Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse

Robert Mansel Gower

Joint work with Peter Richtarik

The 27th Biennial Numerical Analysis Conference, Strathclyde, June 2017

Sketch and project applications

Numerical Linear Algebra

- Linear systems
- Matrix inverse
- Pseudo inverse

Stochastic Optimization

- Stochastic Quasi-Newton methods
- Stochastic variance reduced gradients
- Stochastic Coordinate descent

Distributed Consensus

Three viewpoints of the Pseudoinverse Three methods

Three Viewpoints

Given $A \in \mathbb{R}^{m \times n}$ compute an approx. $A^{\dagger} \in \mathbb{R}^{n \times m}$

$$A^{\dagger} = \arg \min_{X \in n \times m} ||X||_{F}^{2}$$

subject to
$$(1) A^{\top} = A^{\top} A X \quad \text{or} \quad (2) A^{\top} = X A A^{\top} \quad \text{or} \quad (3) A X A = A$$

Three Viewpoints

Given $A \in \mathbb{R}^{m \times n}$ compute an approx. $A^{\dagger} \in \mathbb{R}^{n \times m}$

$$A^{\dagger} = \arg \min_{X \in n \times m} ||X||_{F}^{2}$$

subject to
$$(1) A^{\top} = A^{\top} A X \quad \text{or} \quad (2) A^{\top} = X A A^{\top} \quad \text{or} \quad (3) A X A = A$$

Design three methods based on approximate stochastic projections

Three Viewpoints

Given $A \in \mathbb{R}^{m \times n}$ compute an approx. $A^{\dagger} \in \mathbb{R}^{n \times m}$

$$A^{\dagger} = \arg \min_{X \in n \times m} ||X||_{F}^{2}$$

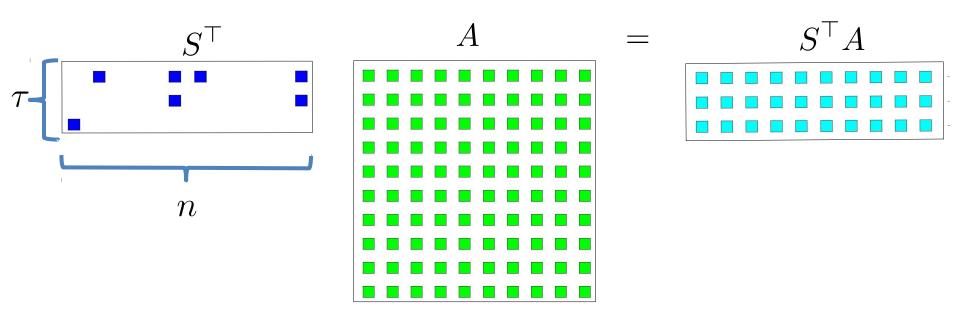
subject to
$$(1) A^{\top} = A^{\top} A X \quad \text{or} \quad (2) A^{\top} = X A A^{\top} \quad \text{or} \quad (3) A X A = A$$

Design three methods based on approximate stochastic projections

Use stochastic sketching to approximate the constraints

Sketching

Randomized Sketching



The Sketching Matrix

 $S \sim \mathcal{D}$ a distribution over matrices $S \in \mathbb{R}^{m \times \tau}$ and $\tau \ll m, n$

W. B. Johnson and J. Lindenstrauss (1984). Contemporary Mathematics,
26, Extensions of Lipschitz mappings into a Hilbert space.

David P. Woodruff (2014), Foundations and Trends® in Theoretical Computer, **Sketching as a Tool for Numerical Linear Algebra.**

Sketching and Projecting

Method 1 Problem:

$$A^{\dagger} = \arg \min ||X||_F^2$$

subject to $A^{\top} = A^{\top}AX$

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top} A^{\top} = S^{\top} A^{\top} A X$

Method 1Problem:
$$A^{\dagger} =$$
 $\arg \min ||X||_F^2$
subject to $A^{\top} = A^{\top}AX$

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top} A^{\top} = S^{\top} A^{\top} A X$

Or equivalently using duality

Method 1 Problem:

$$A^{\dagger} = \underset{\text{subject to } A^{\top} = A^{\top}AX$$

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top} A^{\top} = S^{\top} A^{\top} A X$

Or equivalently using duality

$$X_{t+1} = \arg\min_{X,\Gamma} ||X - A^{\dagger}||_{F}^{2}$$

subject to $X = X_{t} + A^{\top}AS\Gamma$

Method 1 Problem:

$$A^{\dagger} = \arg \min ||X||_F^2$$

subject to $A^{\top} = A^{\top}AX$

J

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top} A^{\top} = S^{\top} A^{\top} A X$

Or equivalently using duality

$$X_{t+1} = \arg\min_{X,\Gamma} ||X - A^{\dagger}||_{F}^{2}$$

subject to $X = X_{t} + A^{\top}AS\Gamma$

$$X_{t+1} = X_t - A^{\top} A S (S^{\top} (A^{\top} A)^2 S)^{\dagger} S^{\top} A^{\top} (A X_t - I)$$
$$\tau \times \tau$$

Method 1 Problem:

$$A^{\dagger} = \underset{\text{subject to } A^{\top} = A^{\top}AX$$

Sample
$$S \sim \mathcal{D}$$

 $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$
subject to $S^{\top} A^{\top} = S^{\top} A^{\top} A X$

Or equivalently using duality

 X_{t+1}

 $\begin{array}{l} \arg\min_{X,\Gamma} ||X - A^{\dagger}||_{F}^{2} & \\ \text{Subject to} & X = X_{t} + A^{\top}AS\Gamma \end{array}$

$$X_{t+1} = X_t - A^{\top} A S (S^{\top} (A^{\top} A)^2 S)^{\dagger} S^{\top} A^{\top} (A X_t - I)$$

au imes au

Theorem [GR'16]

Let $H_S := S(S^{\top}(A^{\top}A)^2S)^{\dagger}S^{\top} \succeq 0.$

Theorem [GR'16]

Let $H_S := S(S^{\top}(A^{\top}A)^2S)^{\dagger}S^{\top} \succeq 0.$ If $X_0 \in \mathbf{Range}(A^{\top}A)$ and $\mathbf{E}[H_S] \succ 0$ then

Theorem [GR'16]

Let $H_S := S(S^{\top}(A^{\top}A)^2S)^{\dagger}S^{\top} \succeq 0.$ If $X_0 \in \mathbf{Range}(A^{\top}A)$ and $\mathbf{E}[H_S] \succ 0$ then

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \rho^t ||X_0 - A^{\dagger}||_F^2$$

where

$$\rho := 1 - \lambda_{\min}^+ (A^T A \mathbf{E}[H_S] A^\top A)$$

Theorem [GR'16]

Let $H_S := S(S^{\top}(A^{\top}A)^2S)^{\dagger}S^{\top} \succeq 0.$ If $X_0 \in \mathbf{Range}(A^{\top}A)$ and $\mathbf{E}[H_S] \succ 0$ then

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \rho^t ||X_0 - A^{\dagger}||_F^2$$

Smallest nonzero eigenvalue

where

 $\rho := 1 - \lambda_{\min}^+ (A^T A \mathbf{E}[H_S] A^\top A)$

$H := S(S^T (A^\top A)^2 S)^{\dagger} S^T$

$$H := S(S^T (A^\top A)^2 S)^{\dagger} S^T$$

Special Choice of Parameters

$$\mathbf{P}(S=e_i) = \frac{1}{m}$$

$$H := S(S^T (A^\top A)^2 S)^{\dagger} S^T$$

Special Choice of Parameters

$$H := S \left(S^T (A^\top A)^2 S \right)^{\dagger} S^T$$

Special Choice of Parameters

$$H := S(S^T (A^\top A)^2 S)^{\dagger} S^T$$

Special Choice of Parameters

$$H := S(S^T (A^\top A)^2 S)^{\dagger} S^T$$

Special Choice of Parameters

$$\mathbf{P}(S = e_i) = \frac{1}{m}$$

$$\mathbf{E}[H_S] = \frac{1}{m} \sum_{i=1}^{m} \frac{e_i e_i^T}{||A^\top A_{:i}||_2^2}$$

$$= \operatorname{diag}(||A^\top A_{:i}||_2^2)$$
No zero columns in A
$$\mathbf{E}[H] \text{ is positive definite}$$

Interpretable Convergence

Theorem [GR'16] If $S = S_i$ with probability $p_i = \frac{\operatorname{Tr}(S_i^{\top}(A^{\top}A)^2S_i)}{\operatorname{Tr}(\bar{S}^{T}(A^{\top}A)^2\bar{S})}, \quad \text{for } i = 1, \dots, r$ and $\bar{S} := [S_1, \dots, S_r]$ is nonsingular then,

 $\rho := 1 - \lambda_{\min}^+ (A^T A \mathbf{E}[H_S] A^\top A) \le 1 - \frac{1}{\kappa^2 (A^T A \bar{S})}$

$$\kappa^2(A^{\top}A\bar{S}) := \frac{\operatorname{Tr}\left(\bar{S}^{\top}(A^{\top}A)^2\bar{S}\right)}{\lambda_{\min}(\bar{S}^{\top}(A^{\top}A)^2\bar{S})}$$

Interpretable Convergence

Theorem [GR'16] If $S = S_i$ with probability $p_i = \frac{\operatorname{Tr}(S_i^{\top}(A^{\top}A)^2S_i)}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2\bar{S})}, \quad \text{for } i = 1, \dots, r$ and $\bar{S} := [S_1, \dots, S_r]$ is nonsingular then,

 $\rho := 1 - \lambda_{\min}^+ (A^T A \mathbf{E}[H_S] A^\top A) \le 1 - \frac{1}{\kappa^2 (A^T A \bar{S})}$

where κ is the scaled condition number,

$$\kappa^2(A^{\top}A\bar{S}) := \frac{\operatorname{Tr}\left(\bar{S}^{\top}(A^{\top}A)^2\bar{S}\right)}{\lambda_{\min}(\bar{S}^{\top}(A^{\top}A)^2\bar{S})}$$

Interpretable Convergence

Theorem [GR'16] If $S = S_i$ with probability $p_i = \frac{\operatorname{Tr}(S_i^{\top}(A^{\top}A)^2 S_i)}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2 \bar{S})}, \quad \text{for } i = 1, \dots, r$ and $S := [S_1, \ldots, S_r]$ is nonsingular then, $\rho := 1 - \lambda_{\min}^+ (A^T A \mathbf{E}[H_S] A^\top A) \le 1 - \frac{1}{\kappa^2 (A^T A \bar{S})}$ where κ is the scaled condition number, $\bar{S} = (A^{\top}A)^{\dagger} \approx X_t X_t^{\top}?$ $\kappa^2(A^{\top}A\bar{S}) := \frac{\operatorname{Tr}\left(\bar{S}^{\top}(A^{\top}A)^2\bar{S}\right)}{\lambda_{\min}(\bar{S}^{\top}(A^{\top}A)^2\bar{S})}$

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \left(1 - \frac{\lambda_{\min}(\bar{S}^T (A^{\top} A)^2 \bar{S})}{\mathbf{Tr}(\bar{S}^T (A^{\top} A)^2 \bar{S})}\right)^t ||X_0 - A^{\dagger}||_F^2$$

To minimize condition number:
If
$$\bar{S} = A^{\dagger}A^{\top\dagger}$$
 then $\frac{\lambda_{\min}(\bar{S}^T(A^{\top}A)^2\bar{S})}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2\bar{S})} = \frac{\lambda_{\min}(I)}{\operatorname{Tr}(I)} = \frac{1}{n}$

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \left(1 - \frac{\lambda_{\min}(\bar{S}^T (A^{\top} A)^2 \bar{S})}{\mathbf{Tr}(\bar{S}^T (A^{\top} A)^2 \bar{S})}\right)^t ||X_0 - A^{\dagger}||_F^2$$

To minimize condition number:
If
$$\bar{S} = A^{\dagger}A^{\top\dagger}$$
 then $\frac{\lambda_{\min}(\bar{S}^T(A^{\top}A)^2\bar{S})}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2\bar{S})} = \frac{\lambda_{\min}(I)}{\operatorname{Tr}(I)} = \frac{1}{n}$
 $X_k \to A^{\dagger}$ $X_t X_t^{\top} \to A^{\dagger}A^{\dagger\top}$

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \left(1 - \frac{\lambda_{\min}(\bar{S}^T (A^{\top} A)^2 \bar{S})}{\mathbf{Tr}(\bar{S}^T (A^{\top} A)^2 \bar{S})}\right)^t ||X_0 - A^{\dagger}||_F^2$$

To minimize condition number:
If
$$\bar{S} = A^{\dagger}A^{\top\dagger}$$
 then $\frac{\lambda_{\min}(\bar{S}^T(A^{\top}A)^2\bar{S})}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2\bar{S})} = \frac{\lambda_{\min}(I)}{\operatorname{Tr}(I)} = \frac{1}{n}$
 $X_k \to A^{\dagger}$ $X_t X_t^{\top} \to A^{\dagger}A^{\dagger\top}$
 $S = I_C X_t X_t^{\top}, \quad C \subset \{1, \dots, n\}$

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \left(1 - \frac{\lambda_{\min}(\bar{S}^T (A^{\top} A)^2 \bar{S})}{\mathbf{Tr}(\bar{S}^T (A^{\top} A)^2 \bar{S})}\right)^t ||X_0 - A^{\dagger}||_F^2$$

To minimize condition number:
If
$$\bar{S} = A^{\dagger}A^{\top\dagger}$$
 then $\frac{\lambda_{\min}(\bar{S}^T(A^{\top}A)^2\bar{S})}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2\bar{S})} = \frac{\lambda_{\min}(I)}{\operatorname{Tr}(I)} = \frac{1}{n}$
 $X_k \to A^{\dagger}$ $X_t X_t^{\top} \to A^{\dagger}A^{\dagger\top}$
 $\bar{S} = I_C X_t X_t^{\top}$ $C \subset \{1, \dots, n\}$

$$\mathbf{E}[||X_t - A^{\dagger}||_F^2] \le \left(1 - \frac{\lambda_{\min}(\bar{S}^T (A^{\top} A)^2 \bar{S})}{\mathbf{Tr}(\bar{S}^T (A^{\top} A)^2 \bar{S})}\right)^t ||X_0 - A^{\dagger}||_F^2$$

To minimize condition number:
If
$$\bar{S} = A^{\dagger}A^{\top\dagger}$$
 then $\frac{\lambda_{\min}(\bar{S}^T(A^{\top}A)^2\bar{S})}{\operatorname{Tr}(\bar{S}^T(A^{\top}A)^2\bar{S})} = \frac{\lambda_{\min}(I)}{\operatorname{Tr}(I)} = \frac{1}{n}$
 $X_k \to A^{\dagger}$ $X_t X_t^{\top} \to A^{\dagger}A^{\dagger\top}$
Didn't work well in practice
 $S = I_C X_t X_t^{\top}$ $C \subset \{1, \dots, n\}$

Choosing the Sketching

Sample
$$S \sim \mathcal{D}$$

 $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$
subject to $S^{\top} A^{\top} = S^{\top} A^{\top} A X$

Adaptive method

SATAX-ada
$$\operatorname{Prob}[S = X_t I_C] = 1/\binom{|C|}{n}, \quad C \subset \{1, \dots, n\}$$

Uniform coordinates

SATAX-uni
$$\operatorname{Prob}[S = I_C] = 1/\binom{|C|}{n}, \quad C \subset \{1, \dots, n\}$$

Numerics

Benchmark

Symmetric Newton-Schulz

$$X_{t+1} = 2X_t - X_t A X_t$$

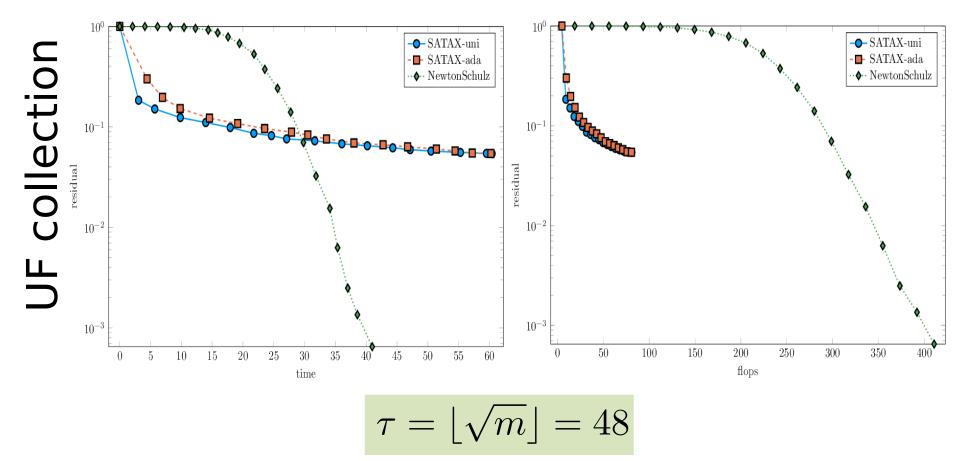
Guarantees convergence

$$X_0 = \frac{1}{2} \frac{A^{\top}}{||A||_F^2} \Rightarrow ||I - X_0 A|| < 1^{4}$$

Residual

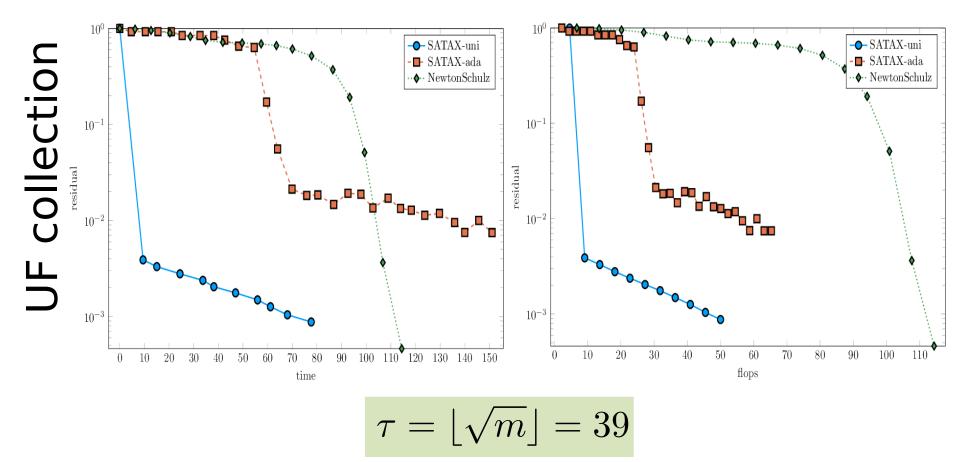
$$r_t = ||A - AX_tA||_F$$

Sparse Matrices from Engineering



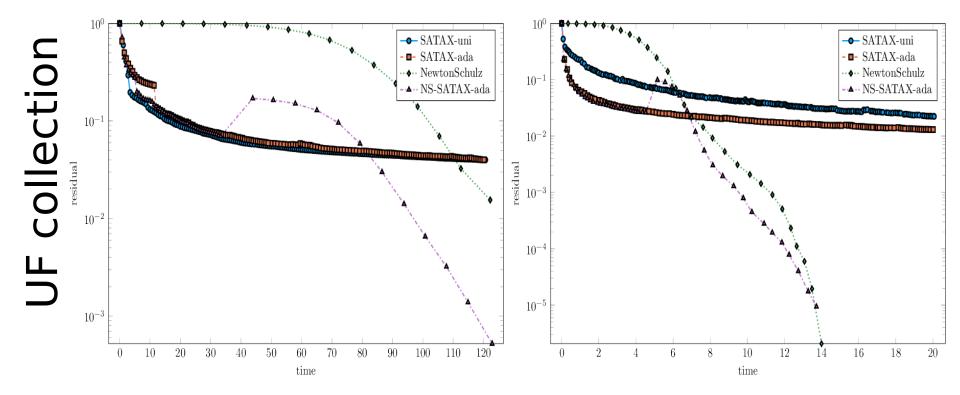
LPnetlib/lp ken 07 (m; n) = (2, 426; 3, 602).

Sparse Matrices from Engineering



Meszaros/primagaz (m; n) = (1, 554; 10, 836)

Sparse Matrices from Engineering



lp ken 07 (m; n) = (2, 426; 3, 602).

Maragal_3 (m; n) = (1,690; 860).

Symmetric Rank deficient Matrices $A = A^T$

The Symmetric
MethodProblem:
 $A^{\dagger} =$ $\arg \min ||X||_F^2$
subject to
A = AXA

The Symmetric
MethodProblem:
 $A^{\dagger} =$ $\arg \min ||X||_F^2$
subject to
A = AXA

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top}AS = S^{\top}AXAS$ Or equivalently using duality $X_{t+1} = \arg \min_{X,\Gamma} ||X - A^{\dagger}||_F^2$ subject to $X = X_t + AS\Gamma S^{\top}A$

The Symmetric
MethodProblem:
 $A^{\dagger} =$ $\arg \min ||X||_F^2$
subject to
A = AXA

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top}AS = S^{\top}AXAS$ Or equivalently using duality $X_{t+1} = \arg \min_{X,\Gamma} ||X - A^{\dagger}||_F^2$ subject to $X = X_t + AS\Gamma S^{\top}A$

$$X_{t+1} = X_t + AS(S^{\top}A^2S)^{\dagger}S^{\top}(A - AX_tA)S(S^{\top}A^2S)^{\dagger}S^{\top}A$$

$$\tau \times \tau$$

Symmetric
iterates

Choosing the Sketching

Sample $S \sim \mathcal{D}$ $X_{t+1} = \arg \min_{X} ||X - X_t||_F^2$ subject to $S^{\top}AS = S^{\top}AXAS$

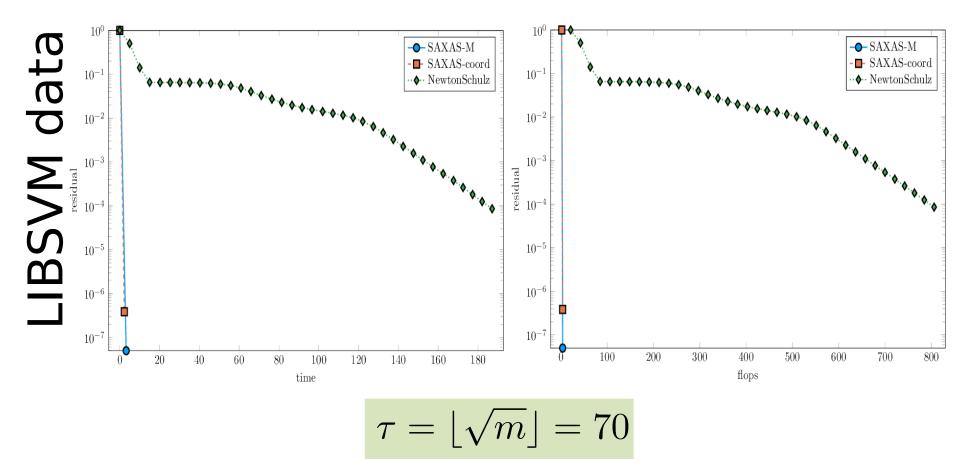
Adaptive method

SAXAS-ada
$$S = X_t I_C, \quad C \subset \{1, \ldots, n\}$$

Uniform coordinates

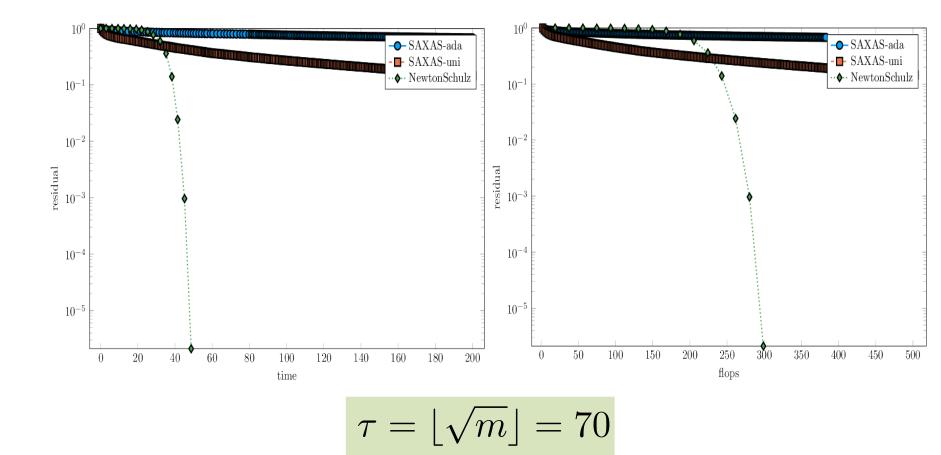
SAXAS-uni
$$S = I_C, \quad C \subset \{1, \ldots, n\}$$

Hessian of linear least squares



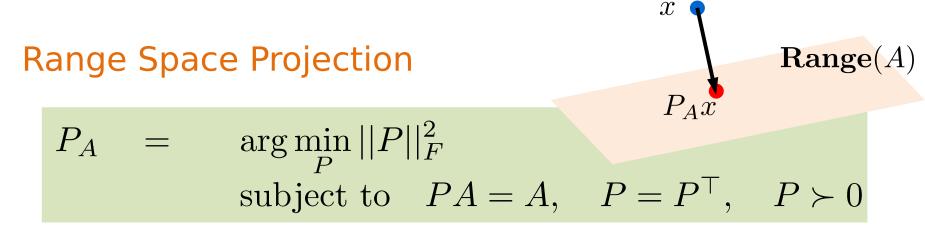
(gisette, n = 5,000)

Low rank approx of Gaussian



(best rank 1000 approx to the matrix $G+G^T$ where G is a 5000X5000 Gaussian matrix)

Related Problems



Sketch and Project

$$P_{t+1} = \arg \min_{P} ||P - P_t||_F^2$$

subject to $PAS = AS$, $P = P^{\top}$, $P \succ 0$

$$\mathbf{E}[||P_t - P_A||_F^2] \le \left(1 - \frac{\lambda_{\min}(\bar{S}^T A^2 \bar{S})}{\mathbf{Tr}(\bar{S}^T A^2 \bar{S})}\right)^t ||P_0 - P_A||_F^2$$

RMG and Peter Richtárik **Randomized Iterative Methods for Linear Systems** SIAM. J. Matrix Anal. & Appl., 36(4), 1660–1690, 2015. Most Downloaded SIMAX Paper!

RMG and Peter Richtárik **Stochastic Dual Ascent for Solving Linear Systems** Preprint arXiv:1512.06890, 2015

RMG and Peter Richtárik **Randomized quasi-Newton updates are linearly convergent matrix inversion algorithms** Preprint arXiv:1602.01768, 2016

RMG and Peter Richtárik Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse Preprint arXiv:1612.06255, 2016