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Third-Order Methods Automatic Differentiation Preliminary Tests

What’s to come

• Third Order information can be used in practical nonlinear
solvers

• Automatic Differentiation (AD) methods that calculate
third-order information at the same cost of the Hessian.

• A family of third order methods that requires solving two linear
systems.

• Large-Scale tests comparing to Newton
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Overview

Third-Order Methods
Halley-Cheby class
Implementing issues

Automatic Differentiation
AD Setup
Reverse Hessian
Tensor-slices

Preliminary Tests
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Why not third order

Unconstrained minimization of f : Rn → R.
First-order

d = −αDf (x)

(Df (x) ≡ The gradient)

Second-order
D2f (x) · d + Df (x) = 0

(D2f (x) ≡ The Hessian matrix)

n(x) = −(D2f (x))−1Df (x).

Why stop here?

It’s hard to solve these n

1

2
D3f (x) · (d , d) + D2f (x) · d + Df (x) = 0.
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Can we get third order convergence with only linear systems?

Halley’s Method

(D2f (x)) · d + Df (x) = 0.

Chebyshev’s Method

D2f (x) · d + Df (x) = 0.

Why exactly these red pieces? Order 3 local convergence
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Convex λ ∈ [0, 1] combinations Halley-Chebyshev family

(1− λ)
(

1
2D

3f (x) · n(x) + D2f (x)) · d + Df (x)
)

= 0

+

λ
(
D2f (x) · d + Df (x) + 1

2D
3f (x) · (n(x))2

)
= 0

=(
D2f (x) +

(1− λ)

2
D3f (x) · n(x)

)
·d+Df (x)+

λ

2
D3f (x)·(n(x))2 = 0

• Halley-Chebyshev family [Gutierrez, 1997]

• Implicit form [Steihaug, 2012]

• Convex combination ⇒ Order-3 convergence (My homepage)

• Higher order generalizations possible!



Third-Order Methods Automatic Differentiation Preliminary Tests

Convex λ ∈ [0, 1] combinations Halley-Chebyshev family

(1− λ)
(

1
2D

3f (x) · n(x) + D2f (x)) · d + Df (x)
)

= 0

+

λ
(
D2f (x) · d + Df (x) + 1

2D
3f (x) · (n(x))2

)
= 0

=(
D2f (x) +

(1− λ)

2
D3f (x) · n(x)

)
·d+Df (x)+

λ

2
D3f (x)·(n(x))2 = 0

• Halley-Chebyshev family [Gutierrez, 1997]

• Implicit form [Steihaug, 2012]

• Convex combination ⇒ Order-3 convergence (My homepage)

• Higher order generalizations possible!



Third-Order Methods Automatic Differentiation Preliminary Tests

Handling third order derivative

Problem: D3f (x) is cube.

Current approach (Gundersen and
Steihaug 2012 ):

• Data structures that balance
Sparsity × Access time.

• Faster contractions D3f (x) · n(x).

But we only need

d

dt
D2f (x + t · n(x)) |0

=D3f (x) · n(x).

Automatic Differentiation solution.
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Why High Order AD?

• High order optimization methods

• Calculating quadratures (Vinay Kariwala 2012, G. F. Corliss,
A. Griewank 1997)

• bifurcations and periodic orbits (J. Guckenheimer and B.
Meloon 2000)

• Classifying Degenerate singularities and equilibria.
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−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1

v0 = x0

v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

• Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

• Unravel function into simpler functions.

• Node numbering is in order of evaluation.

• (j is a predecessor of i) ≡ j ∈ P(i).
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Millions of nodes are common (This one has just 150)
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−1 0

1 2

3

v−1 = x−1 v0 = x0

v1 = φ1(v−1) v2 = φ2(v−1, v0)
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• Standardize function names φi

• In general case might have many intermediate functions
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Standardized Function Evaluation

Input: vi−n = xi−n, for i = 1, . . . n
for i = 1 . . . ` do

vi = φi (vP(i))

end
Output: f (x) = v`

• Nodes for Independent variables:
vi−n = xi−n, for i = 1, . . . , n

• Nodes for Intermediate variables:
vi = φi (vP(i)), for i = 1, . . . , `.

Each φi a elemental function with derivatives coded.
AD packages transform users functions to standard form.
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Differentiating standardized function

• How do we differentiate our Standardized function?

• How do we differentiate an algorithm?

• Solution: represent as a composition of operators.

• We know how to differentiate operators.
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State transformation

Make an operator that calculates a single node

Big vector of all values

v := (v1−n, . . . , vi−1, vi , vi+1, . . . , v`)

The ith State Transformation (Griewank)

Φi : Rn+` → Rn+`,

v 7→ (v1−n, . . . , vi−1, φi (vP(i)), vi+1, . . . , v`),
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Reverse Gradient

f (x) = eT`+nΦ` ◦ Φ`−1 ◦ · ◦ Φ1 ◦ Ix
Chain-rule says:

Multiply the Jacobians

Df = eT`+nDΦ` · DΦ`−1 · · ·DΦ1 · I

v̄T ← eT`+n

initialization: v̄ = e`+n

for i = `, . . . , 1 do
v̄T ← v̄TDΦi

end
Output: Df (x) = v̄

• Implemented version O(eval(f )) independent of n!
• Back on the graph (where calculations actually take place)
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• Back on the graph (where calculations actually take place)
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D2f =

Differentiating again gets messy

Use induction instead

f (x) = e`+nΦ2 ◦ Φ1(x)

D2f = eT`+nD
2Φ2 · (DΦ1,DΦ1) + DΦ2 · D2Φ1.

D3f · d = eT`+nD
3Φ2 · (DΦ1,DΦ1,DΦ1d) + eT`+nDΦ2 · D3Φ1d

+ eT`+nD
2Φ2 ·

(
(DΦ1,D2Φ1d) + (D2Φ1d ,DΦ1) + (D2Φ1,DΦ1d)

)
Solve in reverse, apply inductively, solve a case with ` compositions.
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Reverse Hessian on Graph
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D2f =

 0 h12 h13

h12 0 h23

h13 h12 0
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Reverse Hessian Results
• Implemented version average 9s for Hessian matrices

106 × 106 from CUTE.
• Faster then state-of-the-art graph coloring based methods,

Gebremedhin, Manne, Pothen, Walther, Tarafdar

D2f (x) D2f (x)S

⇒

Robert Gower, M P Mello (2012)

A new framework for the computation of Hessians

Optimization Methods and Software 2(27), 251–2738.
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Differentiating operators works for higher orders

Same induction technique, design reverse method for

D3f (x) =

A sparse symmetric cube

d
dtD

2f (x + td)|0 = D3f (x) · d =

A sparse symmetric matrix. No
cube ever formed. Pseudocode
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Tests calculating D3f (x) · v is fast

Average 10 seconds for dimension = 106 × 106

Costs 1.08% of D2f (x), on average

name Pattern nnz/n D3f (x) · v + D2f (x)

cosine B 3 3.0000 5.25
chainwood B 3 1.4999 7.22
morebv B 3 3.0000 9.44
scon1dls B 3 0.7002 8.12
bdexp B 5 0.0004 3.86
pspdoc B 5 4.9999 5.97
augmlagn 5× 5 diagonal blocks 4.9998 9.28
brybnd B 11 12.9996 38.79
chainros trigexp B 3 + D 6 4.4999 12.87
toiqmerg B 7 6.9998 8.89
arwhead arrow 3.0000 6.78
nondquar arrow + B 3 4.9999 5.61
sinquad frame + diagonal 4.9999 10.01
bdqrtic arrow + B 7 8.9998 19.62
noncvxu2 irregular 6.9998 9.55
ncvxqp3 irregular 6.9997 6.48
heavey band B 39 38.9995 61.27

What functions?
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Large dimensional tests become possible
Sometimes Newton is faster

Arrow head(x) =
n−1∑
i=1

(
−4xi + 3.0 + (x2

i + x2
n−1)2

)
n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 5 (7s) 5(14s) 5(11s) 5(11s)

Broyden banded(x) =
n∑

i=1

xi (2 + 5x2
i ) + 1−

∑
j∈Ji

xj(1 + xj)

2

Ji = {j ∈ 1 · · · n : max(1, i−1) ≤ j ≤ min(n, i+5)}, for i = 1, . . . , n.

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 125 (290s) 117 (768s) 117 (770s) 118 (791s)
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Sometimes Halley-Chebyshev is better
λ makes a difference

Chain Wood(x) =

n/2−2∑
i=1

(
100(x2i − x2

2i−1)2 + (1.0− x2i−1)2

+ 90(x2i+2 − x2
2i+1)2 + (1.0− x2i+1)2

+ 10(x2i + x2i+2 − 2.0)2 + (x2i − x2i+2)2/10
)

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

2 · 105 NC NC NC 18 (54.7s)

bdqrtic(x) =
n−4∑
i=1

(
(−4xi + 3.0)2 + (x2

i + 2x2
i+1 + 3x2

i+2 + 4x2
i+3 + 5x2

n )2
)

n Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

100 2683(2.6s) 62 (0.2 s) 62 (0.2s) 51 (0.2s)
104 105 > (20min) 94 (40s) 94 (40s) 93 (40s)
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Conclusions & Contributions

• method for designing high order AD algorithms

• new third-order methods for large-scale

Robert Gower, Artur Gower (2013)
Higher-order Reverse Automatic Differentiation with
emphasis on the third-order
submitted www.maths.ed.ac.uk/ERGO/

• Automatic derivatives ⇒ Empirical comparisons of high order
methods possible.

• Too many failures for Halley-Cheby on general nonlinear. Step
size & damping required.

• What is possible if high order information is not so expensive?

www.maths.ed.ac.uk/ERGO/‎
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We have hand-picked sixteen problems from the CUTE collection,
augm- lagn from [Hock, 1980], toiqmerg (Toint Quadratic Merging
problem) and chainros trigexp (Chained Rosenbrook function with
Trigonometric and exponential constraints) from [Vlcek, 2003] for
the experiments. We have also created a function

heavey band(x , band) =
n−band∑
i=0

sin

band∑
j=0

xi+j


For our experiments, we tested heavey band(x, 20). Back
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Preliminary tests Halley-Chebychev × Newton
Halley-Chebyshev iteration costs 2 to 3 X Newton step

• Large dimensional tests become possible

• Some cases Halley-Chebyshev better

• Some cases Newton is better

• λ makes a difference!

Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 74 74 74
cragglevy:10 FAIL 218 218 225
chainwood:2.105 FAIL FAIL FAIL 18
brybnd:105 125 117 117 118
arwhead:2.105 5 5 5 5
sinquad:2.105 29 18 18 20
bdqrtic:100 2683 62 62 51
bdqrtic:104 105 > 94 94 93

Table for time
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Name:dimension Newton HallC λ = 0 HallC λ = 0.5 HallC λ = 1.0

cosine:30 FAIL 0.03 0.02 0.02
cragglevy:10 FAIL 0.05 0.03 0.04
chainwood:2 · 105 FAIL FAIL FAIL 54.7
brybnd:105 289.96 767.51 769.36 790.02
arwhead:2 · 105 6.31 13.54 10.79 10.98
sinquad:2 · 105 22.67 39.56 39.65 44.07
bdqrtic:100 2.58 0.18 0.16 0.14
Bdqrtic:104 1492 > 39.57 39.78 39.34

Back
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Algorithm 1: Reverse Hessian Directional Derivative

initialization: v̇1 = d , v = y ,W = Td = 0 ∈ Rm`×m`

for i = 1, . . . , ` do
v̇i ← DΦi · v̇i−1

end
for i = `, . . . , 1 do

Td ← Td · (DΦi ,DΦi )
Td ← Td + W ·

(
(DΦi ,D2Φi 1̧1dotv̇i−1) + (D2Φi · v̇i−1,DΦi )

)
Td ← Td + W · (D2Φi ,DΦi · v̇i−1)
Td ← Td + vTD3Φi · v̇i−1

W ←W · (DΦi ,DΦi ) + vTD2Φi

vT ← vTDΦi

end

Output: yTD3F (x) · d ← Td , yTD2F ←W , yTDF ← vT

Back
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