Data transformation and Dimension Reduction Lecture

Robert M. Gower*
November 8, 2019

Objective: When your data matrix X € R4*™ is too large to store on memory, or perform basic opera-
tions, dimension reduction tools become essential. Furthermore when we have far more features than data,
dimension reduction tools can help avoid overfitting and thus decrease generalization/test error. Much of
these notes are based on Chapter 5 of [6].
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1 Dimension Reduction Maps

Suppose we are given training data (z;,1;) € R for i = 1,...,n. Let X = [z1,...,2,]. What happens if
not all the data fits onto your computer? One way to deal with large data is to sample rows or columns
or compressed versions of the data. Here we study dimension reduction tools that compress the number of
features.

Definition 1.1. We say that f : R? = R” is a dimension reduction map if r < d and if the mapped data

Y =[f(z1),..., f(zn)] € R,
is still useful for some application.

Being “useful” needs to be defined, and this will depend what you need the data for.

Here we consider two applications. In Section 2 we consider dimension reductions under which we can still
recover the approximate solution to a regression/classification problem. In Section 3 we consider dimension
reductions that preserve the pairwise distances between data points. That is, maps that are approximate
isometries. This is relevant for clustering and kernal based methods.
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2 Classification and PCA

2.1 Motivational Problem

When compressing data, some information will be lost. So we should choose what will be lost and what

properties of the data we wish to preserve based on how we want to use this data. To start, let us consider the

task of fitting a generalized linear model to data. We will then investigate under which dimension reductions

is this task invariant. That is, which maps of the data can we perform so that the fit remains the same. We

will then use this to motivate dimension reduction tools under which the fit is approzimately invariant.
Consider the regularized empirial risk minimization problem with a linear hypothesis class:

n
. def 1
Inin, Fw) = ﬁ;&(@%w», (1)
where z; is the given ith data point for i = 1,...,n, ¢; : R — R is a convex loss function with respect to
the ith label. For example in ridge regression we would have (;(y) = 3(y — y;)* where y; is the label of ;.
For simplicity we will not consider a regularizor.®

Here we look into what maps can we apply to the data matrix

def
X = [r1,...,2,) € R (2)
that either make the problem (1) easier to solve, have better generalization properties or easier to vizualize.
First we focus on coordinate transformations, that are transformations under which we loose no infor-
mation and thus can still find the exact solution to (1) even after applying a transformation to X.

2.2 Coordinate Transformations

First consider the transformation w — Pw where P € R%*?¢ and the resulting problem

n

. 7 def 1
= F(w) % =57 6((wi, Puy). 3
@ = arg min, (w) "2 ({x;, Pw)) (3)

Exercise 2.1. Show that transforming the data using X — PT X is equivalent to applying the coordinate
change w — Pw.

Since F (w) is the composition of a convex function with a linear function, we know that F (w) is convex,
and thus the first order optimality conditions are necessary and sufficient. That is, using the chain rule, the
solution w* to (3) is such that

VE@W*) = PTVF(Pw*) = 0. (4)
How can we now recover the solution w* to (1)? If P is invertible then right multiplying the above by P~}
gives VF(Pw*) = 0, which shows that w* = Pw* is the solution to (1).

We can still recover the solution to (1) even when P is not invertible. Indeed, writing out (4) explicitly

we have that

T=o. (5)

. 1 & 1 ,
VE(w) = > li((@i Pu))PTa; = —PTX [f((@1, Pu). ..., €, ((wn, Pw))]
i=1 def
= L(Pw)

We can use the above to prove the following

1Add a regularizer and regularization parameter AR(w) complicates matter because X is chosen as a function of the data,
and here we will consider several maps of the data. Thus we would have to have an explicit model for the function A(X).



Theorem 2.2 (Range space preserving). If
Range (X ') = Range (X ' P), (6)
then every w* that solves (5) we have that
w* = Pw*, (7)

solves (1).

Proof. From (5) we have that PT X L(Pw*) = 0. For w* = Pw* to be a solution to (1) we require that
X L(w*) = 0. Fortunately the assumption (6) guarantees that these two condition are equivalent. Indeed, a
sufficient condition for (5) and X L(w*) = 0 to be equivalent would be if for every z € R? we have that

PTX2=0 & Xz=0.

That is if Null (PTX) = Null (X)) . Taking the orthogonal component over Range (XT) = Range (XTP)
gives just that since Range (XT)L = Null (PTX) and Range (XTP)L = Null (X). O

In particular, using Lemma 4.1 we have that if there exists symmetric positive definite matrix G €
R%? such that P = GX then (6) holds. Turn to the exercise sheet and now prove that Range (X )
Range (XTGX) for G € R¥™? symmetric positive definite.

This shows that P need not be invertible. In particular, this suggests that P could be the projection
operator onto Range (X), which motivates the use of projection based dimension reduction tools such as
PCA, as we will see in Section 2.4.

2.3 Data transformations as a modelling choice

Though we have explored data transformation through the perspective of coordinate changes that preserve
the original solution, data transformations can be a modelling choice, and need not preserve the original
problem. For instance, if we knew before hand that the output labels y; are all positive, we may choose to
apply a log transform. That is, by applying ¢; = log(y;) for ¢ = 1,...,n. Then accordingly, after fitting w*
to this transformed data, we can predict the label of a new data point z; using exp({x;,w*)). This enforces
positive predictions, though there is no longer a one-to-one correspondence between the solution w* of the
transformed problem and the solution to the original problem.

2.4 Principal Component Analysis

Here we consider linear dimension reduction tools that fit the following format.

Definition 2.3. Let X € R¥". We say that P € R?*" is a linear dimension reducing operator and
Y = PTX € R™*" the resulting low dimensional transformed data.

How should we choose the transformation P? From Theorem 2.2 we would like Range (X TP) ~
Range (XT). Using Lemma 4.2 in the appendix we have that Range (XTP) = Range (XTPPT). This
form is better because now X " PP has the same dimension as X . So we can instead look for P such that

X'"~X'"PP" & X=PP'X.
Thus we can consider the optimization problem

X -wwTx|. 8)

P € arg min
W eRdx

I3



Note: Now do the exercise of proving Lemma 4.2.

The solution to (8) is given by the leading eigenvectors of A. This is sometimes also known as the
Principle Component Analysis transform.

Note: Revise Singular Value Decomposition and Eckart-Young-Mirks Theorem before moving on.

Theorem 2.4. Let d >n >r. Let X = ULV T be a Singular Value Decomposition (SVD) decomposition
of X where U = [uy, . ..,uq] € R¥™? is an orthogonal matrix, D = diag (01, ...,04) € R?4 and V € R"*d
with VVT = I. Let U, = [uy,...,u,] € R4". The solution to (8) is the Principal Component Analysis
(PCA) transform given by P = U,

Proof. Proof relying on SVD properties.
It is well known that

T . 2
UXrxirV, € arg Ralg(lzrzl):r X - Z||%, 9)

where U, 2, V,] € R&>*" % = diag(oy,...,0,) € R™" and V, = [v1,...,v,] € R"*". This result (9) is
known as the Eckart-Young-Mirks Theorem.
Since WW T X has rank r, we have that
X = WWTX|[% > [|X = UV, |5 (10)
Furthermore by choosing W = U,. we have that
WW'X =UU UV = U [S, 0V =U 2, V.

Thus the lower bound (10) is achieved and thus W = U,. must be the minimum.
See Section 23.1 in [6] for a different proof that does not rely on the existence of an SVD
decomposition. [

Exercise 2.5. Consider the setting of Theorem 2.4. Assume that X has rank » € N. Show that
Range (UTUTTX) = Range (U, X) = Range (X).

Show that as a consequence, by Theorem 2.2, after applying the PCA transform to the data & — U,’z € R",
one can still recover the exact solution to (1) using w* < U,w*.

Proof. Since X has rank r, then the SVD of X reduces to X = UTETXTVTT. By Lemma 4.2 we have that
Range (UTTX) = Range (U,«UTTX) = Range (UTETXTVTT) = Range (X),
and thus by Theorem 2.2 we have that that w* + U.%* is a solution to (1). O

In practice it may be hard to determine the rank of the matrix X. Furthermore, it seems reasonable now
to suspect that PCA may work well even if we choose r leading eigenvectors associated to the largest r
eigenvalues.

Remark 2.6 (Practical implementation of PCA). Theorem 2.4 states that the PCA transform is given by the
leading eigenvectors of A= XX T € R4 Computing the complete spectral decomposition of A costs O(d?)
which may be prohibitive if d is very large. Fortunately when n < d we can compute the PCA transform
using O(n3). The trick is to realize that the matriz B = X" X has the same non-zero eigenvalues of A and
furthermore, if v is an eigenvector of B then Xv is an eigenvector of A. As an exercise you should prove
this and also write the pseudo-code for an efficient PCA algorithm that takes X, n and d as inputs and makes
use of this trick (assume you can call an SVD subroutine).

When the dimensions of data are trully large, computing eigenvectors may be prohibitively expensive.



3 Random Projections and the Johnson-Lindenstrauss Lemma

Calculating the PCA transformation requires computing the leading r eigenvectors of a possibly large di-
mensional matrix. This can be prohibitively expensive for certain applications. Fortunately it turns out that
very high dimensional data has a special property in that it can be efficiently mapped to a low dimension
space while preserving the distance between points.

Furthermore for certain applications, it is more important to preserve pairwise distances. Such as in
distance based clustering or kernel based methods.

Our original objective was to minimize the sum of the error for each data point

n
2 2
X = WW X[ = Dl = W e
i=1
In the exercise list we also show that, when X has been centred, this is equivalent to maximizing the
scattering of projected data points

n
max Z HWTml — WijHi.

4,J=1

Now we take a slightly different approach, and investigate if the distance between datapoints can be preserved
after begin embedded in a low dimensional space. That is, can we find M € R%*" such that

HWT.’L‘Z' — WTJ,‘]'H2 ~ ||J,‘Z — .’I,‘jH2 .
It turns out that this can be done, upto a certain precision, by using random maps.

Lemma 3.1 (Johnson-Lindenstrauss Lemma [3]). Let X = [x1,...,2,] € R¥". Let 6§ € (0, 1), € < 3 and
r € N such log(n/8)
og(n
r2 12— (11)
Let W € R?¥" be such that each element is normally distributed with zero mean and 1 variance. We have
that

(L=l =505 < (/AW e = (VF)WTaglly < (146 [l —a5l5, Vij=1,...,n, (12)
with probability 1 — d over the choice of W.

This lemma holds for many distributions over W other than simply Gaussian as we will see later. The JL
Lemma is remarkable in that it does not depend on the dimension of the data d and has only a very weak
log() dependency on the number of data points. Though it has a strong dependency on the accuracy €. As
an example, say we wanted to preserve the pairwise distances to with an error of € = 1072 = 1% with high
probability 1 — ¢ = 99%. Ignoring the log terms, the JL Lemma states that the embedding dimension needs
to be r = O(10*). While this is useless if d < 10%, what if d is much larger, such as d = 109?

Proof of JL Lemma 3.1. For a given * € R? we have that the ith row of W'z is W]z which is linear
combination of Gaussian random variables, and is thus Gaussian with mean 0 and variance Hx||§ Thus
(W.Jz)/||z||, is a standard normal random variable with mean 0 and variance 1. Thus ||Wac|\§ / Hx||§ =
S (W x)?/ ||$||§ has a x?2 distribution. A well known concentration of measure for y? distributions states
that, for e < 3 we have that

|

which is proven in the Appendix in Lemma 4.3 and in Lemma B.12 in [6].

18 LA

2
m el

~1 Ze] < 2070, (13)




The proof now follows by applying a union bound over the vectors (x; — «;) for all pairs of indices, that

is for 1 <14 < j < n, we have that
1/ VAW (z; — x5 2
26} -y PHHum (@: J>H2_126]
i — 25

g {[lesmmest
1<i<j<n 1<i<j<n
(13)
< <;L> 26—627'/6 < ’I’L2€_62T/6. (14)

|z _J"JHQ

Now choosing r such that n2e=<’r/6 < 6 gives r > 1210g(272/‘6) which we can enforce using

log(n/9) - ;,los(n/ Vo)

r>12
- €2 €2

)

which gives the bound (11). Taking the complement of the event (14) we have that

N { /D WT (@ —a))ll5

P 2
”mi _$j||2

ge} >1—34, (15)

1<i<j<n
which gives (12). O

Calculating SVD decompositions of such large dimensional data would cost of the order of O(nd?) and
thus would not be possible on most personal computers. Multiplying with a relatively small r x d Gaussian
matrix costs O(rdn) operations. Even this cost can be significantly reduced.

Very recently in 2017 it was shown by Larsen and Nelson [4] that there exists of a particular data matrix
X € R?™" such that any transform satisfying (12) must have at = O(e~2?log(n)) dimension, thus showing
that the JL Lemma is tight. Thus there is no hope in improving the lemma in terms of the embedding
dimension. What can be improved is the bottleneck cost of computing the matrix-matrix product W' X.
This has been improved by making W sparse [1] or defining W as implicit transform such that there exist
fast recurrsive algorithms for computing W' X, such as subsampled Fourier transforms [2].

For example, the Achlioptas transform (1/,/7) W € R%*" where each element is sampled independently
via

+1  with probability 1/6
Wij =V340 with probability 2/3 (16)
—1  with probability 1/6,

also satisfies the JL Lemma.

Example 3.2. Show that each element of the Achlioptas transform [1] satisfies

E[W.}

J2]=0 and E[(W]2)%] = ||z[f3. (17)

2
Conclude that EJ H\/LFWTmH /||x||§] = 1 and thus the JL lemma would follow with this W by using an

|| |3

1 T|2

appropriate concentration bound of the random variable around its mean.

Proof. Clearly E[W;;] = v/3(1/6 — 1/6) = 0. Thus
E[W.] 2] = E[W,] e = 0.
For the second moment we have that

E(Wj2)’] = 2 E[W;W]le=a"a= |, (18)



where we used that E[W;;W};] = 0 if i # k since the elements are sampled independently and
27 _ _
E[W;;] =3(1/6 +1/6) = 1.

Thus finally
2
A LIRS 1

SE(W] ) 2

Jj=1

2
Tzl =1,

2 - 2 2
1]l Tzl Tzl

Now we just need apply Lemma (3.3) taken from [1] together with a union bound as used in (15) to get our

result.
]P [

3.1 Sparse Matrix Formats

Lemma 3.3. 5
1w sl
Tl

—1 Ze] = o EEEE = gy (19)

To use the Achlioptas transform (16) efficiently, it needs to be implemented using sparse linear algebra.
Assuming X is sparse, as it often is in most machine learning problems, the matrix W € R*" needs to be
generated in a sparse matrix format in such a way that the product W' X (or equivalently X "W) can be
efficiently computed.

The Compressed Sparse Column (CSC) Format is a sparse matrix
representation such that left matrix multiplications can be computed efficiently,
for example X "TW. Let nnz be the number of non-zero elements in W. The Row-major order

CSC format represents a matrix W using three arrays: a 3 3

11 12 13

nnz : nnz r+1
data € R™* rowindex € R™?* colptr e R""". e
The data array stores all the nonzero elements of W ordered by top-to-bottom e K
left-to-right, otherwise known as the column-major order, see Figure 2. That

is, Column-major order

data = [wy,. .., Wnnzl, 1 5 3
where w; are the nonzero elements of W. The array rowindex contains the row 1 o 3
indexes of each nonzero element. That is rowindex; contains the column index
of w;. Finally the jth element of colptr; is the number of nonzeros in the first 1 2 3

i columns. Specifically, colptr is defined recursively as

colptr, = 0 Figure 1: Row-major and
Colum-major order for
transversing the elements
Here we use nnz(W;.) to denote the number of nonzero elements in the ith row of a matrix (image taken
of W. Consequently rowptr, ,, = nnz. from Wikipedia).

colptr;,; = colptr;+ nnz(W.;), forj=1,...,r

The Compressed Sparse Row (CSR) Format is sparse matrix representation such that right matrix
multiplications can be done efficiently. Let nnz be the number of non-zero elements in W. The CSR format
represents a matrix W using three arrays:

data € R™Z*  colindex € R™Z* rowptr € R¥1.



The data array stores all the nonzero elements of W ordered left-to-right top-to-bottom, otherwise known
as the row-major order, see Figure 2. That is,

data = [wh ce ,wnnz]v

where w; are the nonzero elements of W. The array colindex contains the column indexes of each nonzero
element. That is colindex; contains the column index of w;. Finally rowptr is defined recursively as

rowptr, = 0
rowptr,,; = rowptr; +nnz(W;), fori=1,...,d.

Here we use nnz(W;.) to denote the number of nonzero elements in the ith row of W. Consequently
rowptr,  ; = nnz. As an example, consider the matrix

0 0 01

5 8 0 0

W= 00 3 0

0 6 00

The CSC format of this matrix is given by the three arrays

data=1[5 8 6 3 1]
rowindex = [2 2 4 3 1]
colptr = [0 1 3 4 5]

The CSR format of this matrix is given by the three arrays

data = [1 5 8 3 6]
colindex = [4 1 2 3 2]
rowptr = [0 1 3 4 5]

4 Appendix

Lemma 4.1. For any matrix W and symmetric positive definite matrix G,
Null (W) = Null (W'GW) (20)

and
Range (W') = Range (W'GW). (21)

Proof. In order to establish (20), it suffices to show the inclusion Null (W) 2 Null (W GW) since the
reverse inclusion trivially holds. Letting s € Null (WTGW), we see that |GY/2Ws||?> = 0, which implies
G'2?Ws = 0. Therefore, s € Null (W). Finally, (21) follows from (20) by taking orthogonal complements.
Indeed, Range (WT) is the orthogonal complement of Null (W) and Range (WTGW) is the orthogonal
complement of Null (WTGW). O

Lemma 4.2. For any matrix M € R%**¥ and X € R?*"™ we have that

Null (W' X) = Null (WW'X) (22)



and
Range (X "WW ') = Range (X "W). (23)

Proof. In order to establish (22), it suffices to show the inclusion Null (WTX) D Null (WWTX) since
the reverse inclusion trivially holds. Letting s € Null (WWTX ), thus WW T Xs = 0. Let multiplying by
s" X T we have that |[WT Xs||? = 0, which implies W' Xs = 0. Therefore, s € Null (W). Finally, (23)
follows from (22) by taking orthogonal complements. O

Lemma 4.3 (x? concentration). Let Z ~ x2. Then for all 0 < ¢ < 3 we have that Z is concentrated
around its mean 7 according to

P[l—er<Z<(+er] > 1-2°7/5 (24)
In other words, taking the complement of this event, and dividing within the probability by r we have that
P|(1/r)Z—1]>€] < 2e<7/5, (25)

Proof. Let Z = 3_;_, X2 where each X; ~ N (0, 1) is a standard normal random variable. We make use of
the closed form expression for the moment generating function of y? variables
1

E[e*] = (1—20)""2, VA< 5 (26)

The proof follows by applying Markov’s inequality together with (26) and can be found in Lemma 1 in [5]. O
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