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Solve Empirical Risk Minimization

Datum functions

Ridge Regression

Some neural nets

Logistic regression
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Stochastic Gradient Descent γ  = 0.2
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EXE: SGD with covariates 
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Want something 
in between 
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Why not 
1st Taylor?
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SVRG2: Second order tracking 

Reference point

1st order 
Taylor exp.

SVRG2 

Expected 
covariate

              
                H. T. Wai, W. Shi,    
                A. Nedic, and A. 
Scaglione. Curvature-aided 
incremental aggregated 
gradient method,  Allerton. 
IEEE, 2017,



SVRG2: Stochastic Variance Reduced 
Gradients with tracking 

Does this actually work?



SVRG2: first experiment 
madelon (n,d) = (8124, 112)
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How to make this efficient?

madelon (n,d) = (8124, 112)



SVRG2: Stochastic Variance Reduced 
Gradients with tracking 
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Build approximations



Different ways to approximate the 
Hessian

● Diagonal approximations
 

● Rank-1 approximation based on secant equation

● Low rank approximations using  
Sketching and projecting 

We tried:



Sketching matrix
  

Costs
to evaluate  

Sketching the stochastic Hessian



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation

Total inner iteration costs:
  



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation

Total inner iteration costs:
  



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation

Total inner iteration costs:
  

Total outer costs:
  



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation

Total inner iteration costs:
  

Total outer costs:
  



Sketching and Projecting the Hessian: 
Action Matching (AM) approximation

Total inner iteration costs:
  

Total outer costs:
  

What about S ?



Choosing the sketch matrix

AMgauss:

AMprev:
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w8a (n,d) = (49749, 300)



AM: Experiment works ok
madelon (n,d) = (2000, 500)
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AM: Experiment works badly
covtype (n,d) = (581012, 54)
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Take home:

Speed-ups with less gain and risk 
compared to Newton type methods.

New compressed Hessian estimates 
using sketching and projecting

gowerrobert/StochOpt.jl

Can use Hessian to diminish variance

https://github.com/gowerrobert
https://github.com/gowerrobert/StochOpt.jl
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