Exercise List: Dimension reduction and associated linear algebra

Robert M. Gower.

November 8, 2019

Notation: For every $x, y, \in \mathbb{R}^{d}$ let $\langle x, y\rangle \stackrel{\text { def }}{=} x^{\top} y$ and let $\|x\|_{2}=\sqrt{\langle x, x\rangle}$.

1 Linear Algebra

Ex. 1 - Prove the follow lemma
Lemma 1.1. For any matrix $M \in \mathbb{R}^{d \times k}$ and $X \in \mathbb{R}^{d \times n}$ we have that

$$
\begin{equation*}
\operatorname{Null}\left(M^{\top} X\right)=\operatorname{Null}\left(M M^{\top} X\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Range }\left(X^{\top} M M^{\top}\right)=\operatorname{Range}\left(X^{\top} M\right) . \tag{2}
\end{equation*}
$$

Hint: Prove first (1) then consider the complement. Note that one of the inclusions in (1) is trivial, so you only need to prove the other inclusion.

Ex. 2 - Prove the following lemma
Lemma 1.2. For any matrix W and symmetric positive definite matrix G,

$$
\begin{equation*}
\operatorname{Null}(W)=\operatorname{Null}\left(W^{\top} G W\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Range}\left(W^{\top}\right)=\operatorname{Range}\left(W^{\top} G W\right) \tag{4}
\end{equation*}
$$

Hint: Use that there exists positive definite $G^{1 / 2}$ such that $G^{1 / 2} G^{1 / 2}=G$.

2 Dimension Reduction

Ex. 3 - Let $X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}$ and suppose that it has been centered and scaled, that is consider the transformation given by $x_{i} \rightarrow \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right)^{-1}\left(x_{i}-\mu\right)$ where

$$
\mu_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i j} \quad \text { and } \quad \sigma_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\mu_{j}\right)^{2}, \quad \text { for } j=1, \ldots, d .
$$

Part I
Assume that $\sigma_{1}, \ldots, \sigma_{n}$ has been pre-calculated and saved. Find the matrices $\Sigma \in \mathbb{R}^{d \times d}$ and $D \in \mathbb{R}^{n \times n}$ such that the transformation $X \rightarrow \Sigma X D$ applies a centring and scaling to the data. Given a test data $X_{t} \in \mathbb{R}^{d \times k}$ can you apply this exact same transformation to X_{t}, that is $X_{t} \rightarrow \Sigma X_{t} D$?

Part II
Assume that $\sigma_{1}, \ldots, \sigma_{n}$ and μ_{1}, \ldots, μ_{n} have been pre-calculated and saved. Find the matrix $\Sigma \in \mathbb{R}^{d \times d}$ and $C \in \mathbb{R}^{d \times n}$ such that $X \rightarrow \Sigma(X+C)$ applies a centring and scaling to the data. Given a test data $X_{t} \in \mathbb{R}^{d \times k}$ can you apply this exact same transformation to X_{t} ?

Part III

Let P be the rank $-r$ PCA transform of X. In other words assume that

$$
\begin{equation*}
P=\arg \max _{V \in \mathbb{R}^{d \times r}, V^{\top} V=I}\left\|V^{\top} X\right\|_{F}^{2} \tag{5}
\end{equation*}
$$

Show that if X is centred and scaled then P also maximizes the scattering of the project data, that is

$$
\begin{equation*}
P \in \arg \max _{V \in \mathbb{R}^{d \times r}, V^{\top} V=I} \sum_{j=1}^{n} \sum_{i=1}^{n}\left\|V^{\top} x_{i}-V^{\top} x_{j}\right\|_{2}^{2} \tag{6}
\end{equation*}
$$

Hint: For every $x, y \in \mathbb{R}^{d}$ and $V \in \mathbb{R}^{d \times r}$ we have that

$$
\left\langle V^{\top} x, V^{\top} y\right\rangle_{2}=\left\langle V V^{\top}, y x^{\top}\right\rangle=\operatorname{Tr}\left(V V^{\top}, y x^{\top}\right) .
$$

3 Sparse Matrix Formats

Write the pseudo code of an algorithm that:
Ex. 4 - Takes a matrix $M \in \mathbb{R}^{r \times d}$ in CSR format, a matrix $X \in \mathbb{R}^{d \times n}$ is the standard dense format, and returns $M X \in \mathbb{R}^{r \times n}$ in the standard dense format.

Ex. 5 - Takes a matrix $M \in \mathbb{R}^{n \times r}$ in CSR format, a matrix $X \in \mathbb{R}^{d \times n}$ is the standard dense format, and returns $X M \in \mathbb{R}^{d \times r}$ in the standard dense format.

