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Core Info

● Where:  ENS:  07/11 amphi Langevin, 03/12 U209, 05/12 
amphi Langevin.

● Online: Teaching materials for these 3 classes:
  https://gowerrobert.github.io/

● Google docs with course info: Can also be found on
  https://gowerrobert.github.io/

https://gowerrobert.github.io/
https://gowerrobert.github.io/
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Outline of my three classes

● 07/11/19  Foundations and the empirical risk problem, 
revision probability,  SGD (Stochastic Gradient Descent) for 
ridge regression

● 03/12/19  (TODAY) SGD for convex optimization. Theory, 
variants including averaging, decreasing stepsizes and 
momentum.

● 05/12/19  Lab on SGD and variants  BRING LAPTOPS!
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Solving the Finite Sum Training 
Problem
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General methods

Recap

● Gradient Descent

Training Problem

Two parts
● Proximal gradient 

(ISTA)
● Fast proximal 

gradient (FISTA)

L(w) = loss
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A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms

Can we use this 
sum structure?
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The Training Problem



9
The Training Problem
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?
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EXE: 
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Stochastic Gradient Descent
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Stochastic Gradient Descent

  Optimal point
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Strong Convexity 

Assumptions for Convergence



17

Strong Convexity 

Assumptions for Convergence



18

Expected Bounded Stochastic Gradients 
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Assumptions for Convergence
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence



20Complexity / Convergence

Theorem

EXE: Do exercises on convergence of random sequences. 
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Theorem

    

EXE: Do exercises on convergence of random sequences. 



23Proof:

  Unbiased estimatorTaking expectation with respect to j

Taking total expectation
Strong conv.

Bounded 
Stoch grad



24Stochastic Gradient Descent 
α =0.01
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26Stochastic Gradient Descent 
α =0.2



27Stochastic Gradient Descent 
α =0.5
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence
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Expected Bounded Stochastic Gradients 
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence

EXE: 
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EXE: 

Proof:

Taking expectation
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Strongly quasi-convexity 

Realistic assumptions for 
Convergence

Each fi is convex and Li smooth

Definition: Gradient Noise
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Assumptions for Convergence

EXE: Calculate the Li ’s and        for

HINT: A twice differentiable fi  is Li - smooth if and only if 



35
Assumptions for Convergence

EXE: Calculate the Li ’s and        for

HINT: A twice differentiable fi  is Li - smooth if and only if 



36
Assumptions for Convergence

EXE: Calculate the Li ’s and        for

HINT: A twice differentiable fi  is Li - smooth if and only if 



37
Assumptions for Convergence

EXE: Calculate the Li ’s and        for

HINT: A twice differentiable fi  is Li - smooth if and only if 



38
Assumptions for Convergence

EXE:  Calculate the Li ’s and        for



39
Assumptions for Convergence

EXE:  Calculate the Li ’s and        for



40
Assumptions for Convergence

EXE:  Calculate the Li ’s and        for



41Relationship between smoothness 
constants
EXE: 

                                                                                    show that

  



42Relationship between smoothness 
constants
EXE: 

                                                                                    show that

  

Proof: From the Hessian definition of smoothness

Furthermore

Which follows since the largest eigenvalue function is convex over psd
matrices. Now take the max over w, then max over i.



43Complexity / Convergence

Theorem.  

EXE: The steps of the proof are given in the 
SGD_proof exercise list for homework!  

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. 
Richtarik (2019) ICML 2019
SGD: General Analysis and Improved Rates.



44Stochastic Gradient Descent 
α =0.5



45Stochastic Gradient Descent 
α =0.5

1) Start with 
big steps and 
end with 
smaller steps



46Stochastic Gradient Descent 
α =0.5

2) Try 
averaging the 
points

1) Start with 
big steps and 
end with 
smaller steps



47SGD shrinking stepsize

Shrinking 
Stepsize 



48SGD shrinking stepsize

Shrinking 
Stepsize How should we  

sample j ?

Does this converge?



49SGD with shrinking stepsize 
Compared with Gradient Descent

Gradient Descent

SGD 1.0



50SGD with shrinking stepsize  
Compared with Gradient Descent

SGD 1.0

Gradient Descent



52Complexity / Convergence

Theorem for shrinking stepsizes
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54Complexity / Convergence

Theorem for shrinking stepsizes

 

  

 



55Stochastic Gradient Descent 
Compared with Gradient Descent

Gradient Descent

SGD 1.0

Noisy iterates. 
Take averages?



56SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging



57SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging

This is not 
efficient. How to 
make this efficient?



58Stochastic Gradient Descent 
With and without averaging

Starts slow, but 
can reach higher 
accuracy



59Stochastic Gradient Descent 
With and without averaging

Starts slow, but 
can reach higher 
accuracy

Only use 
averaging 
towards the end?



60Stochastic Gradient Descent 
Averaging the last few iterates

Averaging starts here



61Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity



62Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity

Cost of an 
iteration



63Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity

Cost of an 
iteration

Total 
complexity*



64Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity

Cost of an 
iteration

Total 
complexity*



65Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity

Cost of an 
iteration

Total 
complexity*

What happens if n is big?What happens if    is small?



66Comparison SGD vs GD

time

SGD

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.

Modern variance 
reduced version 

of SGD
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69Comparison SGD vs GD

time

SGD

GD

Stoch. Average 
Gradient (SAG)

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.

Modern variance 
reduced version 

of SGD
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20 min tea time break?



76

Practical SGD for Sparse Data
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Assume each data point xi is s-sparse, how 
many operations does each SGD step cost?
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Assume each data point xi is s-sparse, how 
many operations does each SGD step cost?

Rescaling 
O(d)

Addition sparse 
vector O(s)
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SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step

Lazy SGD updates for Sparse Data

O(1) scaling + 
O(s) sparse add 
= O(s) update

EXE: 
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Momentum
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Issue with Gradient Descent

Step size/
 Learning rate
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Max local rateMax local rate

Local rate of changeLocal rate of change

Why GD and the the Issues

GD is the “steepest descent”
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Issue with Gradient Descent

Solution

Get’s stuck in “flat” valleys Give momentum to keep going
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Heavey Ball Method:Heavey Ball Method:

Adding some Momentum to GD 

Adds “Inertia” to update
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Heavey Ball Method:Heavey Ball Method:

Adding some Momentum to GD 

Adds “Inertia” to update

GD with momentum (GDm):GD with momentum (GDm):

Adds “Momentum” 
to update



90
Issue with Gradient Descent

Solution

Get’s stuck in “flat” valleys Give momentum to keep going
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GDm and Heavy Ball Equivalence

GD with momentum:GD with momentum:
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GD with momentum:GD with momentum:



95

Heavey Ball Method:Heavey Ball Method:

GDm and Heavy Ball Equivalence
GD with momentum:GD with momentum:



96Convergence of Gradient Descent with 
Momentum

Theorem Theorem 

stepsize

momentum parameter

Polyak 1964
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momentum parameter

CorollaryCorollary

Polyak 1964
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Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof sketch: GDm convergence



100

Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof sketch: GDm convergence



101

Fundamental Theorem of CalculusFundamental Theorem of Calculus
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Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof sketch: GDm convergence
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Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof sketch: GDm convergence

Depends on past. Difficult recurrence
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Proof: Convergence of Heavy Ball
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Proof: Convergence of Heavy Ball
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Proof: Convergence of Heavy Ball
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Proof: Convergence of Heavy Ball
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Proof: Convergence of Heavy Ball

Simple recurrence!
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Simple recurrence!
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Proof: Convergence of Heavy Ball
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Proof: Convergence of Heavy Ball

EXE on Eigenvalues: EXE on Eigenvalues: 
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Proof: Convergence of Heavy Ball

EXE on Eigenvalues: EXE on Eigenvalues: 
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Stochastic Heavey Ball Method:Stochastic Heavey Ball Method:

Adding Momentum to SGD

Adds “Inertia” to update
Sampled i.i.d

  

Rumelhart, Hinton, 
Geoffrey, Ronald, 
1986, Nature
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Stochastic Heavey Ball Method:Stochastic Heavey Ball Method:

Adding Momentum to SGD

Adds “Inertia” to update

SGD with momentum (SGDm):SGD with momentum (SGDm):

Sampled i.i.d
  

Rumelhart, Hinton, 
Geoffrey, Ronald, 
1986, Nature
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SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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SGD with momentum (SGDm):SGD with momentum (SGDm):

SGDm and Averaging 

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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SGD with momentum (SGDm):SGD with momentum (SGDm):

SGDm and Averaging 

Acts like an approximate variance reduction since

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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SGD with momentum (SGDm):SGD with momentum (SGDm):

SGDm and Averaging 

Acts like an approximate variance reduction since

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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Why Machine Learners Like SGD
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The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Why Machine Learners like SGD

SGD can solve the 
statistical learning problem!
SGD can solve the 
statistical learning problem!

Though we solve:

We want to solve:



124

The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Why Machine Learners like SGD
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Bring laptops for Thursday TD !
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RMG, P. Richtarik, F. Bach (2018), preprint online 
Stochastic quasi-gradient methods: Variance 
reduction via Jacobian sketching

N. Gazagnadou, RMG, J. Salmon (2019) , ICML 2019. 
Optimal mini-batch and step sizes for SAGA 

RMG, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, 
Egor Shulgin and Peter Richtárik (2019), ICML
 SGD: general analysis and improved rates

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, RMG 
Neurips 2019, preprint online. Towards closing the 
gap between the theory and practice of SVRG
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