Third Order Methods using slices of the Tensor and AD developments

Robert Gower collaborators: **Artur Gower**, Margarida P Mello my supervisor: Jacek Gondzio

Edinburgh Research Group in Optimization

イロト 不得 トイヨト イヨト

э

gowerrobert@gmail.com

Automatic Differentiation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What's to come

- Third Order information can be used in practical nonlinear solvers
 - Automatic Differentiation (*AD*) methods that calculate third-order information at the same cost of the Hessian.
 - A family of third order methods that requires solving two linear systems.
 - Large-Scale tests comparing to Newton

Automatic Differentiation

Preliminary Tests

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Overview

Third-Order Methods

Halley-Cheby class Implementing issues

Automatic Differentiation

AD Setup Reverse Hessian Tensor-slices

Preliminary Tests

Preliminary Tests

Why not third order

Unconstrained minimization of $f : \mathbb{R}^n \to \mathbb{R}$. First-order

 $d = -\alpha Df(x)$ $(Df(x) \equiv \text{The gradient})$

Second-order

$$D^{2}f(x) \cdot d + Df(x) = 0$$

($D^{2}f(x) \equiv$ The Hessian matrix)
 $n(x) = -(D^{2}f(x))^{-1}Df(x).$

Why stop here?

Why not third order

Unconstrained minimization of $f : \mathbb{R}^n \to \mathbb{R}$. First-order

 $d = -\alpha Df(x)$ $(Df(x) \equiv \text{The gradient})$

Second-order

$$D^{2}f(x) \cdot d + Df(x) = 0$$

($D^{2}f(x) \equiv$ The Hessian matrix)
 $n(x) = -(D^{2}f(x))^{-1}Df(x).$

Why stop here? It's hard to solve these n

$$\frac{1}{2}D^3f(x)\cdot (d,d) + D^2f(x)\cdot d + Df(x) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can we get third order convergence with only linear systems?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we get third order convergence with **only** linear systems? Halley's Method

 $(D^2f(x))\cdot d+Df(x)=0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can we get third order convergence with **only** linear systems? Halley's Method

$$(\underbrace{\frac{1}{2}D^3f(x)\cdot n(x)}_{\text{A matrix}}+D^2f(x))\cdot d+Df(x)=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we get third order convergence with **only** linear systems? Halley's Method

$$(\underbrace{\frac{1}{2}D^3f(x)\cdot n(x)}_{\text{A matrix}}+D^2f(x))\cdot d+Df(x)=0.$$

Chebyshev's Method

$$D^2f(x)\cdot d+Df(x)=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we get third order convergence with **only** linear systems? Halley's Method

$$(\underbrace{\frac{1}{2}D^3f(x)\cdot n(x)}_{\text{A matrix}}+D^2f(x))\cdot d+Df(x)=0.$$

Chebyshev's Method

$$D^{2}f(x) \cdot d + Df(x) + \underbrace{\frac{1}{2}D^{3}f(x) \cdot (n(x), n(x))}_{\text{A vector}} = 0.$$

Can we get third order convergence with **only** linear systems? Halley's Method

$$(\underbrace{\frac{1}{2}D^3f(x)\cdot n(x)}_{\text{A matrix}}+D^2f(x))\cdot d+Df(x)=0.$$

Chebyshev's Method

$$D^{2}f(x) \cdot d + Df(x) + \underbrace{\frac{1}{2}D^{3}f(x) \cdot (n(x), n(x))}_{\text{A vector}} = 0.$$

Why exactly these red pieces? Order 3 local convergence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Convex $\lambda \in [0, 1]$ combinations Halley-Chebyshev family

$$(1 - \lambda) \left(\frac{1}{2}D^{3}f(x) \cdot n(x) + D^{2}f(x)\right) \cdot d + Df(x)\right) = 0$$

+
$$\lambda \left(D^{2}f(x) \cdot d + Df(x) + \frac{1}{2}D^{3}f(x) \cdot (n(x))^{2}\right) = 0$$

=
$$(D^{2}f(x) + \frac{(1 - \lambda)}{2}D^{3}f(x) \cdot n(x)) \cdot d + Df(x) + \frac{\lambda}{2}D^{3}f(x) \cdot (n(x))^{2} = 0$$

Convex $\lambda \in [0, 1]$ combinations Halley-Chebyshev family

$$(1 - \lambda) \left(\frac{1}{2}D^{3}f(x) \cdot n(x) + D^{2}f(x)\right) \cdot d + Df(x)\right) = 0$$

+
$$\lambda \left(D^{2}f(x) \cdot d + Df(x) + \frac{1}{2}D^{3}f(x) \cdot (n(x))^{2}\right) = 0$$

=
$$(D^{2}f(x) + \frac{(1 - \lambda)}{2}D^{3}f(x) \cdot n(x)) \cdot d + Df(x) + \frac{\lambda}{2}D^{3}f(x) \cdot (n(x))^{2} = 0$$

- Halley-Chebyshev family [Gutierrez, 1997]
- Implicit form [Steihaug, 2012]
- Convex combination ⇒ Order-3 convergence (My homepage)
- Higher order generalizations possible!

Handling third order derivative

Problem: $D^3f(x)$ is cube.

Preliminary Tests

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Handling third order derivative

Problem: $D^3f(x)$ is cube.

Handling third order derivative

Problem: $D^3f(x)$ is cube.

Current approach (Gundersen and Steihaug 2012):

- Data structures that balance Sparsity × Access time.
- Faster contractions $D^3f(x) \cdot n(x)$.

Handling third order derivative

Problem: $D^3f(x)$ is cube.

- Data structures that balance Sparsity × Access time.
- Faster contractions $D^3f(x) \cdot n(x)$.

But we only need

$$\frac{d}{dt}D^2f(x+t\cdot n(x))|_0$$
$$=D^3f(x)\cdot n(x).$$

Handling third order derivative

Problem: $D^3f(x)$ is cube.

Current approach (Gundersen and Steihaug 2012):

- Data structures that balance Sparsity × Access time.
- Faster contractions $D^3f(x) \cdot n(x)$.

But we only need

$$\frac{d}{dt}D^2f(x+t\cdot n(x))|_0$$
$$=D^3f(x)\cdot n(x).$$

Automatic Differentiation solution.

Automatic Differentiation

Preliminary Tests

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why High Order AD?

- High order optimization methods
- Calculating quadratures (Vinay Kariwala 2012, G. F. Corliss, A. Griewank 1997)
- bifurcations and periodic orbits (J. Guckenheimer and B. Meloon 2000)
- Classifying Degenerate singularities and equilibria.

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T

Automatic Differentiation

 $f(h(x_{-1}), g(x_{-1}, x_0))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T

Automatic Differentiation

$$f(h(x_{-1}), g(x_{-1}, x_0))$$

$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = h(v_{-1})$$

$$v_2 = g(v_{-1}, v_0)$$

$$v_3 = f(v_2, v_1)$$

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1−n},..., y_{m−n})^T
- Unravel function into simpler functions.

Automatic Differentiation

 $f(h(x_{-1}), g(x_{-1}, x_0))$ $v_{-1} = x_{-1}$ $v_0 = x_0$ $v_1 = h(v_{-1})$ $v_2 = g(v_{-1}, v_0)$ $v_3 = f(v_2, v_1)$

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

Automatic Differentiation

 $f(h(x_{-1}), g(x_{-1}, x_0))$ $v_{-1} = x_{-1}$ $v_0 = x_0$ $v_1 = h(v_{-1})$ $v_2 = g(v_{-1}, v_0)$ $v_3 = f(v_2, v_1)$

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

Automatic Differentiation

 $f(h(x_{-1}), g(x_{-1}, x_0))$ $v_{-1} = x_{-1}$ $v_0 = x_0$ $v_1 = h(v_{-1})$ $v_2 = g(v_{-1}, v_0)$ $v_3 = f(v_2, v_1)$

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

Automatic Differentiation

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1−n},..., y_{m−n})^T
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

Automatic Differentiation

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1−n},..., y_{m−n})^T
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

Automatic Differentiation

- Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.
- $(j \text{ is a predecessor of } i) \equiv j \in P(i).$

Automatic Differentiation

Preliminary Tests

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - 釣�?

Automatic Differentiation

Preliminary Tests

<ロ> (四) (四) (三) (三) (三)

Millions of nodes are common (This one has just 150)

Automatic Differentiation

- Standardize function names φ_i
- In general case might have many intermediate functions

Standardized Function Evaluation

Input: $v_{i-n} = x_{i-n}$, for i = 1, ... nfor $i = 1 ... \ell$ do $v_i = \phi_i(v_{P(i)})$ end Output: $f(x) = v_\ell$

• Nodes for *Independent variables:*

 $v_{i-n} = x_{i-n}, \quad \text{for } i = 1, \dots, n$

Nodes for Intermediate variables:
 v_i = φ_i(v_{P(i)}), for i = 1,..., ℓ.

Each ϕ_i a *elemental* function with derivatives coded. **AD** packages transform users functions to standard form.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Differentiating standardized function

- How do we differentiate our Standardized function?
- How do we differentiate an algorithm?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Differentiating standardized function

- How do we differentiate our Standardized function?
- How do we differentiate an algorithm?
- Solution: represent as a composition of operators.
- We know how to differentiate operators.

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

State transformation

Make an operator that calculates a single node

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

State transformation

Make an operator that calculates a single node Big vector of all values

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

State transformation

Make an operator that calculates a single node Big vector of all values

$$\mathbf{v} := (\mathbf{v}_{1-n}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_i, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{\ell})$$

Preliminary Tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

State transformation

Make an operator that calculates a single node Big vector of all values

$$\mathbf{v} := (\mathbf{v}_{1-n}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_i, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{\ell})$$

The *i*th State Transformation (Griewank)

$$\Phi^{i} \colon \mathbb{R}^{n+\ell} \to \mathbb{R}^{n+\ell},$$

$$v \mapsto (v_{1-n}, \dots, v_{i-1}, \phi_{i}(v_{P(i)}), v_{i+1}, \dots, v_{\ell}),$$

Automatic Differentiation

Preliminary Tests

$$\phi_{3}(\phi_{1}(x_{-1}), \phi_{2}(x_{-1}, x_{0}))$$

$$v_{-1} = x_{-1}$$

$$v_{0} = x_{0}$$

$$v_{1} = \phi_{1}(v_{-1})$$

$$v_{2} = \phi_{2}(v_{-1}, v_{0})$$

$$v_{3} = \phi_{3}(v_{2}, v_{1})$$

$$\phi_3(\phi_1(x_{-1}), \phi_2(x_{-1}, x_0)) v_{-1} = x_{-1} v_0 = x_0 v_1 = \phi_1(v_{-1}) v_2 = \phi_2(v_{-1}, v_0) v_3 = \phi_3(v_2, v_1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{I}x$ ($v_{1-n}, v_0, 0, 0, 0$)

Automatic Differentiation

Preliminary Tests

$$\phi_3(\phi_1(x_{-1}), \phi_2(x_{-1}, x_0)) v_{-1} = x_{-1} v_0 = x_0 v_1 = \phi_1(v_{-1}) v_2 = \phi_2(v_{-1}, v_0) v_3 = \phi_3(v_2, v_1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\Phi^1 \circ \mathcal{I}x$ $(v_{1-n}, v_0, v_1, 0, 0)$

Automatic Differentiation

Preliminary Tests

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\Phi^2 \circ \Phi^1 \circ \mathcal{I}_X$ $(v_{1-n}, v_0, v_1, v_2, 0)$

Automatic Differentiation

Preliminary Tests

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$\Phi^3 \circ \Phi^2 \circ \Phi^1 \circ \mathcal{I}_X$$
$$(v_{1-n}, v_0, v_1, v_2, v_3)$$

Automatic Differentiation

Preliminary Tests

$$f(x) = e_{3+n}^{T} \Phi^3 \circ \Phi^2 \circ \Phi^1 \circ \mathcal{I} x$$
$$v_3 = e_{3+n}^{T} (v_{1-n}, v_0, v_1, v_2, v_3)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Automatic Differentiation

Preliminary Tests

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$f(x) = e_{3+n}^{T} \Phi^3 \circ \Phi^2 \circ \Phi^1 \circ \mathcal{I}_X$$
$$v_3 = e_{3+n}^{T} (v_{1-n}, v_0, v_1, v_2, v_3)$$

We can differentiate compositions of operators

Automatic Differentiation

Preliminary Tests

Reverse Gradient

$$f(x) = e_{\ell+n}^T \Phi^\ell \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^1 \circ \mathcal{I}x$$

Chain-rule says:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^1 \circ \mathcal{I} x$$

Chain-rule says: Multiply the Jacobians

$$Df = e_{\ell+n}^T D\Phi^\ell \cdot D\Phi^{\ell-1} \cdots D\Phi^1 \cdot \mathcal{I}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I}x$$

Chain-rule says: Multiply the Jacobians

$$Df = \frac{e_{\ell+n}^{\mathsf{T}} D\Phi^{\ell} \cdot D\Phi^{\ell-1} \cdots D\Phi^{1} \cdot \mathcal{I}$$

$$\bar{\mathbf{v}}^T \leftarrow \mathbf{e}_{\ell+n}^T$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I}x$$

Chain-rule says: Multiply the Jacobians

$$Df = e_{\ell+n}^{\mathsf{T}} D\Phi^{\ell} \cdot D\Phi^{\ell-1} \cdots D\Phi^{1} \cdot \mathcal{I}$$

 $\bar{\boldsymbol{v}}^{T} \leftarrow \bar{\boldsymbol{v}}^{T} D \Phi^{\ell}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I}x$$

Chain-rule says: Multiply the Jacobians

$$Df = e_{\ell+n}^{\mathsf{T}} D\Phi^{\ell} \cdot D\Phi^{\ell-1} \cdots D\Phi^{1} \cdot \mathcal{I}$$

 $\bar{\boldsymbol{v}}^{T} \leftarrow \bar{\boldsymbol{v}}^{T} D \Phi^{\ell-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I}x$$

Chain-rule says: Multiply the Jacobians

$$Df = e_{\ell+n}^{\mathsf{T}} D\Phi^{\ell} \cdot D\Phi^{\ell-1} \cdots D\Phi^{1} \cdot \mathcal{I}$$

initialization: $\bar{v} = e^{\ell+n}$ for $i = \ell, ..., 1$ do $\bar{v}^T \leftarrow \bar{v}^T D \Phi^i$ end Output: $Df(x) = \bar{v}$

• Implemented version O(eval(f)) independent of n!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I}x$$

Chain-rule says: Multiply the Jacobians

$$Df = e_{\ell+n}^{\mathsf{T}} D\Phi^{\ell} \cdot D\Phi^{\ell-1} \cdots D\Phi^{1} \cdot \mathcal{I}$$

initialization: $\bar{v} = e^{\ell+n}$ for $i = \ell, ..., 1$ do $\bar{v}^T \leftarrow \bar{v}^T D \Phi^i$ end Output: $Df(x) = \bar{v}$

• Implemented version O(eval(f)) independent of n!

Reverse Gradient

$$f(x) = e_{\ell+n}^{\mathsf{T}} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I}x$$

Chain-rule says: Multiply the Jacobians

$$Df = e_{\ell+n}^T D\Phi^\ell \cdot D\Phi^{\ell-1} \cdots D\Phi^1 \cdot \mathcal{I}$$

initialization: $\bar{v} = e^{\ell+n}$ for $i = \ell, ..., 1$ do $\bar{v}^T \leftarrow \bar{v}^T D \Phi^i$ end Output: $Df(x) = \bar{v}$

- Implemented version O(eval(f)) independent of n!
- Back on the graph (where calculations actually take place)

Automatic Differentiation

Preliminary Tests

Automatic Differentiation

Preliminary Tests

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Automatic Differentiation

Preliminary Tests

Automatic Differentiation

Preliminary Tests

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Automatic Differentiation

Preliminary Tests

Automatic Differentiation

(日)、

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Automatic Differentiation

Preliminary Tests

 $D^2 f =$

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$D^2 f$ = Differentiating again gets messy

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$D^2 f$ = Differentiating again gets messy

Use induction instead

$$f(x) = e_{\ell+n} \Phi^2 \circ \Phi^1(x)$$

Automatic Differentiation

Preliminary Tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$D^2 f$ = Differentiating again gets messy

Use induction instead

$$f(x) = e_{\ell+n} \Phi^2 \circ \Phi^1(x)$$

$$D^2 f = e_{\ell+n}^{\mathsf{T}} D^2 \Phi^2 \cdot (D\Phi^1, D\Phi^1) + D\Phi^2 \cdot D^2 \Phi^1.$$

Automatic Differentiation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$D^2 f$$
 = Differentiating again gets messy

Use induction instead

$$f(x) = e_{\ell+n} \Phi^2 \circ \Phi^1(x)$$

$$D^2 f = e_{\ell+n}^T D^2 \Phi^2 \cdot (D\Phi^1, D\Phi^1) + D\Phi^2 \cdot D^2 \Phi^1.$$

$$D^{3}f \cdot d = e_{\ell+n}^{T} D^{3} \Phi^{2} \cdot (D\Phi^{1}, D\Phi^{1}, D\Phi^{1}d) + e_{\ell+n}^{T} D\Phi^{2} \cdot D^{3} \Phi^{1}d + e_{\ell+n}^{T} D^{2} \Phi^{2} \cdot ((D\Phi^{1}, D^{2} \Phi^{1}d) + (D^{2} \Phi^{1}d, D\Phi^{1}) + (D^{2} \Phi^{1}, D\Phi^{1}d))$$

Solve in reverse, apply inductively, solve a case with ℓ compositions.

Automatic Differentiation

Preliminary Tests

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Reverse Hessian on Graph

Automatic Differentiation

Preliminary Tests

Reverse Hessian on Graph

$$f(x) = (x_{-2} + 1)(x_{-1} + 1)3(x_0 + 1)$$

$$v_1 = v_{-2} + 1$$

$$v_2 = v_{-1} + 1$$

$$v_3 = v_0 + 1$$

$$v_4 = v_1v_2$$

$$v_5 = 3v_3$$

$$v_6 = v_4v_5$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Automatic Differentiation

Preliminary Tests

Reverse Hessian on Graph

$$f(x) = (x_{-2} + 1)(x_{-1} + 1)3(x_0 + 1)$$

$$v_1 = v_{-2} + 1$$

$$v_2 = v_{-1} + 1$$

$$v_3 = v_0 + 1$$

$$v_4 = v_1v_2$$

$$v_5 = 3v_3$$

$$v_6 = v_4v_5$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Automatic Differentiation

Preliminary Tests

Reverse Hessian on Graph

$$f(x) = (x_{-2} + 1)(x_{-1} + 1)3(x_0 + 1)$$

$$v_1 = v_{-2} + 1$$

$$v_2 = v_{-1} + 1$$

$$v_3 = v_0 + 1$$

$$v_4 = v_1v_2$$

$$v_5 = 3v_3$$

$$v_6 = v_4v_5$$

Automatic Differentiation

Preliminary Tests

Reverse Hessian on Graph

$$f(x) = (x_{-2} + 1)(x_{-1} + 1)3(x_0 + 1)$$

$$v_1 = v_{-2} + 1$$

$$v_2 = v_{-1} + 1$$

$$v_3 = v_0 + 1$$

$$v_4 = v_1v_2$$

$$v_5 = 3v_3$$

$$v_6 = v_4v_5$$

Automatic Differentiation

Reverse Hessian on Graph

$$f(x) = (x_{-2} + 1)(x_{-1} + 1)3(x_0 + 1)$$

$$v_1 = v_{-2} + 1$$

$$v_2 = v_{-1} + 1$$

$$v_3 = v_0 + 1$$

$$v_4 = v_1v_2$$

$$v_5 = 3v_3$$

$$v_6 = v_4v_5$$

Automatic Differentiation

Preliminary Tests

Reverse Hessian on Graph

$$f(x) = (x_{-2} + 1)(x_{-1} + 1)3(x_0 + 1)$$

$$v_1 = v_{-2} + 1$$

$$v_2 = v_{-1} + 1$$

$$v_3 = v_0 + 1$$

$$v_4 = v_1v_2$$

$$v_5 = 3v_3$$

$$v_6 = v_4v_5$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Automatic Differentiation

Preliminary Tests

Reverse Hessian on Graph

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Reverse Hessian Results

- Implemented version average 9s for Hessian matrices $10^6\times 10^6$ from CUTE.
- Faster then state-of-the-art graph coloring based methods, Gebremedhin, Manne, Pothen, Walther, Tarafdar

 \Rightarrow

 $D^2f(x)$ $D^2f(x)S$

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251-2738.

⇒ > = √QQ

Reverse Hessian Results

- Implemented version average 9s for Hessian matrices $10^6 \times 10^6$ from CUTE.
- Faster then state-of-the-art graph coloring based methods, Gebremedhin, Manne, Pothen, Walther, Tarafdar

 $D^2f(x)S$

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251–2738.

Reverse Hessian Results

- Implemented version average 9s for Hessian matrices $10^6\times 10^6$ from CUTE.
- Faster then state-of-the-art graph coloring based methods, Gebremedhin, Manne, Pothen, Walther, Tarafdar

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251-2738.

Differentiating operators works for higher orders

Same induction technique, design reverse method for

Differentiating operators works for higher orders

Same induction technique, design reverse method for

 $D^3f(x) =$

Differentiating operators works for higher orders

Same induction technique, design reverse method for $D^3f(x) = \frac{\frac{d}{dt}D^2f(x+td)|_0 = D^3f(x) \cdot d = D^3f(x) \cdot d$

Differentiating operators works for higher orders

Same induction technique, design reverse method for

 $D^3f(x) =$

Differentiating operators works for higher orders

Same induction technique, design reverse method for

 $\frac{d}{dt}D^2f(x+td)|_0 = D^3f(x)\cdot d =$

A sparse symmetric matrix. No cube ever formed. Pseudocode

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Tests calculating $D^3 f(x) \cdot v$ is fast Average 10 seconds for dimension = $10^6 \times 10^6$ Costs 1.08% of $D^2 f(x)$, on average

Tests calculating $D^3 f(x) \cdot v$ is fast Average 10 seconds for dimension = $10^6 \times 10^6$ Costs 1.08% of $D^2 f(x)$, on average

name	Pattern	nnz/n	$D^3f(x)\cdot v + D^2f(x)$
cosine	В 3	3.0000	5.25
chainwood	В 3	1.4999	7.22
morebv	В 3	3.0000	9.44
scon1dls	В 3	0.7002	8.12
bdexp	B 5	0.0004	3.86
pspdoc	B 5	4.9999	5.97
augmlagn	5 imes 5 diagonal blocks	4.9998	9.28
brybnd	B 11	12.9996	38.79
chainros_trigexp	B 3 + D 6	4.4999	12.87
toiqmerg	В 7	6.9998	8.89
arwhead	arrow	3.0000	6.78
nondquar	arrow + B 3	4.9999	5.61
sinquad	frame + diagonal	4.9999	10.01
bdqrtic	arrow $+ B 7$	8.9998	19.62
noncvxu2	irregular	6.9998	9.55
ncvxqp3	irregular	6.9997	6.48
heavey_band	B 39	38.9995 🗸	🗆) (1) (1)

200

Automatic Differentiation

Preliminary Tests

Large dimensional tests become possible Sometimes Newton is faster

Arrow head(x) =
$$\sum_{i=1}^{n-1} (-4x_i + 3.0 + (x_i^2 + x_{n-1}^2)^2)$$

n
 Newton
 HallC
$$\lambda = 0$$
 HallC $\lambda = 0.5$
 HallC $\lambda = 1.0$
 $2 \cdot 10^5$
 5 (7s)
 5(14s)
 5(11s)
 5(11s)

Broyden banded(x) =
$$\sum_{i=1}^{n} \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J_i} x_j (1 + x_j) \right)^2$$

 $J_{i} = \{j \in 1 \cdots n : \max(1, i-1) \le j \le \min(n, i+5)\}, \text{ for } i = 1, \dots, n.$ $\boxed{\begin{array}{c|c|c|c|c|c|c|c|c|} n & \text{Newton} & \text{HallC } \lambda = 0 & \text{HallC } \lambda = 0.5 & \text{HallC } \lambda = 1.0 \\ \hline \hline 2 \cdot 10^{5} & 125 & (290s) & 117 & (768s) & 117 & (770s) & 118 & (791s) \\ \hline \end{array}}$

Automatic Differentiation

Preliminary Tests

Large dimensional tests become possible Sometimes Newton is faster

Arrow head(x) =
$$\sum_{i=1}^{n-1} (-4x_i + 3.0 + (x_i^2 + x_{n-1}^2)^2)$$

n
 Newton
 HallC
$$\lambda = 0$$
 HallC $\lambda = 0.5$
 HallC $\lambda = 1.0$
 $2 \cdot 10^5$
 5 (7s)
 5(14s)
 5(11s)
 5(11s)

Broyden banded(x) =
$$\sum_{i=1}^{n} \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J_i} x_j (1 + x_j) \right)^2$$

 $J_{i} = \{j \in 1 \cdots n : \max(1, i-1) \le j \le \min(n, i+5)\}, \text{ for } i = 1, \dots, n.$ $\boxed{\begin{array}{c|c|c|c|c|c|c|c|c|} n & \text{Newton} & \text{HallC } \lambda = 0 & \text{HallC } \lambda = 0.5 & \text{HallC } \lambda = 1.0 \\ \hline 2 \cdot 10^{5} & 125 \ (290s) & 117 \ (768s) & 117 \ (770s) & 118 \ (791s) \\ \hline \end{array}}$

Sometimes Halley-Chebyshev is better λ makes a difference

Chain Wood(x) =
$$\sum_{i=1}^{n/2-2} (100(x_{2i} - x_{2i-1}^2)^2 + (1.0 - x_{2i-1})^2 + 90(x_{2i+2} - x_{2i+1}^2)^2 + (1.0 - x_{2i+1})^2 + 10(x_{2i} + x_{2i+2} - 2.0)^2 + (x_{2i} - x_{2i+2})^2/10)$$

$$| \underline{n} | Newton | HallC \lambda = 0 | HallC \lambda = 0.5 | HallC \lambda = 1.0 | \\ \hline 2 \cdot 10^5 | NC | NC | NC | 18 (54.7s) |$$

$$\mathsf{bdqrtic}(x) = \sum_{i=1}^{n-4} \left((-4x_i + 3.0)^2 + (x_i^2 + 2x_{i+1}^2 + 3x_{i+2}^2 + 4x_{i+3}^2 + 5x_n^2)^2 \right)$$

n	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
100	2683(2.6s)	62 (0.2 s)	62 (0.2s)	51 (0.2s)
104	$10^5 > (20 min)$	94 (40s)	94 (40s)	93 (40s)

Automatic Differentiation

Preliminary Tests

Sometimes Halley-Chebyshev is better λ makes a difference

Chain Wood(x) =
$$\sum_{i=1}^{n/2-2} (100(x_{2i} - x_{2i-1}^2)^2 + (1.0 - x_{2i-1})^2 + 90(x_{2i+2} - x_{2i+1}^2)^2 + (1.0 - x_{2i+1})^2 + 10(x_{2i} + x_{2i+2} - 2.0)^2 + (x_{2i} - x_{2i+2})^2/10)$$

n Newton HallC $\lambda = 0$ HallC $\lambda = 0.5$ HallC $\lambda = 1.0$
 $2 \cdot 10^5$ NC NC NC 18 (54.7s)

$$\mathsf{bdqrtic}(x) = \sum_{i=1}^{n-4} \left((-4x_i + 3.0)^2 + (x_i^2 + 2x_{i+1}^2 + 3x_{i+2}^2 + 4x_{i+3}^2 + 5x_n^2)^2 \right)$$

n	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
100	2683(2.6s)	62 (0.2 s)	62 (0.2s)	51 (0.2s)
104	$10^5 > (20 min)$	94 (40s)	94 (40s)	93 (40s)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions & Contributions

- method for designing high order AD algorithms
- new third-order methods for large-scale
 - Robert Gower, Artur Gower (2013) Higher-order Reverse Automatic Differentiation with emphasis on the third-order submitted www.maths.ed.ac.uk/ERGO/
- Automatic derivatives ⇒ Empirical comparisons of high order methods possible.
- Too many failures for Halley-Cheby on general nonlinear. Step size & damping required.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions & Contributions

- method for designing high order AD algorithms
- new third-order methods for large-scale
 - Robert Gower, Artur Gower (2013) Higher-order Reverse Automatic Differentiation with emphasis on the third-order submitted www.maths.ed.ac.uk/ERGO/
- Automatic derivatives ⇒ Empirical comparisons of high order methods possible.
- Too many failures for Halley-Cheby on general nonlinear. Step size & damping required.
- What is possible if high order information is not so expensive?

References

Automatic Differentiation

Preliminary Tests

Automatic Differentiation

Preliminary Tests

We have hand-picked sixteen problems from the CUTE collection, augm- lagn from [Hock, 1980], toiqmerg (Toint Quadratic Merging problem) and chainros trigexp (Chained Rosenbrook function with Trigonometric and exponential constraints) from [Vlcek, 2003] for the experiments. We have also created a function

heavey_band(x, band) =
$$\sum_{i=0}^{n-band} \sin\left(\sum_{j=0}^{band} x_{i+j}\right)$$

For our experiments, we tested heavey band(x, 20). • Back

Preliminary tests Halley-Chebychev \times Newton Halley-Chebyshev iteration costs 2 to 3 X Newton step

- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name: dimension	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10 ⁵	FAIL	FAIL	FAIL	18
brybnd:10 ⁵	125	117	117	118
arwhead:2.10 ⁵	5	5	5	5
sinquad:2.10 ⁵	29	18	18	20
bdqrtic:100	2683	62	62	51
bdqrtic:10 ⁴	$10^{5} >$	94	94	93

Preliminary tests Halley-Chebychev \times Newton

Halley-Chebyshev iteration costs 2 to 3 X Newton step

- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name: dimension	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10 ⁵	FAIL	FAIL	FAIL	18
brybnd:10 ⁵	125	117	117	118
arwhead:2.10 ⁵	5	5	5	5
sinquad:2.10 ⁵	29	18	18	20
bdqrtic:100	2683	62	62	51
bdqrtic:10 ⁴	$10^{5} >$	94	94	93

Preliminary tests Halley-Chebychev \times Newton

Halley-Chebyshev iteration costs 2 to 3 X Newton step

- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name: dimension	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10 ⁵	FAIL	FAIL	FAIL	18
brybnd:10 ⁵	125	117	117	118
arwhead:2.10 ⁵	5	5	5	5
sinquad:2.10 ⁵	29	18	18	20
bdqrtic:100	2683	62	62	51
bdqrtic:10 ⁴	$10^{5} >$	94	94	93

Preliminary tests Halley-Chebychev \times Newton

Halley-Chebyshev iteration costs 2 to 3 X Newton step

- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name: dimension	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10 ⁵	FAIL	FAIL	FAIL	18
brybnd:10 ⁵	125	117	117	118
arwhead:2.10 ⁵	5	5	5	5
sinquad:2.10 ⁵	29	18	18	20
bdqrtic:100	2683	62	62	51
bdqrtic:10 ⁴	$10^{5} >$	94	94	93

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Name:dimension	Newton	HallC $\lambda = 0$	HallC $\lambda = 0.5$	HallC $\lambda = 1.0$
cosine:30	FAIL	0.03	0.02	0.02
cragglevy:10	FAIL	0.05	0.03	0.04
chainwood: $2 \cdot 10^5$	FAIL	FAIL	FAIL	54.7
brybnd:10 ⁵	289.96	767.51	769.36	790.02
arwhead: $2 \cdot 10^5$	6.31	13.54	10.79	10.98
sinquad: $2 \cdot 10^5$	22.67	39.56	39.65	44.07
bdqrtic:100	2.58	0.18	0.16	0.14
Bdqrtic:10 ⁴	1492 >	39.57	39.78	39.34

▶ Back

Automatic Differentiation

▲日▼ ▲□▼ ▲日▼ ▲日▼ □ ● ○○○

Algorithm 1: Reverse Hessian Directional Derivative

initialization: $\dot{v}^1 = d, \overline{v} = y, W = Td = 0 \in \mathbb{R}^{m_\ell \times m_\ell}$ for $i = 1, \ldots, \ell$ do $\dot{\mathbf{v}}^i \leftarrow D \Phi^i \cdot \dot{\mathbf{v}}^{i-1}$ end for $i = \ell, \ldots, 1$ do $Td \leftarrow Td \cdot (D\Phi^i, D\Phi^i)$ $Td \leftarrow Td + W \cdot ((D\Phi^{i}, D^{2}\Phi^{i} 1 dot \dot{v}^{i-1}) + (D^{2}\Phi^{i} \cdot \dot{v}^{i-1}, D\Phi^{i}))$ $Td \leftarrow Td + W \cdot (D^2 \Phi^i, D\Phi^i \cdot \dot{v}^{i-1})$ $Td \leftarrow Td + \overline{v}^T D^3 \Phi^i \cdot \dot{v}^{i-1}$ $W \leftarrow W \cdot (D\Phi^i, D\Phi^i) + \overline{v}^T D^2 \Phi^i$ $\overline{\mathbf{v}}^T \leftarrow \overline{\mathbf{v}}^T D \Phi^i$ end **Output**: $y^T D^3 F(x) \cdot d \leftarrow Td, y^T D^2 F \leftarrow W, y^T D F \leftarrow \overline{v}^T$

Back