
Third-Order Methods Automatic Differentiation Preliminary Tests

Third Order Methods using slices of the Tensor
and AD developments

Robert Gower
collaborators: Artur Gower, Margarida P Mello

my supervisor: Jacek Gondzio

Edinburgh Research Group in Optimization

gowerrobert@gmail.com

July 3, 2013



Third-Order Methods Automatic Differentiation Preliminary Tests

What’s to come

• Third Order information can be used in practical nonlinear
solvers

• Automatic Differentiation (AD) methods that calculate
third-order information at the same cost of the Hessian.

• A family of third order methods that requires solving two linear
systems.

• Large-Scale tests comparing to Newton



Third-Order Methods Automatic Differentiation Preliminary Tests

Overview

Third-Order Methods
Halley-Cheby class
Implementing issues

Automatic Differentiation
AD Setup
Reverse Hessian
Tensor-slices

Preliminary Tests



Third-Order Methods Automatic Differentiation Preliminary Tests

Why not third order

Unconstrained minimization of f : Rn → R.
First-order

d = −αDf (x)

(Df (x) ≡ The gradient)

Second-order
D2f (x) · d + Df (x) = 0

(D2f (x) ≡ The Hessian matrix)

n(x) = −(D2f (x))−1Df (x).

Why stop here?

It’s hard to solve these n

1

2
D3f (x) · (d , d) + D2f (x) · d + Df (x) = 0.



Third-Order Methods Automatic Differentiation Preliminary Tests

Why not third order

Unconstrained minimization of f : Rn → R.
First-order

d = −αDf (x)

(Df (x) ≡ The gradient)

Second-order
D2f (x) · d + Df (x) = 0

(D2f (x) ≡ The Hessian matrix)

n(x) = −(D2f (x))−1Df (x).

Why stop here? It’s hard to solve these n

1

2
D3f (x) · (d , d) + D2f (x) · d + Df (x) = 0.



Third-Order Methods Automatic Differentiation Preliminary Tests

Can we get third order convergence with only linear systems?

Halley’s Method

(D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x) = 0.

Why exactly these red pieces? Order 3 local convergence



Third-Order Methods Automatic Differentiation Preliminary Tests

Can we get third order convergence with only linear systems?

Halley’s Method

(D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x) = 0.

Why exactly these red pieces? Order 3 local convergence



Third-Order Methods Automatic Differentiation Preliminary Tests

Can we get third order convergence with only linear systems?

Halley’s Method

(
1

2
D3f (x) · n(x)︸ ︷︷ ︸

A matrix

+D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x) = 0.

Why exactly these red pieces? Order 3 local convergence



Third-Order Methods Automatic Differentiation Preliminary Tests

Can we get third order convergence with only linear systems?

Halley’s Method

(
1

2
D3f (x) · n(x)︸ ︷︷ ︸

A matrix

+D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x) = 0.

Why exactly these red pieces? Order 3 local convergence



Third-Order Methods Automatic Differentiation Preliminary Tests

Can we get third order convergence with only linear systems?

Halley’s Method

(
1

2
D3f (x) · n(x)︸ ︷︷ ︸

A matrix

+D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x)+
1

2
D3f (x) · (n(x), n(x))︸ ︷︷ ︸

A vector

= 0.

Why exactly these red pieces? Order 3 local convergence



Third-Order Methods Automatic Differentiation Preliminary Tests

Can we get third order convergence with only linear systems?

Halley’s Method

(
1

2
D3f (x) · n(x)︸ ︷︷ ︸

A matrix

+D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x)+
1

2
D3f (x) · (n(x), n(x))︸ ︷︷ ︸

A vector

= 0.

Why exactly these red pieces? Order 3 local convergence



Third-Order Methods Automatic Differentiation Preliminary Tests

Convex λ ∈ [0, 1] combinations Halley-Chebyshev family

(1− λ)
(

1
2D

3f (x) · n(x) + D2f (x)) · d + Df (x)
)

= 0

+

λ
(
D2f (x) · d + Df (x) + 1

2D
3f (x) · (n(x))2

)
= 0

=(
D2f (x) +

(1− λ)

2
D3f (x) · n(x)

)
·d+Df (x)+

λ

2
D3f (x)·(n(x))2 = 0

• Halley-Chebyshev family [Gutierrez, 1997]

• Implicit form [Steihaug, 2012]

• Convex combination ⇒ Order-3 convergence (My homepage)

• Higher order generalizations possible!



Third-Order Methods Automatic Differentiation Preliminary Tests

Convex λ ∈ [0, 1] combinations Halley-Chebyshev family

(1− λ)
(

1
2D

3f (x) · n(x) + D2f (x)) · d + Df (x)
)

= 0

+

λ
(
D2f (x) · d + Df (x) + 1

2D
3f (x) · (n(x))2

)
= 0

=(
D2f (x) +

(1− λ)

2
D3f (x) · n(x)

)
·d+Df (x)+

λ

2
D3f (x)·(n(x))2 = 0

• Halley-Chebyshev family [Gutierrez, 1997]

• Implicit form [Steihaug, 2012]

• Convex combination ⇒ Order-3 convergence (My homepage)

• Higher order generalizations possible!



Third-Order Methods Automatic Differentiation Preliminary Tests

Handling third order derivative

Problem: D3f (x) is cube.

Current approach (Gundersen and
Steihaug 2012 ):

• Data structures that balance
Sparsity × Access time.

• Faster contractions D3f (x) · n(x).

But we only need

d

dt
D2f (x + t · n(x)) |0

=D3f (x) · n(x).

Automatic Differentiation solution.



Third-Order Methods Automatic Differentiation Preliminary Tests

Handling third order derivative

Problem: D3f (x) is cube.

Current approach (Gundersen and
Steihaug 2012 ):

• Data structures that balance
Sparsity × Access time.

• Faster contractions D3f (x) · n(x).

But we only need

d

dt
D2f (x + t · n(x)) |0

=D3f (x) · n(x).

Automatic Differentiation solution.



Third-Order Methods Automatic Differentiation Preliminary Tests

Handling third order derivative

Problem: D3f (x) is cube.
Current approach (Gundersen and
Steihaug 2012 ):

• Data structures that balance
Sparsity × Access time.

• Faster contractions D3f (x) · n(x).

But we only need

d

dt
D2f (x + t · n(x)) |0

=D3f (x) · n(x).

Automatic Differentiation solution.



Third-Order Methods Automatic Differentiation Preliminary Tests

Handling third order derivative

Problem: D3f (x) is cube.
Current approach (Gundersen and
Steihaug 2012 ):

• Data structures that balance
Sparsity × Access time.

• Faster contractions D3f (x) · n(x).

But we only need

d

dt
D2f (x + t · n(x)) |0

=D3f (x) · n(x).

Automatic Differentiation solution.



Third-Order Methods Automatic Differentiation Preliminary Tests

Handling third order derivative

Problem: D3f (x) is cube.
Current approach (Gundersen and
Steihaug 2012 ):

• Data structures that balance
Sparsity × Access time.

• Faster contractions D3f (x) · n(x).

But we only need

d

dt
D2f (x + t · n(x)) |0

=D3f (x) · n(x).

Automatic Differentiation solution.



Third-Order Methods Automatic Differentiation Preliminary Tests

Why High Order AD?

• High order optimization methods

• Calculating quadratures (Vinay Kariwala 2012, G. F. Corliss,
A. Griewank 1997)

• bifurcations and periodic orbits (J. Guckenheimer and B.
Meloon 2000)

• Classifying Degenerate singularities and equilibria.



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))

v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = h(v−1) 1

v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = h(v−1)

1

v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = h(v−1)

1

v2 = g(v−1, v0)

2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = h(v−1)

1

v2 = g(v−1, v0)

2

v3 = f (v2, v1)

3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).



Third-Order Methods Automatic Differentiation Preliminary Tests

Millions of nodes are common (This one has just 150)



Third-Order Methods Automatic Differentiation Preliminary Tests

Millions of nodes are common (This one has just 150)



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

v1 = φ1(v−1) v2 = φ2(v−1, v0)

v3 = φ3(v2, v1)

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

• Standardize function names φi

• In general case might have many intermediate functions



Third-Order Methods Automatic Differentiation Preliminary Tests

Standardized Function Evaluation

Input: vi−n = xi−n, for i = 1, . . . n
for i = 1 . . . ` do

vi = φi (vP(i))

end
Output: f (x) = v`

• Nodes for Independent variables:
vi−n = xi−n, for i = 1, . . . , n

• Nodes for Intermediate variables:
vi = φi (vP(i)), for i = 1, . . . , `.

Each φi a elemental function with derivatives coded.
AD packages transform users functions to standard form.



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating standardized function

• How do we differentiate our Standardized function?

• How do we differentiate an algorithm?

• Solution: represent as a composition of operators.

• We know how to differentiate operators.



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating standardized function

• How do we differentiate our Standardized function?

• How do we differentiate an algorithm?

• Solution: represent as a composition of operators.

• We know how to differentiate operators.



Third-Order Methods Automatic Differentiation Preliminary Tests

State transformation

Make an operator that calculates a single node

Big vector of all values

v := (v1−n, . . . , vi−1, vi , vi+1, . . . , v`)

The ith State Transformation (Griewank)

Φi : Rn+` → Rn+`,

v 7→ (v1−n, . . . , vi−1, φi (vP(i)), vi+1, . . . , v`),



Third-Order Methods Automatic Differentiation Preliminary Tests

State transformation

Make an operator that calculates a single node
Big vector of all values

v := (v1−n, . . . , vi−1, vi , vi+1, . . . , v`)

The ith State Transformation (Griewank)

Φi : Rn+` → Rn+`,

v 7→ (v1−n, . . . , vi−1, φi (vP(i)), vi+1, . . . , v`),



Third-Order Methods Automatic Differentiation Preliminary Tests

State transformation

Make an operator that calculates a single node
Big vector of all values

v := (v1−n, . . . , vi−1, vi , vi+1, . . . , v`)

The ith State Transformation (Griewank)

Φi : Rn+` → Rn+`,

v 7→ (v1−n, . . . , vi−1, φi (vP(i)), vi+1, . . . , v`),



Third-Order Methods Automatic Differentiation Preliminary Tests

State transformation

Make an operator that calculates a single node
Big vector of all values

v := (v1−n, . . . , vi−1, vi , vi+1, . . . , v`)

The ith State Transformation (Griewank)

Φi : Rn+` → Rn+`,

v 7→ (v1−n, . . . , vi−1, φi (vP(i)), vi+1, . . . , v`),



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = φ1(v−1) 1 v2 = φ2(v−1, v0)2

v3 = φ3(v2, v1) 3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

Ix

(v1−n, v0, 0, 0, 0)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = φ1(v−1) 1 v2 = φ2(v−1, v0)2

v3 = φ3(v2, v1) 3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

Ix

(v1−n, v0, 0, 0, 0)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = φ1(v−1) 1

v2 = φ2(v−1, v0)2

v3 = φ3(v2, v1) 3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

Φ1 ◦ Ix

(v1−n, v0, v1, 0, 0)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = φ1(v−1)

1

v2 = φ2(v−1, v0)2

v3 = φ3(v2, v1) 3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

Φ2 ◦ Φ1 ◦ Ix

(v1−n, v0, v1, v2, 0)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = φ1(v−1)

1

v2 = φ2(v−1, v0)

2

v3 = φ3(v2, v1) 3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

Φ3 ◦ Φ2 ◦ Φ1 ◦ Ix

(v1−n, v0, v1, v2, v3)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = φ1(v−1)

1

v2 = φ2(v−1, v0)

2

v3 = φ3(v2, v1)

3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

f (x) = eT3+nΦ3 ◦ Φ2 ◦ Φ1 ◦ Ix

v3 = eT3+n(v1−n, v0, v1, v2, v3)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

v−1 = x−1 v0 = x0

−1 0

v1 = φ1(v−1)

1

v2 = φ2(v−1, v0)

2

v3 = φ3(v2, v1)

3

φ3(φ1(x−1), φ2(x−1, x0))
v−1 = x−1

v0 = x0

v1 = φ1(v−1)
v2 = φ2(v−1, v0)
v3 = φ3(v2, v1)

f (x) = eT3+nΦ3 ◦ Φ2 ◦ Φ1 ◦ Ix

v3 = eT3+n(v1−n, v0, v1, v2, v3)

We can differentiate compositions of operators



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix
Chain-rule says:

Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

v̄T ← eT`+n

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!
• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix
Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

v̄T ← eT`+n

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f ))

independent of n!
• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix
Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

v̄T ← eT`+n

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!
• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix
Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

v̄T ← v̄TDΦ`

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!
• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix
Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

v̄T ← v̄TDΦ`−1

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!
• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix

Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!

• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix

Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!

• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix

Chain-rule says: Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!

• Back on the graph (where calculations actually take place)



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2 v̄0 =

∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2 v̄0 =

∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2 v̄0 =

∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2 v̄0 =

∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

2v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2 v̄0 =

∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

1v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2 v̄0 =

∂φ2

∂x0
v̄2

v̄−1 =
∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2

v̄0 =
∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

∂φ1
∂x−1

∂φ2
∂x0

∂φ2
∂x−1

∂φ3
∂v2

∂φ3
∂v1

v̄3 = 1 3

v̄1 = ∂φ3
∂v1

v̄2 = ∂φ3
∂v2

v̄−1 =
∂φ2

∂x−1
v̄2

v̄0 =
∂φ2

∂x0
v̄2v̄−1 =

∂φ1

∂x−1
v̄1 +

∂φ2

∂x−1
v̄2

∂f

∂x−1
= v̄−1

∂f

∂x0
= v̄0



Third-Order Methods Automatic Differentiation Preliminary Tests

D2f =

Differentiating again gets messy

Use induction instead

f (x) = e`+nΦ2 ◦ Φ1(x)

D2f = eT`+nD
2Φ2 · (DΦ1,DΦ1) + DΦ2 · D2Φ1.

D3f · d = eT`+nD
3Φ2 · (DΦ1,DΦ1,DΦ1d) + eT`+nDΦ2 · D3Φ1d

+ eT`+nD
2Φ2 ·

(
(DΦ1,D2Φ1d) + (D2Φ1d ,DΦ1) + (D2Φ1,DΦ1d)

)
Solve in reverse, apply inductively, solve a case with ` compositions.



Third-Order Methods Automatic Differentiation Preliminary Tests

D2f = Differentiating again gets messy

Use induction instead

f (x) = e`+nΦ2 ◦ Φ1(x)

D2f = eT`+nD
2Φ2 · (DΦ1,DΦ1) + DΦ2 · D2Φ1.

D3f · d = eT`+nD
3Φ2 · (DΦ1,DΦ1,DΦ1d) + eT`+nDΦ2 · D3Φ1d

+ eT`+nD
2Φ2 ·

(
(DΦ1,D2Φ1d) + (D2Φ1d ,DΦ1) + (D2Φ1,DΦ1d)

)
Solve in reverse, apply inductively, solve a case with ` compositions.



Third-Order Methods Automatic Differentiation Preliminary Tests

D2f = Differentiating again gets messy

Use induction instead

f (x) = e`+nΦ2 ◦ Φ1(x)

D2f = eT`+nD
2Φ2 · (DΦ1,DΦ1) + DΦ2 · D2Φ1.

D3f · d = eT`+nD
3Φ2 · (DΦ1,DΦ1,DΦ1d) + eT`+nDΦ2 · D3Φ1d

+ eT`+nD
2Φ2 ·

(
(DΦ1,D2Φ1d) + (D2Φ1d ,DΦ1) + (D2Φ1,DΦ1d)

)
Solve in reverse, apply inductively, solve a case with ` compositions.



Third-Order Methods Automatic Differentiation Preliminary Tests

D2f = Differentiating again gets messy

Use induction instead

f (x) = e`+nΦ2 ◦ Φ1(x)

D2f = eT`+nD
2Φ2 · (DΦ1,DΦ1) + DΦ2 · D2Φ1.

D3f · d = eT`+nD
3Φ2 · (DΦ1,DΦ1,DΦ1d) + eT`+nDΦ2 · D3Φ1d

+ eT`+nD
2Φ2 ·

(
(DΦ1,D2Φ1d) + (D2Φ1d ,DΦ1) + (D2Φ1,DΦ1d)

)
Solve in reverse, apply inductively, solve a case with ` compositions.



Third-Order Methods Automatic Differentiation Preliminary Tests

D2f = Differentiating again gets messy

Use induction instead

f (x) = e`+nΦ2 ◦ Φ1(x)

D2f = eT`+nD
2Φ2 · (DΦ1,DΦ1) + DΦ2 · D2Φ1.

D3f · d = eT`+nD
3Φ2 · (DΦ1,DΦ1,DΦ1d) + eT`+nDΦ2 · D3Φ1d

+ eT`+nD
2Φ2 ·

(
(DΦ1,D2Φ1d) + (D2Φ1d ,DΦ1) + (D2Φ1,DΦ1d)

)
Solve in reverse, apply inductively, solve a case with ` compositions.



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6 f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

66 f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6

5

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6

4

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6

3

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6

2

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6

1

h23

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian on Graph

−2 −1 0

1 2

4

3

5

6

h23h12

h13

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2

v5 = 3v3

v6 = v4v5

D2f =

 0 h12 h13

h12 0 h23

h13 h12 0





Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian Results
• Implemented version average 9s for Hessian matrices

106 × 106 from CUTE.
• Faster then state-of-the-art graph coloring based methods,

Gebremedhin, Manne, Pothen, Walther, Tarafdar

D2f (x) D2f (x)S

⇒

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251–2738.



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian Results
• Implemented version average 9s for Hessian matrices

106 × 106 from CUTE.
• Faster then state-of-the-art graph coloring based methods,

Gebremedhin, Manne, Pothen, Walther, Tarafdar

D2f (x) D2f (x)S

⇒

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251–2738.



Third-Order Methods Automatic Differentiation Preliminary Tests

Reverse Hessian Results
• Implemented version average 9s for Hessian matrices

106 × 106 from CUTE.
• Faster then state-of-the-art graph coloring based methods,

Gebremedhin, Manne, Pothen, Walther, Tarafdar

D2f (x) D2f (x)S

⇒

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251–2738.



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating operators works for higher orders

Same induction technique, design reverse method for

D3f (x) =

A sparse symmetric cube

d
dtD

2f (x + td)|0 = D3f (x) · d =

A sparse symmetric matrix. No
cube ever formed. Pseudocode



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating operators works for higher orders

Same induction technique, design reverse method for

D3f (x) =

A sparse symmetric cube

d
dtD

2f (x + td)|0 = D3f (x) · d =

A sparse symmetric matrix. No
cube ever formed. Pseudocode



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating operators works for higher orders

Same induction technique, design reverse method for

D3f (x) =

A sparse symmetric cube

d
dtD

2f (x + td)|0 = D3f (x) · d =

A sparse symmetric matrix. No
cube ever formed. Pseudocode



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating operators works for higher orders

Same induction technique, design reverse method for

D3f (x) =

A sparse symmetric cube

d
dtD

2f (x + td)|0 = D3f (x) · d =

A sparse symmetric matrix. No
cube ever formed. Pseudocode



Third-Order Methods Automatic Differentiation Preliminary Tests

Differentiating operators works for higher orders

Same induction technique, design reverse method for

D3f (x) =

A sparse symmetric cube

d
dtD

2f (x + td)|0 = D3f (x) · d =

A sparse symmetric matrix. No
cube ever formed. Pseudocode



Third-Order Methods Automatic Differentiation Preliminary Tests

Tests calculating D3f (x) · v is fast

Average 10 seconds for dimension = 106 × 106

Costs 1.08% of D2f (x), on average

name Pattern nnz/n D3f (x) · v + D2f (x)

cosine B 3 3.0000 5.25
chainwood B 3 1.4999 7.22
morebv B 3 3.0000 9.44
scon1dls B 3 0.7002 8.12
bdexp B 5 0.0004 3.86
pspdoc B 5 4.9999 5.97
augmlagn 5× 5 diagonal blocks 4.9998 9.28
brybnd B 11 12.9996 38.79
chainros trigexp B 3 + D 6 4.4999 12.87
toiqmerg B 7 6.9998 8.89
arwhead arrow 3.0000 6.78
nondquar arrow + B 3 4.9999 5.61
sinquad frame + diagonal 4.9999 10.01
bdqrtic arrow + B 7 8.9998 19.62
noncvxu2 irregular 6.9998 9.55
ncvxqp3 irregular 6.9997 6.48
heavey band B 39 38.9995 61.27

What functions?



Third-Order Methods Automatic Differentiation Preliminary Tests

Tests calculating D3f (x) · v is fast

Average 10 seconds for dimension = 106 × 106

Costs 1.08% of D2f (x), on average

name Pattern nnz/n D3f (x) · v + D2f (x)

cosine B 3 3.0000 5.25
chainwood B 3 1.4999 7.22
morebv B 3 3.0000 9.44
scon1dls B 3 0.7002 8.12
bdexp B 5 0.0004 3.86
pspdoc B 5 4.9999 5.97
augmlagn 5× 5 diagonal blocks 4.9998 9.28
brybnd B 11 12.9996 38.79
chainros trigexp B 3 + D 6 4.4999 12.87
toiqmerg B 7 6.9998 8.89
arwhead arrow 3.0000 6.78
nondquar arrow + B 3 4.9999 5.61
sinquad frame + diagonal 4.9999 10.01
bdqrtic arrow + B 7 8.9998 19.62
noncvxu2 irregular 6.9998 9.55
ncvxqp3 irregular 6.9997 6.48
heavey band B 39 38.9995 61.27

What functions?



Third-Order Methods Automatic Differentiation Preliminary Tests

Large dimensional tests become possible
Sometimes Newton is faster

Arrow head(x) =
n−1∑
i=1

(
−4xi + 3.0 + (x2

i + x2
n−1)2

)
n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 5 (7s) 5(14s) 5(11s) 5(11s)

Broyden banded(x) =
n∑

i=1

xi (2 + 5x2
i ) + 1−

∑
j∈Ji

xj(1 + xj)

2

Ji = {j ∈ 1 · · · n : max(1, i−1) ≤ j ≤ min(n, i+5)}, for i = 1, . . . , n.

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 125 (290s) 117 (768s) 117 (770s) 118 (791s)



Third-Order Methods Automatic Differentiation Preliminary Tests

Large dimensional tests become possible
Sometimes Newton is faster

Arrow head(x) =
n−1∑
i=1

(
−4xi + 3.0 + (x2

i + x2
n−1)2

)
n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 5 (7s) 5(14s) 5(11s) 5(11s)

Broyden banded(x) =
n∑

i=1

xi (2 + 5x2
i ) + 1−

∑
j∈Ji

xj(1 + xj)

2

Ji = {j ∈ 1 · · · n : max(1, i−1) ≤ j ≤ min(n, i+5)}, for i = 1, . . . , n.

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 125 (290s) 117 (768s) 117 (770s) 118 (791s)



Third-Order Methods Automatic Differentiation Preliminary Tests

Sometimes Halley-Chebyshev is better
λ makes a difference

Chain Wood(x) =

n/2−2∑
i=1

(
100(x2i − x2

2i−1)2 + (1.0− x2i−1)2

+ 90(x2i+2 − x2
2i+1)2 + (1.0− x2i+1)2

+ 10(x2i + x2i+2 − 2.0)2 + (x2i − x2i+2)2/10
)

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 NC NC NC 18 (54.7s)

bdqrtic(x) =
n−4∑
i=1

(
(−4xi + 3.0)2 + (x2

i + 2x2
i+1 + 3x2

i+2 + 4x2
i+3 + 5x2

n )2
)

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

100 2683(2.6s) 62 (0.2 s) 62 (0.2s) 51 (0.2s)
104 105 > (20min) 94 (40s) 94 (40s) 93 (40s)



Third-Order Methods Automatic Differentiation Preliminary Tests

Sometimes Halley-Chebyshev is better
λ makes a difference

Chain Wood(x) =

n/2−2∑
i=1

(
100(x2i − x2

2i−1)2 + (1.0− x2i−1)2

+ 90(x2i+2 − x2
2i+1)2 + (1.0− x2i+1)2

+ 10(x2i + x2i+2 − 2.0)2 + (x2i − x2i+2)2/10
)

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 NC NC NC 18 (54.7s)

bdqrtic(x) =
n−4∑
i=1

(
(−4xi + 3.0)2 + (x2

i + 2x2
i+1 + 3x2

i+2 + 4x2
i+3 + 5x2

n )2
)

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

100 2683(2.6s) 62 (0.2 s) 62 (0.2s) 51 (0.2s)
104 105 > (20min) 94 (40s) 94 (40s) 93 (40s)



Third-Order Methods Automatic Differentiation Preliminary Tests

Conclusions & Contributions

• method for designing high order AD algorithms

• new third-order methods for large-scale

Robert Gower, Artur Gower (2013)
Higher-order Reverse Automatic Differentiation with
emphasis on the third-order
submitted www.maths.ed.ac.uk/ERGO/

• Automatic derivatives ⇒ Empirical comparisons of high order
methods possible.

• Too many failures for Halley-Cheby on general nonlinear. Step
size & damping required.

• What is possible if high order information is not so expensive?

www.maths.ed.ac.uk/ERGO/‎


Third-Order Methods Automatic Differentiation Preliminary Tests

Conclusions & Contributions

• method for designing high order AD algorithms

• new third-order methods for large-scale

Robert Gower, Artur Gower (2013)
Higher-order Reverse Automatic Differentiation with
emphasis on the third-order
submitted www.maths.ed.ac.uk/ERGO/

• Automatic derivatives ⇒ Empirical comparisons of high order
methods possible.

• Too many failures for Halley-Cheby on general nonlinear. Step
size & damping required.

• What is possible if high order information is not so expensive?

www.maths.ed.ac.uk/ERGO/‎


Third-Order Methods Automatic Differentiation Preliminary Tests

References

J.M. Gutiérrez and M.a. Hernández (1997)

A family of Chebyshev-Halley type methods in Banach spaces

Bulletin of the Australian Mathematical Society 1(55), 113–133.

Geir Gundersen and Trond Steihaug (2012)

On diagonally structured problems in unconstrained optimization using an
inexact super Halley method

Journal of Computational and Applied Mathematics 15(236), 3685–3695.

W. Hock and K. Schittkowski (1980)

Test examples for nonlinear programming codes

Journal of Optimization Theory and Applications, 30, pp. 127–129.

Ladislav Luksan and Jan Vlcek (2003)

Test problems for unconstrained optimization



Third-Order Methods Automatic Differentiation Preliminary Tests

HANK U

QUESTIONS?



Third-Order Methods Automatic Differentiation Preliminary Tests

HANK U
QUESTIONS?



Third-Order Methods Automatic Differentiation Preliminary Tests

We have hand-picked sixteen problems from the CUTE collection,
augm- lagn from [Hock, 1980], toiqmerg (Toint Quadratic Merging
problem) and chainros trigexp (Chained Rosenbrook function with
Trigonometric and exponential constraints) from [Vlcek, 2003] for
the experiments. We have also created a function

heavey band(x , band) =
n−band∑
i=0

sin

band∑
j=0

xi+j


For our experiments, we tested heavey band(x, 20). Back



Third-Order Methods Automatic Differentiation Preliminary Tests

Preliminary tests Halley-Chebychev × Newton
Halley-Chebyshev iteration costs 2 to 3 X Newton step

• Large dimensional tests become possible

• Some cases Halley-Chebyshev better

• Some cases Newton is better

• λ makes a difference!

Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 74 74 74
cragglevy:10 FAIL 218 218 225
chainwood:2.105 FAIL FAIL FAIL 18
brybnd:105 125 117 117 118
arwhead:2.105 5 5 5 5
sinquad:2.105 29 18 18 20
bdqrtic:100 2683 62 62 51
bdqrtic:104 105 > 94 94 93

Table for time



Third-Order Methods Automatic Differentiation Preliminary Tests

Preliminary tests Halley-Chebychev × Newton
Halley-Chebyshev iteration costs 2 to 3 X Newton step

• Large dimensional tests become possible

• Some cases Halley-Chebyshev better

• Some cases Newton is better

• λ makes a difference!

Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 74 74 74
cragglevy:10 FAIL 218 218 225
chainwood:2.105 FAIL FAIL FAIL 18
brybnd:105 125 117 117 118
arwhead:2.105 5 5 5 5
sinquad:2.105 29 18 18 20
bdqrtic:100 2683 62 62 51
bdqrtic:104 105 > 94 94 93

Table for time



Third-Order Methods Automatic Differentiation Preliminary Tests

Preliminary tests Halley-Chebychev × Newton
Halley-Chebyshev iteration costs 2 to 3 X Newton step

• Large dimensional tests become possible

• Some cases Halley-Chebyshev better

• Some cases Newton is better

• λ makes a difference!

Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 74 74 74
cragglevy:10 FAIL 218 218 225
chainwood:2.105 FAIL FAIL FAIL 18
brybnd:105 125 117 117 118
arwhead:2.105 5 5 5 5
sinquad:2.105 29 18 18 20
bdqrtic:100 2683 62 62 51
bdqrtic:104 105 > 94 94 93

Table for time



Third-Order Methods Automatic Differentiation Preliminary Tests

Preliminary tests Halley-Chebychev × Newton
Halley-Chebyshev iteration costs 2 to 3 X Newton step

• Large dimensional tests become possible

• Some cases Halley-Chebyshev better

• Some cases Newton is better

• λ makes a difference!

Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 74 74 74
cragglevy:10 FAIL 218 218 225
chainwood:2.105 FAIL FAIL FAIL 18
brybnd:105 125 117 117 118
arwhead:2.105 5 5 5 5
sinquad:2.105 29 18 18 20
bdqrtic:100 2683 62 62 51
bdqrtic:104 105 > 94 94 93

Table for time



Third-Order Methods Automatic Differentiation Preliminary Tests

Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 0.03 0.02 0.02
cragglevy:10 FAIL 0.05 0.03 0.04
chainwood:2 · 105 FAIL FAIL FAIL 54.7
brybnd:105 289.96 767.51 769.36 790.02
arwhead:2 · 105 6.31 13.54 10.79 10.98
sinquad:2 · 105 22.67 39.56 39.65 44.07
bdqrtic:100 2.58 0.18 0.16 0.14
Bdqrtic:104 1492 > 39.57 39.78 39.34

Back



Third-Order Methods Automatic Differentiation Preliminary Tests

Algorithm 1: Reverse Hessian Directional Derivative

initialization: v̇1 = d , v = y ,W = Td = 0 ∈ Rm`×m`

for i = 1, . . . , ` do
v̇i ← DΦi · v̇i−1

end
for i = `, . . . , 1 do

Td ← Td · (DΦi ,DΦi )
Td ← Td + W ·

(
(DΦi ,D2Φi 1̧1dotv̇i−1) + (D2Φi · v̇i−1,DΦi )

)
Td ← Td + W · (D2Φi ,DΦi · v̇i−1)
Td ← Td + vTD3Φi · v̇i−1

W ←W · (DΦi ,DΦi ) + vTD2Φi

vT ← vTDΦi

end

Output: yTD3F (x) · d ← Td , yTD2F ←W , yTDF ← vT

Back


	Third-Order Methods
	Halley-Cheby class
	Implementing issues

	Automatic Differentiation
	AD Setup
	Reverse Hessian
	Tensor-slices

	Preliminary Tests

