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Core Info

● Where:  ENS:  07/11 amphi Langevin, 03/12 U209, 05/12 
amphi Langevin.

● Online: Teaching materials for these 3 classes:
  https://gowerrobert.github.io/

● Google docs with course info: Can also be found on
  https://gowerrobert.github.io/

https://gowerrobert.github.io/
https://gowerrobert.github.io/


Outline of my three classes

● 07/11/19  Foundations and the empirical risk problem, 
revision probability,  SGD (Stochastic Gradient Descent) for 
ridge regression

● 03/12/19  SGD for convex optimization. Theory and variants

● 05/12/19  Lab on SGD and variants



Detailed Outline today

● 13:30 – 14:00: Introduction to empirical risk minimization and 
classification and SGD

● 14:00 – 15:00 Revision on probability
● 15:00 – 15:30: Tea Time! Break
● 15:30 – 17:00: Exercises and proof of convergence of SGD for 

ridge regression



An Introduction to 
Supervised Learning



References classes today

Convex Optimization, 
Stephen Boyd

Pages 67 to 79

Understanding Machine 
Learning: From Theory to 
Algorithms

Chapter 2
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Find mapping  h that assigns the “correct” target to each input 

Is There a Cat in the Photo?

Yes

No

x: Input/Feature y: Output/Target
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Learning 
Algorithm

 -1

y= -1 means no/false



Example: Linear Regression for 
Height

Sex        0

Age       30

Height    1,72 cm

Sex        1

Age       70

Height    1,52 cm

 Labelled data

Male = 0
Female = 1
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Linear Regression for Height

The Training 
Algorithm

Age

Height

Other options 
aside from linear?

Sex = 0



Parametrizing the Hypothesis
H
e
i
g
h
t

Age

Linear:

Polinomial:

Age

H
e
i
g
h
t

Neural Net:
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Loss Functions

Why a Squared
Loss?

Loss Functions

The Training Problem

Typically a 
convex function
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Choosing the Loss Function

Quadratic Loss

Binary Loss

Hinge Loss

EXE: Plot the binary and hinge loss function in when           

y=1 in all 
figures



Loss Functions

Is a notion of Loss enough? 

What happens when we do not have enough data?



Loss Functions
The Training Problem

Is a notion of Loss enough? 

What happens when we do not have enough data?
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Fitting 1st order polynomial 
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Regularizor Functions

General Training Problem

Regularization

Exe:

Goodness of fit, 
fidelity term ...etc

Penalizes 
complexity

Controls tradeoff 
between fit and 
complexity



Overfitting and Model Complexity

Fitting kth order polynomial 



Overfitting and Model Complexity

Fitting kth order polynomial 

For  big enough, λ
the solution is a 2nd 
order polynomial



Linear hypothesis

Exe: Ridge Regression

Ridge Regression 

L2 loss

L2 regularizor



Linear hypothesis

Exe: Support Vector Machines

SVM with soft margin

Hinge loss

L2 regularizor



Linear hypothesis

Exe: Logistic Regression

Logistic Regression

Logistic loss

L2 regularizor
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A Datum Function

Finite Sum Training Problem 

Re-writing as Sum of Terms

Can we use this 
sum structure?
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then

   

 

EXE: 
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Stochastic Gradient Descent
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Stochastic Gradient Descent

  Optimal point



Detailed Outline today

● 13:30 – 14:00: Introduction to empirical risk minimization and 
classification and SGD

● 14:00 – 15:00 Revision on probability
● 15:00 – 15:30: Tea Time! Break
● 15:30 – 17:00: Exercises and proof of convergence of 

SGD for ridge regression
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence
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Complexity / Convergence

Theorem

EXE: Do exercises on convergence of random sequences. 



69
Complexity / Convergence

Theorem

  

EXE: Do exercises on convergence of random sequences. 



70
Complexity / Convergence

Theorem

    

EXE: Do exercises on convergence of random sequences. 
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Stochastic Gradient Descent 
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Stochastic Gradient Descent 
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Stochastic Gradient Descent 
α =0.2
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Stochastic Gradient Descent 
α =0.5
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