Optimization for Machine Learning

Stochastic Gradient Methods

Lecturer: Robert M. Gower

1

Master IASD: AI Systems and Data Science, 2019

Core Info

- Where: ENS: 07/11 amphi Langevin, 03/12 U209, 05/12 amphi Langevin.
- Online: Teaching materials for these 3 classes: https://gowerrobert.github.io/
- Google docs with course info: Can also be found on https://gowerrobert.github.io/

Outline of my three classes

- 07/11/19 Foundations and the empirical risk problem, revision probability, SGD (Stochastic Gradient Descent) for ridge regression
- 03/12/19 (TODAY) SGD for convex optimization. Theory, variants including averaging, decreasing stepsizes and momentum.
- 05/12/19 Lab on SGD and variants **BRING LAPTOPS!**

Solving the Finite Sum Training Problem

Recap

Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$
Can we use this sum structure?

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for $t = 0, 1, 2, \dots, T - 1$ $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration? 11

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then $\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1} \nabla f_{i}(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1} \nabla f_i(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

EXE: Let
$$\sum_{i=1}^{n} p_i = 1$$
 and $j \sim p_j$. Show $\mathbb{E}[\nabla f_j(w)/(np_j)] = \nabla f(w)$

SGD 0.0 Constant stepsize
Set
$$w^0 = 0$$
, choose $\alpha > 0$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^T

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

17

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \le (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{\alpha}{\lambda}B^{2}$$

EXE: Do exercises on convergence of random sequences.

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

Shows that $\alpha \approx \frac{1}{\lambda}$

EXE: Do exercises on convergence of random sequences.

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{\alpha}{\lambda}B^{2}$$

Shows that $\alpha \approx \frac{1}{\lambda}$ Shows that $\alpha \approx 0$

EXE: Do exercises on convergence of random sequences.

Proof:

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2. \end{split}$$
Taking expectation with respect to j
Unbiased estimator

$$\begin{split} \mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 B^2 \\ \end{bmatrix} \\ \begin{split} \text{Strong conv.} & \searrow \leq (1 - \alpha \lambda) ||w^t - w^*||_2^2 + \alpha^2 B^2 \\ \text{Taking total expectation} \\ \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] &\leq (1 - \alpha \lambda) \mathbb{E} \left[||w^t - w^*||_2^2 + \alpha^2 B^2 \\ &= (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha \lambda)^i \alpha^2 B^2 \\ \text{Using the geometric series sum} \quad \sum_{i=0}^t (1 - \alpha \lambda)^i = \frac{1 - (1 - \alpha \lambda)^{t+1}}{\alpha \lambda} \leq \frac{1}{\alpha \lambda} \\ \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] &\leq (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda} B^2 \end{split}$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

 $\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

 $\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Let $A \in \mathbb{R}^{n \times d}$, $f_j(w) = (A_{j:}w - b_j)^2$. $\max_w \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = ?$

EXE: Let $A \in \mathbb{R}^{n \times d}$, $f_j(w) = (A_{j:}w - b_j)^2$. $\max_w \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = ?$

Proof: $\max_{w} \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = \infty$, indeed since

$$\begin{aligned} \|\nabla f_j(w)\|^2 &= 4 \|A_{j:}^\top (A_{j:}w - b_j)\|^2 \\ &= 4 \|A_{j:}\|^2 (A_{j:}w - b_j)^2 \\ &= 4 (\hat{A}_{j:}w - \hat{b}_j)^2 \qquad \text{where } \hat{A}_{j:} := A_{j:} \|A_{j:}\|, \quad \hat{b}_j := b_j \|A_{j:}\| \end{aligned}$$

Taking expectation

$$\mathbb{E}_{j \sim \frac{1}{n}} \|\nabla f_j(w)\|^2 = \frac{1}{n} \sum_{j=1}^n 4(\hat{A}_{j:w} - \hat{b}_j)^2 = \frac{1}{n} \|\hat{A}w - \hat{b}\|^2$$

$$\lim_{w \to \infty} \|\hat{A}w - b\|^2 = \infty$$

Realistic assumptions for Convergence

Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2, \quad \forall w$$

33

Each
$$f_i$$
 is convex and L_i smooth
 $f_i(y) \leq f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$
 $L_{\max} := \max_{i=1,...,n} L_i$

Definition: Gradient Noise

$$\sigma^2 \quad := \quad \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$$

1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$ 1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = A_{i:} A_{i:}^\top + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I \quad = \quad L_i \ I$

1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = A_{i:} A_{i:}^\top + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I = L_i I$ $L_{\max} = \max_{i=1,\dots,n} (||A_{i:}||_2^2 + \lambda) = \max_{i=1,\dots,n} ||A_{i:}||_2^2 + \lambda$
Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

Assumptions for Convergence

EXE: Calculate the
$$L_i$$
's and L_{\max} for
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2,$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f_{i}(w) = \ln(1 + e^{-y_{i}\langle w, a_{i}\rangle}) + \frac{\lambda}{2} ||w||_{2}^{2},$$

$$\nabla f_{i}(w) = \frac{-y_{i}a_{i}e^{-y_{i}\langle w, a_{i}\rangle}}{1 + e^{-y_{i}\langle w, a_{i}\rangle}} + \lambda w$$

$$\nabla^{2}f_{i}(w) = a_{i}a_{i}^{\top} \left(\frac{(1 + e^{-y_{i}\langle w, a_{i}\rangle})e^{-y_{i}\langle w, a_{i}\rangle}}{(1 + e^{-y_{i}\langle w, a_{i}\rangle})^{2}} - \frac{e^{-2y_{i}\langle w, a_{i}\rangle}}{(1 + e^{-y_{i}\langle w, a_{i}\rangle})^{2}} \right) + \lambda I$$

$$= a_{i}a_{i}^{\top} \frac{e^{-y_{i}\langle w, a_{i}\rangle}}{(1 + e^{-y_{i}\langle w, a_{i}\rangle})^{2}} + \lambda I \quad \preceq \quad \left(\frac{||a_{i}||_{2}^{2}}{4} + \lambda\right)I = L_{i}I$$

Relationship between smoothness ⁴¹ constants

EXE: Let f be differentiable and convex. Show that f(w) is L-smooth with $L = \max \lambda = (\nabla^2 f(w))$

Thus
$$f_i(w)$$
 is L_i -smooth with $L_i = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f_i(w))$ show that
 $L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$

Relationship between smoothness ⁴² constants

EXE: Let f be differentiable and convex. Show that f(w) is L-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))$$

Thus $f_i(w)$ is L_i -smooth with $L_i = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f_i(w))$ show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Proof: From the Hessian definition of smoothness

 $\nabla^2 f(w) \preceq \lambda_{\max}(\nabla^2 f(w))I \preceq \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))I$ Furthermore

$$\lambda_{\max}(\nabla^2 f(w)) = \lambda_{\max}\left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(w)\right) \le \frac{1}{n}\sum_{i=1}^n \lambda_{\max}(\nabla^2 f_i(w)) \le \frac{1}{n}\sum_{i=1}^n L_i$$

Which follows since the largest eigenvalue function is convex over psd matrices. Now take the max over w, then max over i.

Theorem.

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. If $0 < \alpha \leq \frac{1}{2L_{\max}}$ then the iterates of the SGD 0.0 satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\mu)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{2\alpha}{\mu}\sigma^{2}$$

EXE: The steps of the proof are given in the SGD_proof exercise list for homework!

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik (2019) ICML 2019 SGD: General Analysis and Improved Rates.

Stochastic Gradient Descent α =0.5

Stochastic Gradient Descent α =0.5

1) Start with big steps and end with smaller steps

Stochastic Gradient Descent α =0.5

1) Start with big steps and end with smaller steps

2) Try averaging the points

SGD shrinking stepsize

SGD shrinking stepsize

SGD with shrinking stepsize Compared with Gradient Descent

SGD with shrinking stepsize Compared with Gradient Descent

Theorem for shrinking stepsizes

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil \end{cases}$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then SGD 1.0 satisfies

 $L_{\max} := \max_{i=1,\dots,n} L_i$

Theorem for shrinking stepsizes

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then SGD 1.0 satifies

$$\alpha^{t} = O(1/(t+1))$$

 $L_{\max} := \max_{i=1,\dots,n}$

$$\mathbb{E}\|w^{t} - w^{*}\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t} + \frac{16}{e^{2}} \frac{|\mathcal{K}|^{2}}{t^{2}} \|w^{0} - w^{*}\|^{2}$$

$$O\left(\frac{1}{e^{2}}\right)$$
Iteration complexity $O\left(\frac{1}{e^{2}}\right)$

Theorem for shrinking stepsizes

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then SGD 1.0 satifies

$$\alpha^{t} = O(1/(t+1))$$

 $L_{\max} := \max_{i=1,\dots,n} L_i$

$$\mathbb{E}\|w^{t} - w^{*}\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t} + \frac{16}{e^{2}} \frac{|\mathcal{K}|^{2}}{t^{2}} \|w^{0} - w^{*}\|^{2}$$
(1)

Iteration complexity $O\left(\frac{1}{\epsilon}\right)$

In practice $\alpha^t = C/(t+1)$ or $\alpha^t = C/\sqrt{t+1}$ where C is tuned

Stochastic Gradient Descent Compared with Gradient Descent

SGD with (late start) averaging

SGDA 1.1
Set
$$w^0 = 0$$

Choose $\alpha_t > 0, \ \alpha_t \to 0, \ \sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)Acceleration of stochastic approximation by averaging

SGD with (late start) averaging

SGDA 1.1
Set
$$w^0 = 0$$

Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)
Acceleration of stochastic approximation by averaging

Stochastic Gradient Descent With and without averaging

Stochastic Gradient Descent With and without averaging

Stochastic Gradient Descent Averaging the last few iterates

convex	SGD	GD
Iteration complexity	$O\left(\frac{1}{\epsilon}\right)$	$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$
Cost of an iteration	$O\left(1 ight)$	$O\left(n ight)$
Total complexity [*]	$O\left(\frac{1}{\epsilon}\right)$	$O\left(n\log\left(\frac{1}{\epsilon}\right)\right)$

64

*Total complexity = (Iteration complexity) \times (Cost of an iteration)

What happens if ϵ is small?

What happens if n is big?

65

*Total complexity = (Iteration complexity) \times (Cost of an iteration)

20 min tea time break?

Practical SGD for Sparse Data

Lazy SGD updates for Sparse Data

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

Lazy SGD updates for Sparse Data

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^t - \alpha_t \left(\ell'(\langle w^t, x^i \rangle, y^i) x^i + \lambda w^t \right)$$

= $(1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

Lazy SGD updates for Sparse Data

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} + \lambda w^{t} \right)$$

= $(1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$
Rescaling
 $O(d)$ + Addition sparse
vector $O(s)$ = $O(d$
SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, \ z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$ $= (1 - \lambda \alpha_t) \beta_t \left(z^t - \frac{\alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t) \beta_t} x^i \right)$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$$
$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$
$$\beta_{t+1}$$

 $\beta_{t+1} = (1 - \lambda \alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t)\beta_t} x^i$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$

$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

Momentum

Issue with Gradient Descent

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

Baseline method: Gradient Descent (GD)

$$w^{t+1} = w^t - \gamma \nabla f(w^t)$$

Step size/
Learning rate

Why GD and the the Issues

Local rate of change

$$\Delta(d) := \lim_{s \to 0^+} \frac{f(x+ds) - f(x)}{s}$$

Issue with Gradient Descent

Give momentum to keep going

Adding some Momentum to GD

Heavey Ball Method:

$$w^{t+1} = w^t - \gamma \nabla f(w^t) + \beta (w^t - w^{t-1})$$

Adds "Inertia" to update

Adding some Momentum to GD

Issue with Gradient Descent

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^t - \gamma m^t$$

= $w^t - \gamma (\beta m^{t-1} + \nabla f(w^t))$
= $w^t - \gamma \nabla f(w^t) - \gamma \beta m^{t-1}$
= $w^t - \gamma \nabla f(w^t) + \frac{\gamma \beta}{\gamma} (w^t - w^{t-1})$

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t},$$

$$w^{t+1} = w^t - \gamma m^t$$

= $w^t - \gamma (\beta m^{t-1} + \nabla f(w^t))$
= $w^t - \gamma \nabla f(w^t) - \gamma \beta m^{t-1}$
= $w^t - \gamma \nabla f(w^t) + \frac{\gamma \beta}{\gamma} (w^t - w^{t-1})$

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t},$$

$$\begin{split} w^{t+1} &= w^t - \gamma \, m^t \\ &= w^t - \gamma \left(\beta m^{t-1} + \nabla f(w^t)\right) \qquad \stackrel{m^{t-1} = -\frac{1}{\gamma} (w^t - w^{t-1})}{\\ &= w^t - \gamma \, \nabla f(w^t) - \gamma \beta \, m^{t-1} \\ &= w^t - \gamma \, \nabla f(w^t) + \frac{\gamma \beta}{\gamma} \left(w^t - w^{t-1}\right) \\ \\ w^{t+1} &= w^t - \gamma \, \nabla f(w^t) + \beta (w^t - w^{t-1}) \end{split}$$

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$\begin{split} w^{t+1} &= w^t - \gamma \, m^t \\ &= w^t - \gamma \left(\beta m^{t-1} + \nabla f(w^t)\right) \quad \stackrel{m^{t-1} = -\frac{1}{\gamma} (w^t - w^{t-1})}{\\ &= w^t - \gamma \, \nabla f(w^t) - \gamma \beta \, m^{t-1} \\ &= w^t - \gamma \, \nabla f(w^t) + \frac{\gamma \beta}{\gamma} \left(w^t - w^{t-1}\right) \end{split}$$
Heavey Ball Method:

$$w^{t+1} = w^t - \gamma \, \nabla f(w^t) + \beta (w^t - w^{t-1})$$

Convergence of Gradient Descent with ⁹⁶

Momentum

Polyak 1964

Theorem Let f be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI$$
, $\forall w \in \mathbb{R}^d$
If $\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges
momentum parameter
 $\|w^t - w^*\| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^t \|w^0 - w^*\|$
 $\kappa := L/\mu$

Convergence of Gradient Descent with ⁹⁷

Momentum

Polyak 1964

Theorem Let f be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \leq \nabla^2 f(w) \leq LI, \quad \forall w \in \mathbb{R}^d$$

If $\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges
momentum parameter
 $\|w^t - w^*\| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^t \|w^0 - w^*\|$
 $\kappa := L/\mu$

98 **Convergence of Gradient Descent with**

Momentum

Polyak 1964

Let f be μ -strongly convex and L-smooth, that is Theorem

stepsize
$$\mu I \leq \nabla^2 f(w) \leq LI, \quad \forall w \in \mathbb{R}^d$$

If $\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges
momentum parameter
 $\|w^t - w^*\| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^t \|w^0 - w^*\|$
Compare with $\kappa \log(1/\epsilon)$ of GD
 $\kappa := L/\mu$
Corollary $t \geq \frac{\sqrt{\kappa} + 1}{2} \log\left(\frac{1}{\epsilon}\right)$ $\|w^t - w^*\| \leq \epsilon$

W

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^2 f(w_s) ds(w^t - w^*) = \nabla f(w^t) - \nabla f(w^*) = \nabla f(w^t)$$

$$w_s := w^* + s(w^t - w^*)$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^{2} f(w_{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w_{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^{2} f(w_{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w_{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{s}$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^{2} f(w_{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w_{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{s}(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^2 f(w_s) ds(w^t - w^*) = \nabla f(w^t) - \nabla f(w^*) = \nabla f(w^t)$$

$$w_s \coloneqq w^* + s(w^t - w^*)$$

$$w^{t+1} - w^* = w^t - w^* - \gamma \nabla f(w^t) + \beta(w^t - w^{t-1}) + w^* - w^*$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^2 f(w^s)\right)(w^t - w^*) + \beta(w^t - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^2 f(w^s)\right)(w^t - w^*) - \beta(w^{t-1} - w^*)$$

$$= A_s(w^t - w^*) - \beta(w^{t-1} - w^*)$$
Depends on past. Difficult recurrence

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} z^t$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} z^t - \text{Simple recurrence!}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} z^t \qquad \text{Simple recurrence!}$$
$$\|z^{t+1}\| \leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\|$$

T

$$\|z^{t+1}\| \leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\|$$
$$\|A\| := \max_{i=1,\dots,2n} |\lambda_i(A)|$$

$$\|z^{t+1}\| \leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\|$$
$$\|A\| := \max_{i=1,\dots,2n} |\lambda_i(A)|$$

111

EXE on Eigenvalues:

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then
$$\left\| \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \right\| = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

$$\begin{aligned} \|z^{t+1}\| &\leq \left\| \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \right\| \|z^t\| \\ \|A\| &\coloneqq \max_{i=1,\dots,2n} |\lambda_i(A)| \\ (1+\beta)I - \gamma \int_{s=0}^1 \nabla^2 f(w^s) \\ \text{If } \gamma &= \frac{4}{(\sqrt{L} + \sqrt{\mu})^2} \text{ and } \beta &= \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} \text{ then} \\ \left\| \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \right\| &= \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \end{aligned}$$

Adding Momentum to SGD

Adding Momentum to SGD

114

SGD with momentum (SGDm):

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

SGDm and Averaging

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ $= \beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ 115

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
SGDm and Averaging

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ = $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ = $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$ 116

SGDm and Averaging $m^t = \beta m^{t-1} + \nabla f_{j_t}(w^t)$ $= \beta m^{t-2} + \nabla f_{i_t}(w^t) + \beta \nabla f_{i_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \qquad m^{0} = 0$ SGD with momentum (SGDm): $w^{t+1} = w^t - \gamma \sum \beta^i \nabla f_{j_{t-i}}(w^{t-i})$ i=1

117

SGDm and Averaging $m^t = \beta m^{t-1} + \nabla f_{j_t}(w^t)$ $= \beta m^{t-2} + \nabla f_{i_t}(w^t) + \beta \nabla f_{i_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \qquad m^{0} = 0$ SGD with momentum (SGDm): $w^{t+1} = w^t - \gamma \sum \beta^i \nabla f_{j_{t-i}}(w^{t-i})$ i=1

118

Acts like an approximate variance reduction since

SGDm and Averaging $m^t = \beta m^{t-1} + \nabla f_{j_t}(w^t)$ $= \beta m^{t-2} + \nabla f_{i_t}(w^t) + \beta \nabla f_{i_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \qquad m^{0} = 0$ SGD with momentum (SGDm): $w^{t+1} = w^t - \gamma \sum \beta^i \nabla f_{j_{t-i}}(w^{t-i})$

119

Acts like an approximate variance reduction since

i=1

$$\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}(w^{t}) = \nabla f(w^{t})$$

Why Machine Learners Like SGD

Why Machine Learners like SGD

Though we solve:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want to solve:

The statistical learning problem: Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD can solve the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

$$\begin{aligned} \mathbf{SGD} & \infty.0 \text{ for learning} \\ & \text{Set } w^0 = 0, \ \alpha > 0 \\ & \text{for } t = 0, 1, 2, \dots, T-1 \\ & \text{sample } (x, y) \sim \mathcal{D} \\ & \text{calculate } v_t \in \partial \ell(h_{w^t}(x), y) \\ & w^{t+1} = w^t - \alpha v_t \\ & \text{Output } \overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t \end{aligned}$$

Bring laptops for Thursday TD !

RMG, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin and Peter Richtárik (2019), ICML **SGD: general analysis and improved rates**

RMG, P. Richtarik, F. Bach (2018), preprint online Stochastic quasi-gradient methods: Variance reduction via Jacobian sketching

N. Gazagnadou, RMG, J. Salmon (2019) , ICML 2019. **Optimal mini-batch and step sizes for SAGA**

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, RMG Neurips 2019, preprint online. **Towards closing the gap between the theory and practice of SVRG**