MDI210 : Linear Programming

Robert M. Gower

\section*{TELECOM ParisTech
 | | |
| :---: | :---: |}

Linear Programming History (1939)

- 1947: George Dantzig, advising U.S. Air Force, invents Simplex.
- Assignment 70 people to 70 jobs (more possibilities than particles).

Linear Programming History (1941)

Army Builds Killing Machine (1949)

1949 SCOOP: Scientific Computation Of Optimal Programs

Mathematical Programming: Math used to figured out Flight and logistic programs/schedules

Dantzig the Urban Legend

Dantzig, George B. "On the Non-Existence of Tests of 'Student's' Hypothesis Having Power Functions Independent of Signa." Annals of Mathematical Statistics, No. 11; 1940 (pp. 186-192).

Dantzig, George B. and Abraham Wald. "On the Fundamental Lemma of Neyman and Pearson." Annals of Mathematical Statistics. No. 22; 1951 (pp, 87-93).

Optimization and Numerical Analysis: Linear Programming

Robert Gower

September 19, 2019

Table of Contents

Simple 2D problem
The Fundamental Theorem

Notation

Simplex Algorithm
Degeneracy
Finding an initial feasible dictionary
Duality

The Problem: Linear Programming

$$
\begin{array}{r}
\max _{x} z \stackrel{\text { def }}{=} c^{\top} x \\
\text { subject to } A x \leq b, \\
x \geq 0,
\end{array}
$$

where $c, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Equivalently

$$
\begin{aligned}
& \max _{x} z \stackrel{\text { def }}{=} \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad \text { for } i=1, \ldots, m . \\
& x \geq 0
\end{aligned}
$$

First example Simplex

The problem

$$
\begin{array}{lll}
\max \quad & 4 x_{1}+2 x_{2} & \\
& 3 x_{1}+2 x_{2} & \leq 600 \\
& 4 x_{1}+1 x_{2} & \leq 400 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

We can solve this graphically:

With level sets \Rightarrow

How to do this systematically?

First example Simplex

The problem

$$
\begin{array}{lll}
\max \quad & 4 x_{1}+2 x_{2} & \\
& 3 x_{1}+2 x_{2} & \leq 600 \\
& 4 x_{1}+1 x_{2} & \leq 400 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Can be transformed into

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
x_{3}=600-3 x_{1}-2 x_{2} \\
x_{4}=400-4 x_{1}-x_{2}
\end{array}
$$

where x_{3} and x_{4} are slack variables. This is known as the the dictionary format and is often written as:

$$
\begin{aligned}
x_{3} & =600-3 x_{1}-2 x_{2} \\
x_{4} & =400-4 x_{1}-2 x_{2} \\
\hline z & =4 x_{1}+2 x_{2}
\end{aligned}
$$

First example Simplex

The dictionary format

$$
\begin{aligned}
x_{3} & =600-3 x_{1}-2 x_{2} \\
x_{4} & =400-4 x_{1}- \\
\hline z & =4 x_{1}+2 x_{2}
\end{aligned}
$$

admits obvious solution

$$
\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}\right)=(0,0,600,400)
$$

The objective z will improve if $x_{1}>0$. Increasing x_{1} as much as possible

$$
\begin{aligned}
& x_{3} \geq 0 \Rightarrow 600-3 x_{1} \geq 0 \quad \Rightarrow \quad x_{1} \leq 200 \\
& x_{4} \geq 0 \quad \Rightarrow \quad 400-4 x_{1} \geq 0 \quad \Rightarrow \quad x_{1} \leq 100
\end{aligned}
$$

Thus $x_{1} \leq 100$ to guarantee $x_{4} \geq 0$. This means x_{4} will leave the basis and x_{1} will enter the basis. Using row operations $z \leftarrow z+r_{2}$ and $r_{1} \leftarrow r_{1}-\frac{3}{4} r_{2}$ to isolate x_{1} on row $_{2}$.

$$
\begin{gathered}
x_{3}=300+\frac{3}{4} x_{4}-\frac{5}{4} x_{2} \\
x_{1}=100-\frac{x_{4}}{4}-\frac{x_{2}}{4} \\
\hline z=400-x_{4}+\frac{x_{2}}{}
\end{gathered}
$$

First example Simplex

From

$$
\begin{array}{cccccc}
x_{3} & =300 & + & \frac{3}{4} x_{4} & - & \frac{5}{4} x_{2} \\
x_{1} & =100 & - & \frac{x_{4}}{4} & - & \frac{x_{2}}{4} \\
\hline z & =400 & - & x_{4} & + & x_{2}
\end{array}
$$

Now we are at the vertex $\left(x_{1}^{*}, x_{2}^{*}\right)=(100,0)$. Next we see that increasing x_{2} increases the objective value but

$$
\begin{aligned}
& x_{3} \geq 0 \Rightarrow 300-\frac{5}{4} x_{2} \geq 0 \quad \Rightarrow \quad 240 \geq x_{2} \\
& x_{1} \geq 0 \Rightarrow 100-\frac{x_{2}}{4} \geq 0 \quad \Rightarrow \quad 400 \geq x_{2}
\end{aligned}
$$

Increase x_{2} upto 240 while respecting the positivity constraints of x_{3}.
Thus x_{3} will leave the basis and x_{2} will enter the basis. Performing a row elimination again via $z \leftarrow z+\frac{4}{5} r_{1}$ and $r_{2} \leftarrow r_{2}-\frac{1}{5} r_{1}$, we have that

$$
\begin{aligned}
x_{2} & =240+\frac{3}{5} x_{4}-\frac{4}{5} x_{3} \\
x_{1} & =40-\frac{2}{5} x_{4}-\frac{1}{5} x_{3} \\
\hline z & =640-\frac{2}{5} x_{4}-\frac{4}{5} x_{3}
\end{aligned}
$$

Now $\left(x_{1}^{*}, x_{2}^{*}\right)=(40,240)$. Increasing x_{4} or x_{3} will decrease z. THE END

Theorem (Fundamental Theorem of Linear Programming)
Let $P=\{x \mid A x=b, x \geq 0\}$ then either
(1) $P=\{\emptyset\}$
(2) $P \neq\{\emptyset\}$ and there exists a vertex v of P such that $v \in \arg \min _{x \in P} C^{\top} x$
(3) There exists $x, d \in \mathbb{R}^{n}$ such that $x+t d \in P$ for all $t \geq 0$ and $\lim _{t \rightarrow \infty} c^{\top}(x+t d)=\infty$.

Problem Notation

We will now formalize the definitions we introduced in the examples.

- There are n variables and m constraints
- The linear objective function $z=\sum_{j=1}^{n} c_{j} x_{j}$
- The m inequality constraints in standard form

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \text { for } i \in\{1, \ldots, m\}
$$

- The n positivity constraints $x_{j} \geq 0$, for $j \in\{1, \ldots, n\}$.
- x_{i}^{*} denotes the value of i th variable.
- We call $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \mathbb{R}^{n}$ a feasible solution if it satisfies the inequality and positivity constraints.

Dictionary Notation

- The slack variables $\left(x_{n+1}, \ldots, x_{n+m}\right) \in \mathbb{R}^{m}$ (variables d'écart)
- The initial dictionary

$$
\begin{aligned}
& x_{n+1}=b_{1}-\sum_{j=1}^{n} a_{1 j} x_{j} \\
& \vdots \\
& x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& \vdots \\
& x_{n+m}=b_{m}-\sum_{j=1}^{n} a_{m j} x_{j} \\
& \hline z=\sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- Valid dictionary if m of the variables $\left(x_{1}, \ldots, x_{n+m}\right)$ can be expressed as function of the remaining n variables.
- The m variables on the left-hand side are the basic variable (variable de base). The n variables on the right-hand side are the non-basic (variable hors-base).

Dictionary Notation

After row elimination operations we have a new basis.

- Basic variable set $I \subset\{1, \ldots, n+m\}$ and non-basic set $J=\{1, \ldots, n+m\} \backslash /$ with $|I|=m$ and $|J|=n$
- Current objective value $z^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}$.
- For each basis set I there is a corresponding dictionary

$$
\begin{aligned}
& x_{i}=b_{i}^{\prime}-\sum_{j \in J} a_{i j}^{\prime} x_{j}, \text { for } i \in I \\
& \hline z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
\end{aligned}
$$

where $a_{i j}^{\prime}, b_{i}^{\prime}, z^{*} \in \mathbb{R}$ are coefficients resulting from the row operations. For this to a feasible dictionary we require that $b_{i}^{\prime} \geq 0$.

- A basic solution: $x_{i}^{*}=b_{i}^{\prime}$ for $i \in I$ and $x_{j}^{*}=0$ for $j \in J$.

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

- How much can we increase $x_{j_{0}}$? Until there is a $x_{i}=0$ since

$$
x_{i}^{*}=b_{i}^{\prime}-a_{i j_{0}}^{\prime} x_{j 0}^{*} \geq 0
$$

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

- How much can we increase $x_{j_{0}}$? Until there is a $x_{i}=0$ since

$$
x_{i}^{*}=b_{i}^{\prime}-a_{i j_{0}}^{\prime} x_{j 0}^{*} \geq 0 \Rightarrow a_{i j_{0}}^{\prime} x_{j_{0}}^{*} \leq b_{i}^{\prime}, \quad \forall i \in I
$$

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

- How much can we increase $x_{j_{0}}$? Until there is a $x_{i}=0$ since

$$
x_{i}^{*}=b_{i}^{\prime}-a_{i j_{0}}^{\prime} x_{j 0}^{*} \geq 0 \Rightarrow a_{i j_{0}}^{\prime} x_{j_{0}}^{*} \leq b_{i}^{\prime}, \quad \forall i \in I
$$

- If $a_{i j_{0}}^{\prime} \leq 0$, then increasing $x_{j 0}^{*}$ will increase x_{i}^{*}

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

- How much can we increase $x_{j_{0}}$? Until there is a $x_{i}=0$ since

$$
x_{i}^{*}=b_{i}^{\prime}-a_{i j 0}^{\prime} x_{j 0}^{*} \geq 0 \Rightarrow a_{i j 0}^{\prime} x_{j 0}^{*} \leq b_{i}^{\prime}, \quad \forall i \in I
$$

- If $a_{i j_{0}}^{\prime} \leq 0$, then increasing $x_{j 0}^{*}$ will increase x_{i}^{*}
- If $a_{i j}^{\prime}>0$, then $x_{j 0}^{*} \leq b_{i}^{\prime} / a_{i j 0}^{\prime}$

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

- How much can we increase $x_{j_{0}}$? Until there is a $x_{i}=0$ since

$$
x_{i}^{*}=b_{i}^{\prime}-a_{i j 0}^{\prime} x_{j 0}^{*} \geq 0 \Rightarrow a_{i j 0}^{\prime} x_{j 0}^{*} \leq b_{i}^{\prime}, \quad \forall i \in I
$$

- If $a_{i j_{0}}^{\prime} \leq 0$, then increasing $x_{j 0}^{*}$ will increase x_{i}^{*}
- If $a_{i j}^{\prime}>0$, then $x_{j 0}^{*} \leq b_{i}^{\prime} / a_{i j 0}^{\prime}$
- Thus

$$
x_{j_{0}}^{*}=\min _{i \in I, a_{i j_{0}}^{\prime}>0} \frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}
$$

Variable entering/leaving the basis

- If $j_{0} \in J$ with $c_{j_{0}}^{\prime}>0$ then increasing $x_{j_{0}}$ will improve the objective since

$$
z=z^{*}+\sum_{j \in J} c_{j}^{\prime} x_{j}
$$

- How much can we increase $x_{j_{0}}$? Until there is a $x_{i}=0$ since

$$
x_{i}^{*}=b_{i}^{\prime}-a_{i j_{0}}^{\prime} x_{j 0}^{*} \geq 0 \Rightarrow a_{i j_{0}}^{\prime} x_{j_{0}}^{*} \leq b_{i}^{\prime}, \quad \forall i \in I
$$

- If $a_{i j_{0}}^{\prime} \leq 0$, then increasing $x_{j 0}^{*}$ will increase x_{i}^{*}
- If $a_{i j}^{\prime}>0$, then $x_{j 0}^{*} \leq b_{i}^{\prime} / a_{i j 0}^{\prime}$
- Thus

$$
x_{j_{0}}^{*}=\min _{i \in I, a_{i j_{0}}^{\prime}>0} \frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}
$$

- In this case, which $x_{i}^{*}=0$ (which i leaves the basis?)

A Step of the Simplex Method
Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.

A Step of the Simplex Method
Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.

A Step of the Simplex Method

Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.
Choose a variable j_{0} to enter the basis from the set $j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}$. if $a_{i j_{0}}^{\prime} \leq 0$ for all $i \in J$ then

STOP; \# The problem is unbounded.

A Step of the Simplex Method

Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.
Choose a variable j_{0} to enter the basis from the set $j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}$. if $a_{i j_{0}}^{\prime} \leq 0$ for all $i \in J$ then

STOP; \# The problem is unbounded.
Choose a variable i_{0} to leave the basis from the set $i_{0} \in \arg \min _{i \in I, a_{i j_{0}}^{\prime}>0}\left\{\frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}\right\}$.

A Step of the Simplex Method

Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.
Choose a variable j_{0} to enter the basis from the set $j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}$. if $a_{i j 0}^{\prime} \leq 0$ for all $i \in J$ then

STOP; \# The problem is unbounded.
Choose a variable i_{0} to leave the basis from the set $i_{0} \in \arg \min _{i \in I, a_{i j_{0}}^{\prime}>0}\left\{\frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}\right\}$. $I \leftarrow\left(I \backslash\left\{i_{0}\right\}\right) \quad$ and $\quad J \leftarrow J \cup\left\{i_{0}\right\} \quad \triangleright$ Move i_{0} from basic to non-basic for $i \in I$ do

$$
a_{i:}^{\prime} \leftarrow a_{i:}^{\prime}-\frac{a_{i j_{0}}^{\prime}}{a_{i 0 j 0}^{\prime}} a_{i 0}^{\prime}:
$$

\triangleright Row elimination on pivot $\left(i_{0}, j_{0}\right)$.

A Step of the Simplex Method

Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.
Choose a variable j_{0} to enter the basis from the set $j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}$. if $a_{i j 0}^{\prime} \leq 0$ for all $i \in J$ then

STOP; \# The problem is unbounded.
Choose a variable i_{0} to leave the basis from the set $i_{0} \in \arg \min _{i \in I, a_{i j_{0}}>0}\left\{\frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}\right\}$. $I \leftarrow\left(I \backslash\left\{i_{0}\right\}\right) \quad$ and $\quad J \leftarrow J \cup\left\{i_{0}\right\} \quad \triangleright$ Move i_{0} from basic to non-basic for $i \in I$ do
$a_{i:}^{\prime} \leftarrow a_{i:}^{\prime}-\frac{a_{i j_{0}}^{\prime}}{a_{i j_{0}}^{\prime}} a_{i_{0}}^{\prime}:$
\triangleright Row elimination on pivot $\left(i_{0}, j_{0}\right)$.
$a_{i_{0}}^{\prime}: \leftarrow \frac{1}{a_{i_{0} j_{0}}^{\prime}} a_{i_{0}}^{\prime}: \quad$ and $\quad a_{i_{0} j_{0}}^{\prime} \leftarrow \frac{1}{a_{i_{0} j_{0}}^{\prime}} \quad \triangleright$ Normalize the coefficient of $a_{i_{0} j_{0}}^{\prime}$

A Step of the Simplex Method

Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.
Choose a variable j_{0} to enter the basis from the set $j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}$. if $a_{i j 0}^{\prime} \leq 0$ for all $i \in J$ then

STOP; \# The problem is unbounded.
Choose a variable i_{0} to leave the basis from the set $i_{0} \in \arg \min _{i \in I, a_{i j_{0}}^{\prime}>0}\left\{\frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}\right\}$. $I \leftarrow\left(I \backslash\left\{i_{0}\right\}\right) \quad$ and $\quad J \leftarrow J \cup\left\{i_{0}\right\} \quad \triangleright$ Move i_{0} from basic to non-basic for $i \in I$ do

$$
a_{i:}^{\prime} \leftarrow a_{i:}^{\prime}-\frac{a_{i j_{0}}^{\prime}}{a_{i 0 j 0}^{\prime}} a_{i 0}^{\prime}:
$$

\triangleright Row elimination on pivot $\left(i_{0}, j_{0}\right)$.
$a_{i_{0}}^{\prime}: \leftarrow \frac{1}{a_{i_{0} j_{0}}^{\prime}} a_{i_{0}}^{\prime}: \quad$ and $\quad a_{i_{0 j 0}}^{\prime} \leftarrow \frac{1}{a_{i_{0} j_{0}}^{\prime}} \quad \triangleright$ Normalize the coefficient of $a_{i_{0 j} j_{0}}^{\prime}$
$c^{\prime} \leftarrow c^{\prime}-\frac{c_{j_{0}}^{\prime}}{a_{i_{0} j_{0}}^{\prime}} a_{i_{0}}^{\prime}:$
\triangleright Update the cost coefficients.

A Step of the Simplex Method

Input: $I=\{n+1, \ldots, n+m\}, J=\{1, \ldots, n\}, a_{i j}^{\prime} \in \mathbb{R}, b_{i}^{\prime} \geq 0, c_{i}^{\prime} \in \mathbb{R}$.
if $c_{i}^{\prime} \leq 0$ for all $i \in J$ then
STOP; \# Optimal point found.
Choose a variable j_{0} to enter the basis from the set $j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}$. if $a_{i j_{0}}^{\prime} \leq 0$ for all $i \in J$ then

STOP; \# The problem is unbounded.
Choose a variable i_{0} to leave the basis from the set $i_{0} \in \arg \min _{i \in l, a_{i j_{0}}^{\prime}>0}\left\{\frac{b_{i}^{\prime}}{a_{i j_{0}}^{\prime}}\right\}$. $I \leftarrow\left(I \backslash\left\{i_{0}\right\}\right) \quad$ and $\quad J \leftarrow J \cup\left\{i_{0}\right\} \quad \triangleright$ Move i_{0} from basic to non-basic for $i \in I$ do

$$
a_{i:}^{\prime} \leftarrow a_{i:}^{\prime}-\frac{a_{i j_{0}}^{\prime}}{a_{i_{0} j_{0}}^{\prime}} a_{i_{0}:}^{\prime} \quad \triangleright \text { Row elimination on pivot }\left(i_{0}, j_{0}\right)
$$

$a_{i_{0}}^{\prime}: \leftarrow \frac{1}{a_{i_{0} j_{0}}^{\prime}} a_{i_{0}}^{\prime}: \quad$ and $\quad a_{i_{0 j 0}}^{\prime} \leftarrow \frac{1}{a_{i_{0 j 0}}^{\prime}} \quad \triangleright$ Normalize the coefficient of $a_{i_{0 j}}^{\prime}$
$c^{\prime} \leftarrow c^{\prime}-\frac{c_{j_{0}}^{\prime}}{a_{i_{0} j_{0}}^{\prime}} a_{i_{0}}^{\prime}$:
\triangleright Update the cost coefficients.
$I \leftarrow I \cup\left\{j_{0}\right\} \quad$ and $\quad J \leftarrow\left(J \backslash\left\{j_{0}\right\}\right) \quad \triangleright$ Move j_{0} from non-basic to basic

How to choose who enters the basis?

$$
j_{0} \in\left\{j \in J: c_{j}^{\prime}>0\right\}
$$

(1) The mad hatter rule: Choose the first one you see costs: $\mathrm{O}(1)$
(2) Dantzig's 1st rule: $j_{0}=\arg \max _{j \in J} c_{j} \quad$ cost: $\mathrm{O}(\mathrm{n})$
(3) Dantzig's 2 nd rule: Choose j_{0} that maximizes the increase in z.

$$
j_{0}=\arg \max _{j \in J}\left\{c_{j} \min _{i \in l, a_{i j}>0}\left\{\frac{b_{i}}{a_{i j}}\right\}\right\} \quad \text { costs : } O(n m)
$$

Effective, but computationally expensive.
(9) Bland's rule: Choose the smallest indices j_{0} and i_{0}. That is, choose

$$
\begin{aligned}
j_{0} & =\arg \min \left\{j \in J: c_{j}>0\right\} \text { costs : O(n) } \\
i_{0} & =\min \left\{\arg \min _{i \in 1, a_{i_{0}}>0}\left\{\frac{b_{i}}{a_{i j_{0}}}\right\}\right\} .
\end{aligned}
$$

Degeneracy

Consider the problem

$$
\begin{array}{cc}
\max 2 x_{1}-x_{2}+8 x_{3} & \\
2 x_{3} & \leq 1 \\
2 x_{1}-4 x_{2}+6 x_{3} & \leq 3 \\
-x_{1}+3 x_{2}+4 x_{3} & \leq 2 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Adding slack variables we have that

$$
\begin{aligned}
x_{4} & =1+0+0-2 x_{3} \\
x_{5} & =3-2 x_{1}+4 x_{2}-6 x_{3} \\
x_{6} & =2+x_{1}-3 x_{2}-4 x_{3} \\
z & =0+2 x_{1}-x_{2}+8 x_{3}
\end{aligned}
$$

Degeneracy

If any of the basic variables are zero, then we say that the solution is degenerate.
Consider the initial dictionary:

$$
\begin{aligned}
x_{4} & =1+0+0-2 x_{3} \\
x_{5} & =3-2 x_{1}+4 x_{2}-6 x_{3} \\
x_{6} & =2+x_{1}-3 x_{2}-4 x_{3} \\
z & =0+2 x_{1}-x_{2}+8 x_{3}
\end{aligned}
$$

If x_{3} enters then who leaves?

Degeneracy

If any of the basic variables are zero, then we say that the solution is degenerate.
Consider the initial dictionary:

$$
\begin{aligned}
x_{4} & =1+0+0-2 x_{3} \\
x_{5} & =3-2 x_{1}+4 x_{2}-6 x_{3} \\
x_{6} & =2+x_{1}-3 x_{2}-4 x_{3} \\
z & =0+2 x_{1}-x_{2}+8 x_{3}
\end{aligned}
$$

If x_{3} enters then who leaves? Both x_{5} and x_{6} are set to zero, so either one. Choosing x_{4} and pivoting on row 1 and column 4 we have.

$$
\begin{array}{cc}
x_{3}=0.5+0+0-0.5 x_{4} \\
x_{5}= & 0-2 x_{1}+4 x_{2}+3 x_{4} \\
x_{6}= & 0+x_{1}-3 x_{2}+2 x_{4} \\
\hline z= & 4+2 x_{1}-x_{2}-4 x_{4}
\end{array}
$$

Only x_{1} can enter the basis, but it doesn't increase in value :(Full example in lecture notes.

Bland's rule for degeneracy

Bland's rule

Choose the smallest indices j_{0} and i_{0}. That is, choose

$$
\begin{gathered}
j_{0}=\arg \min \left\{j \in J: c_{j}>0\right\} \\
i_{0}=\min \left\{\arg \min _{i \in I, a_{i_{0}}>0}\left\{\frac{b_{i}}{a_{i j_{0}}}\right\}\right\} .
\end{gathered}
$$

Definition

A dictionary is degenerate if there are basic variables equal to zero.

Theorem

If Bland's rule is used on all degenerate dictionaries, then the simplex algorithm will not cycle.

Finding an initial feasible dictionary

\max	x_{1}	$-x_{2}$	$+x_{3}$	
	$2 x_{1}$	$-x_{2}$	$+2 x_{3}$	≤ 4
	$2 x_{1}$	$-3 x_{2}$	$+x_{3}$	≤-5
	$-x_{1}$	$+x_{2}$	$-2 x_{3}$	≤-1
	x_{1},	x_{2},	x_{3},	≥ 0.

The point $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)=(0,0,0)$ is not feasible.

Finding an initial feasible dictionary

$$
\begin{array}{ccccc}
\max & x_{1} & -x_{2} & +x_{3} & \\
& 2 x_{1} & -x_{2} & +2 x_{3} & \leq 4 \\
& 2 x_{1} & -3 x_{2} & +x_{3} & \leq-5 \\
& -x_{1} & +x_{2} & -2 x_{3} & \leq-1 \\
& x_{1}, & x_{2}, & x_{3}, & \geq 0
\end{array}
$$

The point $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)=(0,0,0)$ is not feasible.
Setup an auxiliary problem

$$
\begin{array}{ccccc}
\max & -x_{0} & & & \\
2 x_{1} & -x_{2} & +2 x_{3} & -x_{0} \leq 4 \\
2 x_{1} & -3 x_{2} & +x_{3} & -x_{0} \leq-5 \\
-x_{1} & +x_{2} & -2 x_{3} & -x_{0} \leq-1 \\
& x_{1}, & x_{2}, & x_{3}, & x_{0} \geq 0
\end{array}
$$

For x_{0} big enough, it will be feasible. Setup initial dictionary

Initial phase one dictionary:

$$
\begin{array}{ccccc}
x_{4}=4 & -2 x_{1} & +x_{2} & -2 x_{3} & +x_{0} \\
x_{5}=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & +x_{0} \\
x_{6}=-1 & +x_{1} & -x_{2} & +2 x_{3} & +x_{0} \\
w= & & & & -x_{0}
\end{array}
$$

Pivot on "most infeasible" variable in the basis with the most negative value. Thus x_{5} leaves the basis and x_{0} enters the basis. Pivoting on row 2 and column 5:

Initial phase one dictionary:

$$
\begin{array}{ccccc}
x_{4}=4 & -2 x_{1} & +x_{2} & -2 x_{3} & +x_{0} \\
x_{5}=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & +x_{0} \\
x_{6}=-1 & +x_{1} & -x_{2} & +2 x_{3} & +x_{0} \\
w= & & & & -x_{0}
\end{array}
$$

Pivot on "most infeasible" variable in the basis with the most negative value. Thus x_{5} leaves the basis and x_{0} enters the basis.
Pivoting on row 2 and column 5:
$r_{1} \leftarrow r_{1}-r_{2}$.
$r_{3} \leftarrow r_{3}-r_{2}$.
$w \leftarrow w+r_{2}$.

Initial phase one dictionary:

$$
\begin{array}{ccccc}
x_{4}=4 & -2 x_{1} & +x_{2} & -2 x_{3} & +x_{0} \\
x_{5}=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & +x_{0} \\
x_{6}=-1 & +x_{1} & -x_{2} & +2 x_{3} & +x_{0} \\
w= & & & & -x_{0}
\end{array}
$$

Pivot on "most infeasible" variable in the basis with the most negative value. Thus x_{5} leaves the basis and x_{0} enters the basis. Pivoting on row 2 and column 5:
$r_{1} \leftarrow r_{1}-r_{2}$.
$r_{3} \leftarrow r_{3}-r_{2}$.
$w \leftarrow w+r_{2}$.

$$
\begin{array}{ccccc}
x_{4}=9 & +0 & -2 x_{2} & -x_{3} & +x_{5} \\
x_{0}=5 & 2 x_{1} & -3 x_{2} & +x_{3} & +x_{5} \\
x_{6}=4 & +3 x_{1} & -4 x_{2} & +3 x_{3} & +x_{5} \\
w=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & -x_{5}
\end{array}
$$

Now x_{2} enters and who leaves?

Initial phase one dictionary:

$$
\begin{array}{ccccc}
x_{4}=4 & -2 x_{1} & +x_{2} & -2 x_{3} & +x_{0} \\
x_{5}=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & +x_{0} \\
x_{6}=-1 & +x_{1} & -x_{2} & +2 x_{3} & +x_{0} \\
w= & & & & -x_{0}
\end{array}
$$

Pivot on "most infeasible" variable in the basis with the most negative value. Thus x_{5} leaves the basis and x_{0} enters the basis.
Pivoting on row 2 and column 5:
$r_{1} \leftarrow r_{1}-r_{2}$.
$r_{3} \leftarrow r_{3}-r_{2}$.
$w \leftarrow w+r_{2}$.

$$
\begin{array}{ccccc}
x_{4}=9 & +0 & -2 x_{2} & -x_{3} & +x_{5} \\
x_{0}=5 & 2 x_{1} & -3 x_{2} & +x_{3} & +x_{5} \\
x_{6}=4 & +3 x_{1} & -4 x_{2} & +3 x_{3} & +x_{5} \\
w=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & -x_{5} .
\end{array}
$$

Now x_{2} enters and who leaves? x_{6} leaves the basis

$$
\begin{array}{ccccc}
x_{4}=9 & +0 & -2 x_{2} & -x_{3} & +x_{5} \\
x_{0}=5 & 2 x_{1} & -3 x_{2} & +x_{3} & +x_{5} \\
x_{6}=4 & +3 x_{1} & -4 x_{2} & +3 x_{3} & +x_{5} \\
w=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & -x_{5}
\end{array}
$$

Now x_{2} enters and who leaves? x_{6} leaves the basis. After pivoting

$$
\begin{array}{ccccc}
x_{4}=9 & +0 & -2 x_{2} & -x_{3} & +x_{5} \\
x_{0}=5 & 2 x_{1} & -3 x_{2} & +x_{3} & +x_{5} \\
x_{6}=4 & +3 x_{1} & -4 x_{2} & +3 x_{3} & +x_{5} \\
w=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & -x_{5}
\end{array}
$$

Now x_{2} enters and who leaves? x_{6} leaves the basis. After pivoting

$$
\begin{array}{ccccc}
x_{2}=1 & +0.75 x_{1} & +0.75 x_{3} & +0.25 x_{5} & -0.25 x_{6} \\
x_{0}=2 & -0.25 x_{1} & -1.25 x_{3} & +0.25 x_{5} & +0.75 x_{6} \\
x_{4}=7 & -1.5 x_{1} & -2.5 x_{3} & +0.5 x_{5} & +0.5 x_{6} \\
w=-2 & +0.25 x_{1} & +1.25 x_{3} & -0.25 x_{5} & -0.75 x_{6}
\end{array}
$$

Who enters the basis now?

$$
\begin{array}{ccccc}
x_{4}=9 & +0 & -2 x_{2} & -x_{3} & +x_{5} \\
x_{0}=5 & 2 x_{1} & -3 x_{2} & +x_{3} & +x_{5} \\
x_{6}=4 & +3 x_{1} & -4 x_{2} & +3 x_{3} & +x_{5} \\
w=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & -x_{5}
\end{array}
$$

Now x_{2} enters and who leaves? x_{6} leaves the basis. After pivoting

$$
\begin{array}{ccccc}
x_{2}=1 & +0.75 x_{1} & +0.75 x_{3} & +0.25 x_{5} & -0.25 x_{6} \\
x_{0}=2 & -0.25 x_{1} & -1.25 x_{3} & +0.25 x_{5} & +0.75 x_{6} \\
x_{4}=7 & -1.5 x_{1} & -2.5 x_{3} & +0.5 x_{5} & +0.5 x_{6} \\
w=-2 & +0.25 x_{1} & +1.25 x_{3} & -0.25 x_{5} & -0.75 x_{6} .
\end{array}
$$

Who enters the basis now? x_{3}
Who leaves the basis?

$$
\begin{array}{ccccc}
x_{4}=9 & +0 & -2 x_{2} & -x_{3} & +x_{5} \\
x_{0}=5 & 2 x_{1} & -3 x_{2} & +x_{3} & +x_{5} \\
x_{6}=4 & +3 x_{1} & -4 x_{2} & +3 x_{3} & +x_{5} \\
w=-5 & -2 x_{1} & +3 x_{2} & -x_{3} & -x_{5}
\end{array}
$$

Now x_{2} enters and who leaves? x_{6} leaves the basis. After pivoting

$$
\begin{array}{ccccc}
x_{2}=1 & +0.75 x_{1} & +0.75 x_{3} & +0.25 x_{5} & -0.25 x_{6} \\
x_{0}=2 & -0.25 x_{1} & -1.25 x_{3} & +0.25 x_{5} & +0.75 x_{6} \\
x_{4}=7 & -1.5 x_{1} & -2.5 x_{3} & +0.5 x_{5} & +0.5 x_{6} \\
w=-2 & +0.25 x_{1} & +1.25 x_{3} & -0.25 x_{5} & -0.75 x_{6} .
\end{array}
$$

Who enters the basis now? x_{3}
Who leaves the basis?

$$
\begin{aligned}
& x_{0} \geq 0 \quad \Rightarrow \quad 2-1.25 x_{3} \geq 0 \quad \Rightarrow \quad x_{3} \geq 2 / 1.25=1.6 \\
& x_{4} \geq 0 \quad \Rightarrow \quad 7-2.5 x_{3} \geq 0 \quad \Rightarrow \quad x_{3} \geq 7 / 2.5=2.8
\end{aligned}
$$

x_{0} leaves the basis!

$$
\begin{array}{ccccc}
x_{2}=1 & +0.75 x_{1} & +0.75 x_{3} & +0.25 x_{5} & -0.25 x_{6} \\
x_{0}=2 & -0.25 x_{1} & -1.25 x_{3} & +0.25 x_{5} & +0.75 x_{6} \\
x_{4}=7 & -1.5 x_{1} & -2.5 x_{3} & +0.5 x_{5} & +0.5 x_{6} \\
\hline w=-2 & +0.25 x_{1} & +1.25 x_{3} & -0.25 x_{5} & -0.75 x_{6} .
\end{array}
$$

Pivoting on row 2 and column 3:
$r_{1} \leftarrow r_{1}+\frac{0.75}{1.25} r_{2}=r_{1}+0.6 r_{2}$.
$r_{3} \leftarrow r_{3}-2 r_{2}$.
$w \leftarrow w+r_{2}$.

$$
\begin{array}{ccccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} & -0.6 x_{0} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} & -0.8 x_{0} \\
x_{4}=3 & -x_{1} & & -x_{6} & +2 x_{0} \\
\hline w= & & & .
\end{array}
$$

Feasible basis without x_{0} !

$$
\begin{array}{ccccc}
x_{2}=1 & +0.75 x_{1} & +0.75 x_{3} & +0.25 x_{5} & -0.25 x_{6} \\
x_{0}=2 & -0.25 x_{1} & -1.25 x_{3} & +0.25 x_{5} & +0.75 x_{6} \\
x_{4}=7 & -1.5 x_{1} & -2.5 x_{3} & +0.5 x_{5} & +0.5 x_{6} \\
\hline w=-2 & +0.25 x_{1} & +1.25 x_{3} & -0.25 x_{5} & -0.75 x_{6} .
\end{array}
$$

Pivoting on row 2 and column 3:
$r_{1} \leftarrow r_{1}+\frac{0.75}{1.25} r_{2}=r_{1}+0.6 r_{2}$.
$r_{3} \leftarrow r_{3}-2 r_{2}$.
$w \leftarrow w+r_{2}$.

$$
\begin{array}{ccccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} & -0.6 x_{0} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} & -0.8 x_{0} \\
x_{4}=3 & -x_{1} & & -x_{6} & +2 x_{0} \\
\hline w= & & & .
\end{array}
$$

Feasible basis without x_{0} ! Remove column with x_{0} and replace w with z.

$$
\begin{array}{cccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} \\
x_{4}=3 & -x_{1} & & -x_{6} \\
\hline z= & +x_{1} & -x_{2} & x_{3}
\end{array}
$$

$$
\begin{array}{cccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} \\
x_{4}=3 & -x_{1} & & -x_{6}
\end{array}
$$

Eliminate base variables x_{2} and x_{3} from z :

$$
\begin{array}{cccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} \\
x_{4}=3 & -x_{1} & & -x_{6}
\end{array}
$$

Eliminate base variables x_{2} and x_{3} from z :

$$
z=x_{1}-x_{2}+x_{3}
$$

$$
\begin{array}{cccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} \\
x_{4}=3 & -x_{1} & & -x_{6}
\end{array}
$$

Eliminate base variables x_{2} and x_{3} from z :

$$
\begin{aligned}
z & =x_{1}-x_{2}+x_{3} \\
& =x_{1}-\left(2.2+0.6 x_{1}+0.4 x_{5}+0.2 x_{6}\right)+\left(1.6-0.2 x_{1}+0.2 x_{5}+0.6 x_{6}\right) \\
& =-0.6+0.2 x_{1}-0.2 x_{5}+0.4 x_{6}
\end{aligned}
$$

$$
\begin{array}{cccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} \\
x_{4}=3 & -x_{1} & & -x_{6}
\end{array}
$$

Eliminate base variables x_{2} and x_{3} from z :

$$
\begin{aligned}
z & =x_{1}-x_{2}+x_{3} \\
& =x_{1}-\left(2.2+0.6 x_{1}+0.4 x_{5}+0.2 x_{6}\right)+\left(1.6-0.2 x_{1}+0.2 x_{5}+0.6 x_{6}\right) \\
& =-0.6+0.2 x_{1}-0.2 x_{5}+0.4 x_{6}
\end{aligned}
$$

So the initial basis is

$$
\begin{array}{cccc}
x_{2}=2.2 & +0.6 x_{1} & +0.4 x_{5} & +0.2 x_{6} \\
x_{3}=1.6 & -0.2 x_{1} & +0.2 x_{5} & +0.6 x_{6} \\
x_{4}=3 & -x_{1} & & -x_{6} \\
\hline z=-0.6 & +0.2 x_{1} & -0.2 x_{3} & +0.4 x_{6}
\end{array}
$$

Now apply the simplex again!

Upper Bounds Using Duality

The LP in standard form

$$
\begin{align*}
\max _{x} z \stackrel{\text { def }}{=} c^{\top} x \\
\text { subject to } A x \leq b, \\
x \geq 0 \tag{LP}
\end{align*}
$$

We want to find $w \in \mathbb{R}$ so that $z=c^{\top} x \leq w$ for all $x \in \mathbb{R}^{n}$. Combine rows of constraints?

Upper Bounds Using Duality

The LP in standard form

$$
\begin{array}{r}
\max _{x} z \stackrel{\text { def }}{=} c^{\top} x \\
\text { subject to } A x \leq b \\
x \geq 0 \tag{LP}
\end{array}
$$

We want to find $w \in \mathbb{R}$ so that $z=c^{\top} x \leq w$ for all $x \in \mathbb{R}^{n}$.
Combine rows of constraints?
Look for $y \geq 0 \in \mathbb{R}^{m}$ so that $y^{\top} A \geq c^{\top}$ so that

$$
c^{\top} x \leq\left(y^{\top} A\right) x \leq y^{\top} b=: w
$$

Can we make this upper bound as tight as possible? Yes, by minimizing $y^{\top} b$. That is, we need to the dual linear program.

Dual definition

$$
\begin{array}{cl}
\max _{x} z \stackrel{\text { def }}{=} c^{\top} x \\
\text { subject to } A x \leq b, \\
x \geq 0, & (P) \text { Primal } \\
\min _{y} w \stackrel{\text { def }}{=} y^{\top} b \\
\text { subject to } A^{\top} y \geq c, \\
y \geq 0 & (D) \text { Dual } \tag{2}
\end{array}
$$

Dual definition

$$
\begin{array}{cl}
\max _{x} z \stackrel{\text { def }}{=} c^{\top} x \\
\text { subject to } A x \leq b \\
x \geq 0, & (P) \text { Primal } \\
\min _{y} w \stackrel{\text { def }}{=} y^{\top} b \\
\text { subject to } A^{\top} y \geq c, \\
y \geq 0 & (D) \text { Dual } \tag{2}
\end{array}
$$

Exe: Show that the dual of the dual is the primal.

Dual definition

$$
\begin{array}{cl}
\max _{x} z \stackrel{\text { def }}{=} c^{\top} x \\
\text { subject to } A x \leq b \\
x \geq 0, & (P) \text { Primal } \\
\min _{y} w \stackrel{\text { def }}{=} y^{\top} b \\
\text { subject to } A^{\top} y \geq c, \\
y \geq 0 & (D) \text { Dual }
\end{array}
$$

Exe: Show that the dual of the dual is the primal.
Lemma (Weak Duality)
If $x \in \mathbb{R}^{n}$ is a feasible point for (1) and $y \in \mathbb{R}^{m}$ is a feasible point for (2) then

$$
\begin{equation*}
c^{\top} x \leq y^{\top} A x \leq y^{\top} b . \tag{3}
\end{equation*}
$$

Weak Duality

Lemma (Weak Duality)

If $x \in \mathbb{R}^{n}$ is a feasible point for (1) and $y \in \mathbb{R}^{m}$ is a feasible point for (2) then

$$
\begin{equation*}
c^{\top} x \leq y^{\top} A x \leq y^{\top} b . \tag{4}
\end{equation*}
$$

Consequently

- If (1) has an unbounded solution, that is $c^{\top} x \rightarrow \infty$, then

Weak Duality

Lemma (Weak Duality)

If $x \in \mathbb{R}^{n}$ is a feasible point for (1) and $y \in \mathbb{R}^{m}$ is a feasible point for (2) then

$$
\begin{equation*}
c^{\top} x \leq y^{\top} A x \leq y^{\top} b . \tag{4}
\end{equation*}
$$

Consequently

- If (1) has an unbounded solution, that is $c^{\top} x \rightarrow \infty$, then there exists no feasible point y for (2)
- If (2) has an unbounded solution, that is $y^{\top} b \rightarrow-\infty$, then

Weak Duality

Lemma (Weak Duality)

If $x \in \mathbb{R}^{n}$ is a feasible point for (1) and $y \in \mathbb{R}^{m}$ is a feasible point for (2) then

$$
\begin{equation*}
c^{\top} x \leq y^{\top} A x \leq y^{\top} b . \tag{4}
\end{equation*}
$$

Consequently

- If (1) has an unbounded solution, that is $c^{\top} x \rightarrow \infty$, then there exists no feasible point y for (2)
- If (2) has an unbounded solution, that is $y^{\top} b \rightarrow-\infty$, then there exists no feasible point x for (1)
- If x and y are primal and dual feasible, respectively, and $c^{\top} x=y^{\top} b$, then

Weak Duality

Lemma (Weak Duality)

If $x \in \mathbb{R}^{n}$ is a feasible point for (1) and $y \in \mathbb{R}^{m}$ is a feasible point for (2) then

$$
\begin{equation*}
c^{\top} x \leq y^{\top} A x \leq y^{\top} b . \tag{4}
\end{equation*}
$$

Consequently

- If (1) has an unbounded solution, that is $c^{\top} x \rightarrow \infty$, then there exists no feasible point y for (2)
- If (2) has an unbounded solution, that is $y^{\top} b \rightarrow-\infty$, then there exists no feasible point x for (1)
- If x and y are primal and dual feasible, respectively, and $c^{\top} x=y^{\top} b$, then x and y are the primal and dual optimal points, respectively.

Strong Duality

Theorem (Strong Duality)

If (1) or (2) is feasible, then $z^{*}=w^{*}$. Moreover, if c^{*} is the cost vector of the optimal dictionary of the primal problem (1), that is, if

$$
\begin{equation*}
z=z^{*}+\sum_{i=1}^{n+m} c_{i}^{*} x_{i} \tag{5}
\end{equation*}
$$

then $y_{i}^{*}=-c_{n+i}^{*}$ for $i=1, \ldots, m$.
Thus distance to optimal is given by

$$
z-w=y^{\top} b-c^{\top} x \geq 0 .
$$

Strong Duality

Theorem (Strong Duality)

If (1) or (2) is feasible, then $z^{*}=w^{*}$. Moreover, if c^{*} is the cost vector of the optimal dictionary of the primal problem (1), that is, if

$$
\begin{equation*}
z=z^{*}+\sum_{i=1}^{n+m} c_{i}^{*} x_{i} \tag{5}
\end{equation*}
$$

then $y_{i}^{*}=-c_{n+i}^{*}$ for $i=1, \ldots, m$.
Thus distance to optimal is given by

$$
z-w=y^{\top} b-c^{\top} x \geq 0
$$

Proof: First $c_{i}^{*} \leq 0$ for $i=1, \ldots, m+n$ because dictionary is optimal.
Consequently $y_{i}^{*}=-c_{n+i}^{*} \geq 0$ for $i=1, \ldots, m$.

Strong duality: Proof I

By the definition of the slack variables we have that

$$
\begin{equation*}
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}, \quad \text { for } i=1, \ldots, m \tag{6}
\end{equation*}
$$

Consequently, setting $y_{i}^{*}=-c_{n+i}^{*}$, we have that

$$
\begin{align*}
& z \stackrel{(5)}{=} \\
& \quad z^{*}+\sum_{j=1}^{n} c_{j}^{*} x_{j}+\sum_{i=n+1}^{n+m} c_{i}^{*} x_{i} \\
& \stackrel{(6)}{=} \\
&= z^{*}+\sum_{j=1}^{n} c_{j}^{*} x_{j}-\sum_{i=1}^{m} y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \tag{7}\\
& z^{*}-\sum_{i=1}^{m} y_{i}^{*} b_{i}+\sum_{j=1}^{n}\left(c_{j}^{*}+\sum_{i=1}^{m} y_{i}^{*} a_{i j}\right) x_{j} \\
&= \sum_{j=1}^{n} c_{j} x_{j}, \quad \forall x_{1}, \ldots, x_{n}
\end{align*}
$$

Last line followed by definition $z=\sum_{j=1}^{n} c_{j} x_{j}$. Since the above holds for all $x \in \mathbb{R}^{n}$, we can match the coefficients.

Strong duality: Proof II

$$
z^{*}-\sum_{i=1}^{m} y_{i}^{*} b_{i}+\sum_{j=1}^{n}\left(c_{j}^{*}+\sum_{i=1}^{m} y_{i}^{*} a_{i j}\right) x_{j}=\sum_{j=1}^{n} c_{j} x_{j} .
$$

Matching coefficients on x_{j} 's we have

$$
\begin{align*}
z^{*} & =\sum_{i=1}^{m} y_{i}^{*} b_{i} \tag{8}\\
c_{j} & =c_{j}^{*}+\sum_{i=1}^{m} y_{i}^{*} a_{i j}, \quad \text { for } j=1, \ldots, n \tag{9}
\end{align*}
$$

Since $c_{j}^{*} \leq 0$ for $j=1, \ldots, n$, the above is equivalent to

$$
\begin{align*}
z^{*} & =\sum_{i=1}^{m} y_{i}^{*} b_{i} \tag{10}\\
\sum_{i=1}^{m} y_{i}^{*} a_{i j} & \leq c_{j}, \quad \text { for } j=1, \ldots, n \tag{11}
\end{align*}
$$

(11) $\Rightarrow y_{i}^{*}$ is feasible for (2). (10) $\Rightarrow z^{*}=\sum_{i=1}^{m} y_{i}^{*} b_{i}=w$, consequently by weak duality the y_{i}^{*} 's are dual optimal.

How to calculate dual solution y ?
By strong duality

$$
c^{\top} x^{*}=\left(y^{*}\right)^{\top} A x^{*}=\left(y^{*}\right)^{\top} b
$$

How to calculate dual solution y ?
By strong duality

$$
c^{\top} x^{*}=\left(y^{*}\right)^{\top} A x^{*}=\left(y^{*}\right)^{\top} b
$$

Subtracting $\left(y^{*}\right)^{\top} A x^{*}$ from all sides of the above gives

$$
(\underbrace{c-A^{\top} y^{*}}_{\geq 0})^{\top} x^{*}=0=\left(y^{*}\right)^{\top}(\underbrace{b-A x^{*}}_{\geq 0})
$$

How to calculate dual solution y ?

By strong duality

$$
c^{\top} x^{*}=\left(y^{*}\right)^{\top} A x^{*}=\left(y^{*}\right)^{\top} b .
$$

Subtracting $\left(y^{*}\right)^{\top} A x^{*}$ from all sides of the above gives

$$
(\underbrace{c-A^{\top} y^{*}}_{\geq 0})^{\top} x^{*}=0=\left(y^{*}\right)^{\top}(\underbrace{b-A x^{*}}_{\geq 0}) .
$$

Re-writing the above in element form we have that

$$
\sum_{j=1}^{n}\left(c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}^{*}=0=\sum_{i=1}^{m} y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right)
$$

How to calculate dual solution y ?

By strong duality

$$
c^{\top} x^{*}=\left(y^{*}\right)^{\top} A x^{*}=\left(y^{*}\right)^{\top} b .
$$

Subtracting $\left(y^{*}\right)^{\top} A x^{*}$ from all sides of the above gives

$$
(\underbrace{c-A^{\top} y^{*}}_{\geq 0})^{\top} x^{*}=0=\left(y^{*}\right)^{\top}(\underbrace{b-A x^{*}}_{\geq 0}) .
$$

Re-writing the above in element form we have that

$$
\sum_{j=1}^{n}\left(c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}^{*}=0=\sum_{i=1}^{m} y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right)
$$

Sum over positive numbers equal zero thus

$$
\begin{align*}
& y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right)=0, \quad \forall i=1, \ldots, m . \\
& x_{j}^{*}\left(c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right)=0, \quad \forall j=1, \ldots, n .
\end{align*}
$$

How to calculate dual solution y ?

$$
\begin{aligned}
& y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right)=0, \quad \forall i=1, \ldots, m \\
& x_{j}^{*}\left(c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right)=0, \quad \forall j=1, \ldots, n
\end{aligned}
$$

This gives the following rule for computing y^{*}.

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i j} y_{i}^{*} & =c_{j}, \quad \forall j \in\{1, \ldots, n\}, \quad x_{j}^{*}>0 \\
y_{i}^{*} & =0, \quad \forall i \in\{1, \ldots, m\}, \quad b_{i}>\sum_{j=1}^{n} a_{i j} x_{j}^{*}
\end{aligned}
$$

Question: If x^{*} is non-degenerate, how many $x_{i}^{*}>0$?

Complementary slackness
Since $b_{i}>\sum_{j=1}^{n} a_{i j} x_{j}^{*} \Rightarrow x_{n+i}^{*}>0$ we have

Complementary slackness
Since $b_{i}>\sum_{j=1}^{n} a_{i j} x_{j}^{*} \Rightarrow x_{n+i}^{*}>0$ we have

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i j} y_{i}^{*} & =c_{j}, \quad \forall j \in\{1, \ldots, n\}, \quad x_{j}^{*}>0 \\
y_{i}^{*} & =0, \quad \forall i \in\{1, \ldots, m\}, \quad x_{n+i}^{*}>0
\end{aligned}
$$

Complementary slackness
Since $b_{i}>\sum_{j=1}^{n} a_{i j} x_{j}^{*} \Rightarrow x_{n+i}^{*}>0$ we have

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i j} y_{i}^{*} & =c_{j}, \quad \forall j \in\{1, \ldots, n\}, \quad x_{j}^{*}>0 \\
y_{i}^{*} & =0, \quad \forall i \in\{1, \ldots, m\}, \quad x_{n+i}^{*}>0
\end{aligned}
$$

Finally

$$
\sum_{i=1}^{n} a_{i j} y_{i}^{*}=c_{j} \quad \Rightarrow A_{J}^{\top} y^{*}=c_{J} \quad(J \text { indices of Basic variables })
$$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
& 5 x_{1}+3 x_{2} \leq 30 \\
& 2 x_{1}+3 x_{2} \leq 24 \\
& x_{1}+3 x_{2}
\end{aligned} \quad \text { Then } y_{1}^{*}=\frac{3}{4}, y_{2}^{*}=0, y_{3}^{*}=\frac{1}{4}
$$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
& 5 x_{1}+3 x_{2} \leq 30
\end{aligned} \quad \text { If } x_{1}^{*}=3, x_{2}^{*}=5
$$

Test for complementarity:

Exercise on calculating dual variables

$$
\begin{array}{rlr}
\max z= & 4 x_{2}+3 x_{2} & \\
& 5 x_{1}+3 x_{2} \leq 30 \\
& 2 x_{1}+3 x_{2} \leq 24 \\
& x_{1}+3 x_{2} \leq 18
\end{array} \quad \text { Then } y_{1}^{*}=\frac{3}{4}, y_{2}^{*}=0, y_{3}^{*}
$$

Test for complementarity:

$$
5 x_{1}^{*}+3 x_{2}^{*}=5 * 3+3 * 5=30 \Rightarrow y_{1}^{*} \neq 0
$$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
& 5 x_{1}+3 x_{2} \leq 30
\end{aligned} \quad \text { If } x_{1}^{*}=3, x_{2}^{*}=5
$$

Test for complementarity:

$$
\begin{gathered}
5 x_{1}^{*}+3 x_{2}^{*}=5 * 3+3 * 5=30 \quad \Rightarrow \quad y_{1}^{*} \neq 0 \\
2 x_{1}^{*}+3 x_{2}^{*}=2 * 3+3 * 5=21<24 \quad \Rightarrow \quad y_{2}^{*}=0
\end{gathered}
$$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
& 5 x_{1}+3 x_{2} \leq 30
\end{aligned} \quad \text { If } x_{1}^{*}=3, x_{2}^{*}=5
$$

Test for complementarity:

$$
\begin{gathered}
5 x_{1}^{*}+3 x_{2}^{*}=5 * 3+3 * 5=30 \quad \Rightarrow \quad y_{1}^{*} \neq 0 \\
2 x_{1}^{*}+3 x_{2}^{*}=2 * 3+3 * 5=21<24 \quad \Rightarrow \quad y_{2}^{*}=0 \\
x_{1}^{*}+3 x_{2}^{*}=3+3 * 5=18 \quad \Rightarrow \quad y_{3}^{*} \neq 0 .
\end{gathered}
$$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
& 5 x_{1}+3 x_{2} \leq 30
\end{aligned} \quad \text { If } x_{1}^{*}=3, x_{2}^{*}=5
$$

Test for complementarity:

$$
\begin{gathered}
5 x_{1}^{*}+3 x_{2}^{*}=5 * 3+3 * 5=30 \quad \Rightarrow \quad y_{1}^{*} \neq 0 \\
2 x_{1}^{*}+3 x_{2}^{*}=2 * 3+3 * 5=21<24 \quad \Rightarrow \quad y_{2}^{*}=0 \\
x_{1}^{*}+3 x_{2}^{*}=3+3 * 5=18 \quad \Rightarrow \quad y_{3}^{*} \neq 0 .
\end{gathered}
$$

Setup linear system $\sum_{i=1} a_{i j} y_{i}^{*}=c_{j}, \forall j$ with $x_{j}^{*}>0$:

	4	3
y_{1}	$5 x_{1}$	$+3 x_{2}$
y_{2}	$2 x_{1}$	$+3 x_{2}$
y_{3}	x_{1}	$+3 x_{2}$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
& 5 x_{1}+3 x_{2} \leq 30
\end{aligned} \quad \text { If } x_{1}^{*}=3, x_{2}^{*}=5
$$

Test for complementarity:

$$
\begin{gathered}
5 x_{1}^{*}+3 x_{2}^{*}=5 * 3+3 * 5=30 \quad \Rightarrow \quad y_{1}^{*} \neq 0 \\
2 x_{1}^{*}+3 x_{2}^{*}=2 * 3+3 * 5=21<24 \quad \Rightarrow \quad y_{2}^{*}=0 \\
x_{1}^{*}+3 x_{2}^{*}=3+3 * 5=18 \quad \Rightarrow \quad y_{3}^{*} \neq 0 .
\end{gathered}
$$

Setup linear system $\sum_{i=1} a_{i j} y_{i}^{*}=c_{j}, \forall j$ with $x_{j}^{*}>0$:

	4	3			4	3
y_{1}	$5 x_{1}$	$+3 x_{2}$	$\left(\right.$ remove $\left.y_{2}\right)$		y_{1}	$5 x_{1}$
y_{2}	$2 x_{1}$	$+3 x_{2}$	\Rightarrow	x_{2}		
y_{3}	x_{1}	$+3 x_{2}$		y_{3}	x_{1}	$+3 x_{2}$

Exercise on calculating dual variables

$$
\begin{aligned}
\max z= & 4 x_{2}+3 x_{2} \\
5 x_{1}+3 x_{2} \leq 30 & \text { If } x_{1}^{*}=3, x_{2}^{*}=5 \\
& 2 x_{1}+3 x_{2} \leq 24 \\
& x_{1}+3 x_{2} \leq 18
\end{aligned} \quad \text { Then } y_{1}^{*}=\frac{3}{4}, y_{2}^{*}=0, y_{3}^{*}=\frac{1}{4}
$$

Test for complementarity:

$$
\begin{gathered}
5 x_{1}^{*}+3 x_{2}^{*}=5 * 3+3 * 5=30 \quad \Rightarrow \quad y_{1}^{*} \neq 0 \\
2 x_{1}^{*}+3 x_{2}^{*}=2 * 3+3 * 5=21<24 \quad \Rightarrow \quad y_{2}^{*}=0 \\
x_{1}^{*}+3 x_{2}^{*}=3+3 * 5=18 \quad \Rightarrow \quad y_{3}^{*} \neq 0 .
\end{gathered}
$$

Setup linear system $\sum_{i=1} a_{i j} y_{i}^{*}=c_{j}, \forall j$ with $x_{j}^{*}>0$:
$\left.\begin{array}{l|ccc|ccc} & 4 & 3 & & & 4 & 3 \\ y_{1} & 5 x_{1} & +3 x_{2} & \left(\text { remove } y_{2}\right) & y_{1} & 5 x_{1} & +3 x_{2} \\ y_{2} & 2 x_{1} & +3 x_{2} & \Rightarrow & \text { (transpose) }) \\ y_{3} & x_{1} & +3 x_{2} & & y_{3} & x_{1} & +3 x_{2}\end{array} \underset{l l}{5} \begin{array}{l}1 \\ 3\end{array} 3\right]\left[\begin{array}{l}y_{1} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 3\end{array}\right]$

R G., R \& P Richtárik, Randomized Iterative Methods for Linear Systems arXiv:1506.03296

