee x4 ≥ 0. This means x4 will leave the basis
and x1 will enter the basis. Using row operations z ← z + r2 and
r1 ← r1 − 3

4 r2 to isolate x1 on row2.
x3 = 300 + 3

4x4 − 5
4x2

x1 = 100 − x4
4 − x2

4

z = 400 − x4 + x2 6 / 33



Simple 2D problem

First example Simplex
From

x3 = 300 + 3
4x4 − 5

4x2
x1 = 100 − x4

4 − x2
4

z = 400 − x4 + x2

Now we are at the vertex (x∗1 , x
∗
2 ) = (100, 0). Next we see that increasing

x2 increases the objective value but

x3 ≥ 0 ⇒ 300− 5
4x2 ≥ 0 ⇒ 240 ≥ x2,

x1 ≥ 0 ⇒ 100− x2
4 ≥ 0 ⇒ 400 ≥ x2.

Increase x2 upto 240 while respecting the positivity constraints of x3.
Thus x3 will leave the basis and x2 will enter the basis. Performing a row
elimination again via z ← z + 4

5 r1 and r2 ← r2 − 1
5 r1, we have that

x2 = 240 + 3
5x4 − 4

5x3

x1 = 40 − 2
5x4 − 1

5x3

z = 640 − 2
5x4 − 4

5x3

Now (x∗1 , x
∗
2 ) = (40, 240). Increasing x4 or x3 will decrease z . THE END
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The Fundamental Theorem

Theorem (Fundamental Theorem of Linear Programming)

Let P = {x |Ax = b, x ≥ 0} then either

1 P = {∅}
2 P 6= {∅} and there exists a vertex v of P such that

v ∈ arg minx∈P c>x

3 There exists x , d ∈ Rn such that x + td ∈ P for all t ≥ 0 and
limt→∞ c>(x + td) =∞.
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Notation

Problem Notation

We will now formalize the definitions we introduced in the examples.

I There are n variables and m constraints

I The linear objective function z =
∑n

j=1 cjxj

I The m inequality constraints in standard form

n∑
j=1

aijxj ≤ bi , for i ∈ {1, . . . ,m}.

I The n positivity constraints xj ≥ 0, for j ∈ {1, . . . , n}.
I x∗i denotes the value of ith variable.

I We call (x∗1 , . . . , x
∗
n ) ∈ Rn a feasible solution if it satisfies the

inequality and positivity constraints.

9 / 33



Notation

Dictionary Notation

I The slack variables (xn+1, . . . , xn+m) ∈ Rm (variables d’écart)

I The initial dictionary

xn+1 = b1 −
∑n

j=1 a1jxj
...
xn+i = bi −

∑n
j=1 aijxj

...
xn+m = bm −

∑n
j=1 amjxj

z =
∑n

j=1 cjxj

I Valid dictionary if m of the variables (x1, . . . , xn+m) can be
expressed as function of the remaining n variables.

I The m variables on the left-hand side are the basic variable (variable
de base). The n variables on the right-hand side are the non-basic
(variable hors-base).
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Notation

Dictionary Notation

After row elimination operations we have a new basis.

I Basic variable set I ⊂ {1, . . . , n + m} and non-basic set
J = {1, . . . , n + m} \ I with |I | = m and |J| = n

I Current objective value z∗ =
∑n

j=1 cjx
∗
j .

I For each basis set I there is a corresponding dictionary

xi = b′i −
∑

j∈J a
′
ijxj , for i ∈ I

z = z∗ +
∑

j∈J c
′
j xj ,

where a′ij , b
′
i , z
∗ ∈ R are coefficients resulting from the row

operations. For this to a feasible dictionary we require that b′i ≥ 0.

I A basic solution: x∗i = b′i for i ∈ I and x∗j = 0 for j ∈ J.
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Notation

Variable entering/leaving the basis
I If j0 ∈ J with c ′j0 > 0 then increasing xj0 will improve the

objective since

z = z∗ +
∑
j∈J

c ′jxj .

I How much can we increase xj0? Until there is a xi = 0 since

x∗i = b′i − a′i j0x
∗
j0 ≥ 0 ⇒ a′i j0x

∗
j0 ≤ b′i , ∀i ∈ I .

I If a′i j0 ≤ 0, then increasing x∗j0 will increase x∗i
I If a′ij > 0, then x∗j0 ≤ b′i/ a

′
i j0

I Thus

x∗j0 = min
i∈I , a′i j0>0

b′i
a′i j0

I In this case, which x∗i = 0 (which i leaves the basis?)
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Simplex Algorithm

A Step of the Simplex Method
Input: I = {n + 1, . . . , n + m}, J = {1, . . . , n}, a′ij ∈ R, b′i ≥ 0, c ′i ∈ R.

———————————————————————————————–
if c ′i ≤ 0 for all i ∈ J then

STOP; # Optimal point found.

Choose a variable j0 to enter the basis from the set j0 ∈ {j ∈ J : c ′j > 0}.
if a′ij0 ≤ 0 for all i ∈ J then

STOP; # The problem is unbounded.

Choose a variable i0 to leave the basis from the set i0 ∈ arg min
i∈I ,a′ij0>0

{
b′i
a′ij0

}
.

I ← (I \ {i0}) and J ← J ∪ {i0} . Move i0 from basic to non-basic
for i ∈ I do

a′i : ← a′i : −
a′ij0
a′i0j0

a′i0: . Row elimination on pivot (i0, j0).

a′i0: ←
1

a′i0 j0
a′i0: and a′i0j0 ←

1
a′i0 j0

. Normalize the coefficient of a′i0j0

c ′ ← c ′ −
c ′j0
a′i0j0

a′i0: . Update the cost coefficients.

I ← I ∪ {j0} and J ← (J \ {j0}) . Move j0 from non-basic to basic
———————————————————————————————–
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Simplex Algorithm

How to choose who enters the basis?

j0 ∈ {j ∈ J : c ′j > 0}

1 The mad hatter rule: Choose the first one you see costs: O(1)

2 Dantzig’s 1st rule: j0 = arg max
j∈J

cj cost: O(n)

3 Dantzig’s 2nd rule: Choose j0 that maximizes the increase in z .

j0 = arg max
j∈J

{
cj min

i∈I ,aij>0

{
bi
aij

}}
costs : O(nm)

Effective, but computationally expensive.

4 Bland’s rule: Choose the smallest indices j0 and i0. That is, choose

j0 = arg min{j ∈ J : cj > 0} costs : O(n)

i0 = min

{
arg min

i∈I ,aij0>0

{
bi
aij0

}}
.
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Simplex Algorithm

Degeneracy

Degeneracy
Consider the problem

max 2x1 − x2 + 8x3

2x3 ≤ 1

2x1 − 4x2 + 6x3 ≤ 3

−x1 + 3x2 + 4x3 ≤ 2

x1, x2, x3 ≥ 0.

Adding slack variables we have that

x4 = 1 + 0 + 0 − 2x3

x5 = 3− 2x1 + 4x2 − 6x3

x6 = 2 + x1 − 3x2 − 4x3
z = 0 + 2x1 − x2 + 8x3
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Simplex Algorithm

Degeneracy

Degeneracy
If any of the basic variables are zero, then we say that the solution is
degenerate.
Consider the initial dictionary:

x4 = 1 + 0 + 0 − 2x3

x5 = 3− 2x1 + 4x2 − 6x3

x6 = 2 + x1 − 3x2 − 4x3
z = 0 + 2x1 − x2 + 8x3

If x3 enters then who leaves?

Both x5 and x6 are set to zero, so either
one. Choosing x4 and pivoting on row 1 and column 4 we have.

x3 = 0.5 + 0 + 0 − 0.5x4

x5 = 0− 2x1 + 4x2 + 3x4

x6 = 0 + x1 − 3x2 + 2x4
z = 4 + 2x1 − x2 − 4x4

Only x1 can enter the basis, but it doesn’t increase in value :(
Full example in lecture notes.
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z = 4 + 2x1 − x2 − 4x4

Only x1 can enter the basis, but it doesn’t increase in value :(
Full example in lecture notes. 16 / 33



Simplex Algorithm

Degeneracy

Bland’s rule for degeneracy

Bland’s rule
Choose the smallest indices j0 and i0. That is, choose

j0 = arg min{j ∈ J : cj > 0}.

i0 = min

{
arg min

i∈I ,aij0>0

{
bi
aij0

}}
.

Definition
A dictionary is degenerate if there are basic variables equal to zero.

Theorem
If Bland’s rule is used on all degenerate dictionaries, then the simplex
algorithm will not cycle.
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Simplex Algorithm

Finding an initial feasible dictionary

Finding an initial feasible dictionary

max x1 −x2 +x3
2x1 −x2 +2x3 ≤ 4
2x1 −3x2 +x3 ≤ −5
−x1 +x2 −2x3 ≤ −1
x1, x2, x3, ≥ 0.

The point (x∗1 , x
∗
2 , x
∗
3 ) = (0, 0, 0) is not feasible.

Setup an auxiliary problem

max −x0
2x1 −x2 +2x3 −x0 ≤ 4
2x1 −3x2 +x3 −x0 ≤ −5
−x1 +x2 −2x3 −x0 ≤ −1
x1, x2, x3, x0 ≥ 0.

For x0 big enough, it will be feasible. Setup initial dictionary
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Simplex Algorithm

Finding an initial feasible dictionary

Initial phase one dictionary:

x4 = 4 −2x1 +x2 −2x3 +x0
x5 = −5 −2x1 +3x2 −x3 +x0
x6 = −1 +x1 −x2 +2x3 +x0
w = −x0.

Pivot on “most infeasible” variable in the basis with the most
negative value. Thus x5 leaves the basis and x0 enters the basis.
Pivoting on row 2 and column 5:

r1 ← r1 − r2.
r3 ← r3 − r2.
w ← w + r2.

x4 = 9 +0 −2x2 −x3 +x5
x0 = 5 2x1 −3x2 +x3 +x5
x6 = 4 +3x1 −4x2 +3x3 +x5
w = −5 −2x1 +3x2 −x3 −x5.

Now x2 enters and who leaves? x6 leaves the basis
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Simplex Algorithm

Finding an initial feasible dictionary

x4 = 9 +0 −2x2 −x3 +x5
x0 = 5 2x1 −3x2 +x3 +x5
x6 = 4 +3x1 −4x2 +3x3 +x5
w = −5 −2x1 +3x2 −x3 −x5.

Now x2 enters and who leaves? x6 leaves the basis. After pivoting

x2 = 1 +0.75x1 +0.75x3 +0.25x5 −0.25x6
x0 = 2 −0.25x1 −1.25x3 +0.25x5 +0.75x6
x4 = 7 −1.5x1 −2.5x3 +0.5x5 +0.5x6
w = −2 +0.25x1 +1.25x3 −0.25x5 −0.75x6.

Who enters the basis now? x3
Who leaves the basis?

x0 ≥ 0 ⇒ 2− 1.25x3 ≥ 0 ⇒ x3 ≥ 2/1.25 = 1.6

x4 ≥ 0 ⇒ 7− 2.5x3 ≥ 0 ⇒ x3 ≥ 7/2.5 = 2.8

x0 leaves the basis!
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Simplex Algorithm

Finding an initial feasible dictionary

x2 = 1 +0.75x1 +0.75x3 +0.25x5 −0.25x6
x0 = 2 −0.25x1 −1.25x3 +0.25x5 +0.75x6
x4 = 7 −1.5x1 −2.5x3 +0.5x5 +0.5x6
w = −2 +0.25x1 +1.25x3 −0.25x5 −0.75x6.

Pivoting on row 2 and column 3:
r1 ← r1 + 0.75

1.25 r2 = r1 + 0.6r2.
r3 ← r3 − 2r2.
w ← w + r2.

x2 = 2.2 +0.6x1 +0.4x5 +0.2x6 −0.6x0
x3 = 1.6 −0.2x1 +0.2x5 +0.6x6 −0.8x0
x4 = 3 −x1 −x6 +2x0
w = .

Feasible basis without x0!

Remove column with x0 and replace w with z .

x2 = 2.2 +0.6x1 +0.4x5 +0.2x6
x3 = 1.6 −0.2x1 +0.2x5 +0.6x6
x4 = 3 −x1 −x6
z = +x1 −x2 x3
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Simplex Algorithm

Finding an initial feasible dictionary

x2 = 2.2 +0.6x1 +0.4x5 +0.2x6
x3 = 1.6 −0.2x1 +0.2x5 +0.6x6
x4 = 3 −x1 −x6

Eliminate base variables x2 and x3 from z :

z = x1 − x2 + x3

= x1 − (2.2 + 0.6x1 + 0.4x5 + 0.2x6) + (1.6− 0.2x1 + 0.2x5 + 0.6x6)

= −0.6 + 0.2x1 − 0.2x5 + 0.4x6.

So the initial basis is

x2 = 2.2 +0.6x1 +0.4x5 +0.2x6
x3 = 1.6 −0.2x1 +0.2x5 +0.6x6
x4 = 3 −x1 −x6

z = −0.6 +0.2x1 −0.2x3 +0.4x6

Now apply the simplex again!
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Duality

Upper Bounds Using Duality

The LP in standard form

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0, (LP)

We want to find w ∈ R so that z = c>x ≤ w for all x ∈ Rn.
Combine rows of constraints?

Look for y ≥ 0 ∈ Rm so that y>A ≥ c> so that

c>x ≤ (y>A)x ≤ y>b =: w .

Can we make this upper bound as tight as possible? Yes, by minimizing
y>b. That is, we need to the dual linear program.

23 / 33



Duality

Upper Bounds Using Duality

The LP in standard form

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0, (LP)

We want to find w ∈ R so that z = c>x ≤ w for all x ∈ Rn.
Combine rows of constraints?
Look for y ≥ 0 ∈ Rm so that y>A ≥ c> so that

c>x ≤ (y>A)x ≤ y>b =: w .

Can we make this upper bound as tight as possible? Yes, by minimizing
y>b. That is, we need to the dual linear program.

23 / 33



Duality

Dual definition

max
x

z
def
= c>x

subject to Ax ≤ b,

x ≥ 0, (P) Primal (1)

min
y

w
def
= y>b

subject to A>y ≥ c ,

y ≥ 0. (D) Dual (2)

Exe: Show that the dual of the dual is the primal.

Lemma (Weak Duality)

If x ∈ Rn is a feasible point for (1) and y ∈ Rm is a feasible point for (2)
then

c>x ≤ y>Ax ≤ y>b. (3)
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Duality

Weak Duality

Lemma (Weak Duality)

If x ∈ Rn is a feasible point for (1) and y ∈ Rm is a feasible point for (2)
then

c>x ≤ y>Ax ≤ y>b. (4)

Consequently

I If (1) has an unbounded solution, that is c>x →∞, then

there
exists no feasible point y for (2)

I If (2) has an unbounded solution, that is y>b → −∞, then there
exists no feasible point x for (1)

I If x and y are primal and dual feasible, respectively, and
c>x = y>b, then x and y are the primal and dual optimal points,
respectively.
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Duality

Strong Duality

Theorem (Strong Duality)

If (1) or (2) is feasible, then z∗ = w∗. Moreover, if c∗ is the cost vector
of the optimal dictionary of the primal problem (1), that is, if

z = z∗ +
n+m∑
i=1

c∗i xi , (5)

then y∗i = −c∗n+i for i = 1, . . . ,m.

Thus distance to optimal is given by

z − w = y>b − c>x ≥ 0.

Proof: First c∗i ≤ 0 for i = 1, . . . ,m + n because dictionary is optimal.
Consequently y∗i = −c∗n+i ≥ 0 for i = 1, . . . ,m.
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Duality

Strong duality: Proof I
By the definition of the slack variables we have that

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (6)

Consequently, setting y∗i = −c∗n+i , we have that

z
(5)
= z∗ +

n∑
j=1

c∗j xj +
n+m∑
i=n+1

c∗i xi

(6)
= z∗ +

n∑
j=1

c∗j xj −
m∑
i=1

y∗i (bi −
n∑

j=1

aijxj)

= z∗ −
m∑
i=1

y∗i bi +
n∑

j=1

(
c∗j +

m∑
i=1

y∗i aij

)
xj

def of z
=

n∑
j=1

cjxj , ∀x1, . . . , xn. (7)

Last line followed by definition z =
∑n

j=1 cjxj . Since the above holds for all
x ∈ Rn, we can match the coefficients. 27 / 33



Duality

Strong duality: Proof II

z∗ −
m∑
i=1

y∗i bi +
n∑

j=1

(
c∗j +

m∑
i=1

y∗i aij

)
xj =

n∑
j=1

cjxj .

Matching coefficients on xj ’s we have

z∗ =
m∑
i=1

y∗i bi (8)

cj = c∗j +
m∑
i=1

y∗i aij , for j = 1, . . . , n. (9)

Since c∗j ≤ 0 for j = 1, . . . , n, the above is equivalent to

z∗ =
m∑
i=1

y∗i bi (10)

m∑
i=1

y∗i aij ≤ cj , for j = 1, . . . , n. (11)

(11) ⇒ y∗i is feasible for (2). (10) ⇒ z∗ =
∑m

i=1 y
∗
i bi = w , consequently by

weak duality the y∗i ’s are dual optimal. 28 / 33



Duality

How to calculate dual solution y?
By strong duality

c>x∗ = (y∗)>Ax∗ = (y∗)>b.

Subtracting (y∗)>Ax∗ from all sides of the above gives(
c − A>y∗︸ ︷︷ ︸
≥0

)>
x∗ = 0 = (y∗)>

(
b − Ax∗︸ ︷︷ ︸
≥0

)
.

Re-writing the above in element form we have that
n∑

j=1

(
cj −

m∑
i=1

aijy
∗
i

)
x∗j = 0 =

m∑
i=1

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
.

Sum over positive numbers equal zero thus

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
= 0, ∀i = 1, . . . ,m.

x∗j
(
cj −

m∑
i=1

aijy
∗
i

)
= 0, ∀j = 1, . . . , n.
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∗
i

)
x∗j = 0 =

m∑
i=1

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
.

Sum over positive numbers equal zero thus

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
= 0, ∀i = 1, . . . ,m.

x∗j
(
cj −

m∑
i=1

aijy
∗
i

)
= 0, ∀j = 1, . . . , n.
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Duality

How to calculate dual solution y?

y∗i
(
bi −

n∑
j=1

aijx
∗
j

)
= 0, ∀i = 1, . . . ,m.

x∗j
(
cj −

m∑
i=1

aijy
∗
i

)
= 0, ∀j = 1, . . . , n.

This gives the following rule for computing y∗.

n∑
i=1

aijy
∗
i = cj , ∀j ∈ {1, . . . , n}, x∗j > 0.

y∗i = 0, ∀i ∈ {1, . . . ,m}, bi >
n∑

j=1

aijx
∗
j .

Question: If x∗ is non-degenerate, how many x∗i > 0?
30 / 33



Duality

Complementary slackness
Since bi >

∑n
j=1 aijx

∗
j ⇒ x∗n+i > 0 we have

n∑
i=1

aijy
∗
i = cj , ∀j ∈ {1, . . . , n}, x∗j > 0.

y∗i = 0, ∀i ∈ {1, . . . ,m}, x∗n+i > 0.

Finally

n∑
i=1

aijy
∗
i = cj ⇒ A>J y

∗ = cJ (J indices of Basic variables)

Exercise on calculating dual variables

max z = 4x2 +3x2
5x1 +3x2 ≤ 30
2x1 +3x2 ≤ 24
x1 +3x2 ≤ 18

If x∗1 = 3, x∗2 = 5
Then y∗1 = 3

4 , y
∗
2 = 0, y∗3 = 1

4
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Exercise on calculating dual variables

max z = 4x2 +3x2
5x1 +3x2 ≤ 30
2x1 +3x2 ≤ 24
x1 +3x2 ≤ 18

If x∗1 = 3, x∗2 = 5
Then y∗1 = 3

4 , y
∗
2 = 0, y∗3 = 1

4

Test for complementarity:

5x∗1 + 3x∗2 = 5 ∗ 3 + 3 ∗ 5 = 30 ⇒ y∗1 6= 0

2x∗1 + 3x∗2 = 2 ∗ 3 + 3 ∗ 5 = 21 < 24 ⇒ y∗2 = 0

x∗1 + 3x∗2 = 3 + 3 ∗ 5 = 18 ⇒ y∗3 6= 0.

Setup linear system
∑

i=1 aijy
∗
i = cj ,∀j with x∗j > 0:

4 3
y1 5x1 +3x2
y2 2x1 +3x2
y3 x1 +3x2

(remove y2)

⇒

4 3
y1 5x1 +3x2
y3 x1 +3x2

(transpose)

⇒

[
5 1
3 3

] [
y1
y3

]
=

[
4
3

]
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G.,R & P Richtárik, Randomized Iterative Methods for Linear
Systems arXiv:1506.03296

33 / 33


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Simple 2D problem
	The Fundamental Theorem
	Notation
	Simplex Algorithm
	Degeneracy
	Finding an initial feasible dictionary

	Duality

