Third Order Methods using slices of the Tensor and $A D$ developments

Robert Gower
collaborators: Artur Gower, Margarida P Mello my supervisor: Jacek Gondzio

Edinburgh Research Group in Optimization

NUI Galway
OÉ Gaillimh
gowerrobert@gmail.com

What's to come

- Third Order information can be used in practical nonlinear solvers
- Automatic Differentiation ($A D$) methods that calculate third-order information at the same cost of the Hessian.
- A family of third order methods that requires solving two linear systems.
- Large-Scale tests comparing to Newton

Overview

Third-Order Methods
Halley-Cheby class
Implementing issues

Automatic Differentiation
AD Setup
Reverse Hessian
Tensor-slices

Preliminary Tests

Why not third order

Unconstrained minimization of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
First-order

$$
\begin{gathered}
d=-\alpha D f(x) \\
(D f(x) \equiv \text { The gradient })
\end{gathered}
$$

Second-order

$$
\begin{gathered}
D^{2} f(x) \cdot d+D f(x)=0 \\
\left(D^{2} f(x) \equiv \text { The Hessian matrix }\right) \\
n(x)=-\left(D^{2} f(x)\right)^{-1} D f(x)
\end{gathered}
$$

Why stop here?

Why not third order

Unconstrained minimization of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
First-order

$$
\begin{gathered}
d=-\alpha D f(x) \\
(D f(x) \equiv \text { The gradient })
\end{gathered}
$$

Second-order

$$
\begin{gathered}
D^{2} f(x) \cdot d+D f(x)=0 \\
\left(D^{2} f(x) \equiv \text { The Hessian matrix }\right) \\
n(x)=-\left(D^{2} f(x)\right)^{-1} D f(x)
\end{gathered}
$$

Why stop here? It's hard to solve these n

$$
\frac{1}{2} D^{3} f(x) \cdot(d, d)+D^{2} f(x) \cdot d+D f(x)=0
$$

Can we get third order convergence with only linear systems?

Can we get third order convergence with only linear systems? Halley's Method

$$
\left(D^{2} f(x)\right) \cdot d+D f(x)=0
$$

Can we get third order convergence with only linear systems? Halley's Method

$$
(\underbrace{\frac{1}{2} D^{3} f(x) \cdot n(x)}_{\text {A matrix }}+D^{2} f(x)) \cdot d+D f(x)=0
$$

Can we get third order convergence with only linear systems? Halley's Method

$$
(\underbrace{\frac{1}{2} D^{3} f(x) \cdot n(x)}_{\text {A matrix }}+D^{2} f(x)) \cdot d+D f(x)=0
$$

Chebyshev's Method

$$
D^{2} f(x) \cdot d+D f(x)=0
$$

Can we get third order convergence with only linear systems?
Halley's Method

$$
(\underbrace{\frac{1}{2} D^{3} f(x) \cdot n(x)}_{\text {A matrix }}+D^{2} f(x)) \cdot d+D f(x)=0 .
$$

Chebyshev's Method

$$
D^{2} f(x) \cdot d+D f(x)+\underbrace{\frac{1}{2} D^{3} f(x) \cdot(n(x), n(x))}_{\text {A vector }}=0
$$

Can we get third order convergence with only linear systems?
Halley's Method

$$
(\underbrace{\frac{1}{2} D^{3} f(x) \cdot n(x)}_{\Delta}+D^{2} f(x)) \cdot d+D f(x)=0
$$

Chebyshev's Method

$$
D^{2} f(x) \cdot d+D f(x)+\underbrace{\frac{1}{2} D^{3} f(x) \cdot(n(x), n(x))}_{\text {A vector }}=0
$$

Why exactly these red pieces? Order 3 local convergence

Convex $\lambda \in[0,1]$ combinations Halley-Chebyshev family

$$
\begin{gathered}
\left.(1-\lambda)\left(\frac{1}{2} D^{3} f(x) \cdot n(x)+D^{2} f(x)\right) \cdot d+D f(x)\right)=0 \\
+ \\
\lambda\left(D^{2} f(x) \cdot d+D f(x)+\frac{1}{2} D^{3} f(x) \cdot(n(x))^{2}\right)=0 \\
= \\
\left(D^{2} f(x)+\frac{(1-\lambda)}{2} D^{3} f(x) \cdot n(x)\right) \cdot d+D f(x)+\frac{\lambda}{2} D^{3} f(x) \cdot(n(x))^{2}=0
\end{gathered}
$$

Convex $\lambda \in[0,1]$ combinations Halley-Chebyshev family

$$
\begin{gathered}
\left.(1-\lambda)\left(\frac{1}{2} D^{3} f(x) \cdot n(x)+D^{2} f(x)\right) \cdot d+D f(x)\right)=0 \\
+ \\
\lambda\left(D^{2} f(x) \cdot d+D f(x)+\frac{1}{2} D^{3} f(x) \cdot(n(x))^{2}\right)=0 \\
= \\
\left(D^{2} f(x)+\frac{(1-\lambda)}{2} D^{3} f(x) \cdot n(x)\right) \cdot d+D f(x)+\frac{\lambda}{2} D^{3} f(x) \cdot(n(x))^{2}=0
\end{gathered}
$$

- Halley-Chebyshev family [Gutierrez, 1997]
- Implicit form [Steihaug, 2012]
- Convex combination \Rightarrow Order-3 convergence (My homepage)
- Higher order generalizations possible!

Handling third order derivative

Problem: $D^{3} f(x)$ is cube.

Handling third order derivative

Problem: $D^{3} f(x)$ is cube.

Handling third order derivative

Problem: $D^{3} f(x)$ is cube.
Current approach (Gundersen and Steihaug 2012):

- Data structures that balance Sparsity \times Access time.
- Faster contractions $D^{3} f(x) \cdot n(x)$.

Handling third order derivative

Problem: $D^{3} f(x)$ is cube.
Current approach (Gundersen and Steihaug 2012):

- Data structures that balance Sparsity \times Access time.
- Faster contractions $D^{3} f(x) \cdot n(x)$.

But we only need

$$
\begin{gathered}
\left.\frac{d}{d t} D^{2} f(x+t \cdot n(x))\right|_{0} \\
\quad=D^{3} f(x) \cdot n(x)
\end{gathered}
$$

Handling third order derivative

Problem: $D^{3} f(x)$ is cube.
Current approach (Gundersen and Steihaug 2012):

- Data structures that balance Sparsity \times Access time.
- Faster contractions $D^{3} f(x) \cdot n(x)$.

But we only need

$$
\begin{gathered}
\left.\frac{d}{d t} D^{2} f(x+t \cdot n(x))\right|_{0} \\
\quad=D^{3} f(x) \cdot n(x)
\end{gathered}
$$

Automatic Differentiation solution.

Why High Order AD?

- High order optimization methods
- Calculating quadratures (Vinay Kariwala 2012, G. F. Corliss, A. Griewank 1997)
- bifurcations and periodic orbits (J. Guckenheimer and B. Meloon 2000)
- Classifying Degenerate singularities and equilibria.
- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$

$$
f\left(h\left(x_{-1}\right), g\left(x_{-1}, x_{0}\right)\right)
$$

- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$

$$
\begin{aligned}
& f\left(h\left(x_{-1}\right), g\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=h\left(v_{-1}\right) \\
& v_{2}=g\left(v_{-1}, v_{0}\right) \\
& v_{3}=f\left(v_{2}, v_{1}\right)
\end{aligned}
$$

- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$
- Unravel function into simpler functions.

$$
\begin{aligned}
& f\left(h\left(x_{-1}\right), g\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=h\left(v_{-1}\right) \\
& v_{2}=g\left(v_{-1}, v_{0}\right) \\
& v_{3}=f\left(v_{2}, v_{1}\right)
\end{aligned}
$$

- Indices of matrices and vectors shifted by $-n$.

$$
y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}
$$

- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

$$
\begin{aligned}
& f\left(h\left(x_{-1}\right), g\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=h\left(v_{-1}\right) \\
& v_{2}=g\left(v_{-1}, v_{0}\right) \\
& v_{3}=f\left(v_{2}, v_{1}\right)
\end{aligned}
$$

- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

$$
\begin{aligned}
& f\left(h\left(x_{-1}\right), g\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=h\left(v_{-1}\right) \\
& v_{2}=g\left(v_{-1}, v_{0}\right) \\
& v_{3}=f\left(v_{2}, v_{1}\right)
\end{aligned}
$$

- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

- Indices of matrices and vectors shifted by $-n$.
$y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}$
- Unravel function into simpler functions.
- Node numbering is in order of evaluation.

- Indices of matrices and vectors shifted by $-n$.

$$
y \in \mathbb{R}^{m}: y=\left(y_{1-n}, \ldots, y_{m-n}\right)^{T}
$$

- Unravel function into simpler functions.
- Node numbering is in order of evaluation.
- $(j$ is a predecessor of $i) \equiv j \in P(i)$.

0

0

Millions of nodes are common (This one has just 150)

- Standardize function names ϕ_{i}
- In general case might have many intermediate functions

Standardized Function Evaluation

Input: $v_{i-n}=x_{i-n}$, for $i=1, \ldots n$
for $i=1 \ldots \ell$ do
$v_{i}=\phi_{i}\left(v_{P(i)}\right)$
end
Output: $f(x)=v_{\ell}$

- Nodes for Independent variables:

$$
v_{i-n}=x_{i-n}, \quad \text { for } i=1, \ldots, n
$$

- Nodes for Intermediate variables:

$$
v_{i}=\phi_{i}\left(v_{P(i)}\right), \quad \text { for } i=1, \ldots, \ell
$$

Each ϕ_{i} a elemental function with derivatives coded. AD packages transform users functions to standard form.

Differentiating standardized function

- How do we differentiate our Standardized function?
- How do we differentiate an algorithm?

Differentiating standardized function

- How do we differentiate our Standardized function?
- How do we differentiate an algorithm?
- Solution: represent as a composition of operators.
- We know how to differentiate operators.

State transformation

Make an operator that calculates a single node

State transformation

Make an operator that calculates a single node Big vector of all values

State transformation

Make an operator that calculates a single node Big vector of all values

$$
v:=\left(v_{1-n}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{\ell}\right)
$$

State transformation

Make an operator that calculates a single node
Big vector of all values

$$
v:=\left(v_{1-n}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{\ell}\right)
$$

The ith State Transformation (Griewank)

$$
\begin{aligned}
\Phi^{i}: \mathbb{R}^{n+\ell} & \rightarrow \mathbb{R}^{n+\ell} \\
v & \mapsto\left(v_{1-n}, \ldots, v_{i-1}, \phi_{i}\left(v_{P(i)}\right), v_{i+1}, \ldots, v_{\ell}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=\phi_{1}\left(v_{-1}\right) \\
& v_{2}=\phi_{2}\left(v_{-1}, v_{0}\right) \\
& v_{3}=\phi_{3}\left(v_{2}, v_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=\phi_{1}\left(v_{-1}\right) \\
& v_{2}=\phi_{2}\left(v_{-1}, v_{0}\right) \\
& v_{3}=\phi_{3}\left(v_{2}, v_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{I} X \\
\left(v_{1-n}, v_{0}, 0,0,0\right)
\end{gathered}
$$

$$
\begin{aligned}
& \phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
& v_{-1}=x_{-1} \\
& v_{0}=x_{0} \\
& v_{1}=\phi_{1}\left(v_{-1}\right) \\
& v_{2}=\phi_{2}\left(v_{-1}, v_{0}\right) \\
& v_{3}=\phi_{3}\left(v_{2}, v_{1}\right)
\end{aligned}
$$

$$
\phi^{1} \circ \mathcal{I}_{X}
$$

$$
\left(v_{1-n}, v_{0}, v_{1}, 0,0\right)
$$

$$
\begin{gathered}
\Phi^{2} \circ \Phi^{1} \circ \mathcal{I} x \\
\left(v_{1-n}, v_{0}, v_{1}, v_{2}, 0\right)
\end{gathered}
$$

$$
\begin{aligned}
& \Phi^{3} \circ \Phi^{2} \circ \Phi^{1} \circ \mathcal{I} x \\
& \left(v_{1-n}, v_{0}, v_{1}, v_{2}, v_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
f(x)=e_{3+n}^{T} \Phi^{3} \circ \Phi^{2} \circ \Phi^{1} \circ \mathcal{I} x \\
v_{3}=e_{3+n}^{T}\left(v_{1-n}, v_{0}, v_{1}, v_{2}, v_{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
f(x)=e_{3+n}^{T} \Phi^{3} \circ \Phi^{2} \circ \Phi^{1} \circ \mathcal{I} x \\
v_{3}=e_{3+n}^{T}\left(v_{1-n}, v_{0}, v_{1}, v_{2}, v_{3}\right)
\end{gathered}
$$

We can differentiate compositions of operators

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says:

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

$$
\bar{v}^{T} \leftarrow e_{\ell+n}^{T}
$$

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

$$
\bar{v}^{T} \leftarrow \bar{v}^{T} D \Phi^{\ell}
$$

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

$$
\bar{v}^{T} \leftarrow \bar{v}^{T} D \Phi^{\ell-1}
$$

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

initialization: $\bar{v}=e^{\ell+n}$
for $i=\ell, \ldots, 1$ do
$\bar{v}^{T} \leftarrow \bar{v}^{T} D \Phi^{i}$
end
Output: $\operatorname{Df}(x)=\bar{v}$

- Implemented version $O(\operatorname{eval}(f))$ independent of n !

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

initialization: $\bar{v}=e^{\ell+n}$
for $i=\ell, \ldots, 1$ do
$\bar{v}^{T} \leftarrow \bar{v}^{T} D \Phi^{i}$
end
Output: $\operatorname{Df}(x)=\bar{v}$

- Implemented version $O(\operatorname{eval}(f))$ independent of n !

Reverse Gradient

$$
f(x)=e_{\ell+n}^{T} \Phi^{\ell} \circ \Phi^{\ell-1} \circ \cdot \circ \Phi^{1} \circ \mathcal{I} x
$$

Chain-rule says: Multiply the Jacobians

$$
D f=e_{\ell+n}^{T} D \Phi^{\ell} \cdot D \Phi^{\ell-1} \cdots D \Phi^{1} \cdot \mathcal{I}
$$

initialization: $\bar{v}=e^{\ell+n}$
for $i=\ell, \ldots, 1$ do
$\bar{v}^{T} \leftarrow \bar{v}^{T} D \Phi^{i}$
end
Output: $\operatorname{Df}(x)=\bar{v}$

- Implemented version $O(\operatorname{eval}(f))$ independent of n !
- Back on the graph (where calculations actually take place)

$$
f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right)
$$

$$
f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right)
$$

$$
\begin{aligned}
& f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
& \frac{\bar{v}_{3}=1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
& \frac{\bar{v}_{3}=1}{3}
\end{aligned}
$$

$$
f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right)
$$

$$
f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right)
$$

$$
\begin{aligned}
& f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
& \bar{v}_{-1}=\frac{\partial \phi_{1}}{\partial x_{-1}} \bar{v}_{1}+\frac{\partial \phi_{2}}{\partial x_{-1}} \bar{v}_{2} \bar{v}_{0}=\frac{\partial \phi_{2}}{\partial x_{0}} \bar{v}_{2}
\end{aligned}
$$

$$
\begin{gathered}
f(x)=\phi_{3}\left(\phi_{1}\left(x_{-1}\right), \phi_{2}\left(x_{-1}, x_{0}\right)\right) \\
\bar{v}_{-1}=\frac{\partial \phi_{1}}{\partial x_{-1}} \bar{v}_{1}+\frac{\partial \phi_{2}}{\partial x_{-1}} \bar{v}_{2} \bar{v}_{0}=\frac{\partial \phi_{2}}{\partial x_{0}} \bar{v}_{2} \\
\frac{\partial f}{\partial x_{-1}}=\bar{v}_{-1} \quad \frac{\partial f}{\partial x_{0}}=\bar{v}_{0}
\end{gathered}
$$

$$
D^{2} f=
$$

$D^{2} f=$ Differentiating again gets messy

$D^{2} f=$ Differentiating again gets messy

Use induction instead

$$
f(x)=e_{\ell+n} \Phi^{2} \circ \Phi^{1}(x)
$$

$D^{2} f=$ Differentiating again gets messy

Use induction instead

$$
\begin{gathered}
f(x)=e_{\ell+n} \Phi^{2} \circ \Phi^{1}(x) \\
D^{2} f=e_{\ell+n}^{T} D^{2} \Phi^{2} \cdot\left(D \Phi^{1}, D \Phi^{1}\right)+D \Phi^{2} \cdot D^{2} \Phi^{1}
\end{gathered}
$$

$D^{2} f=$ Differentiating again gets messy

Use induction instead

$$
\begin{gathered}
f(x)=e_{\ell+n} \Phi^{2} \circ \Phi^{1}(x) \\
D^{2} f=e_{\ell+n}^{T} D^{2} \Phi^{2} \cdot\left(D \Phi^{1}, D \Phi^{1}\right)+D \Phi^{2} \cdot D^{2} \Phi^{1} \\
D^{3} f \cdot d=e_{\ell+n}^{T} D^{3} \Phi^{2} \cdot\left(D \Phi^{1}, D \Phi^{1}, D \Phi^{1} d\right)+e_{\ell+n}^{T} D \Phi^{2} \cdot D^{3} \Phi^{1} d \\
+e_{\ell+n}^{T} D^{2} \Phi^{2} \cdot\left(\left(D \Phi^{1}, D^{2} \Phi^{1} d\right)+\left(D^{2} \Phi^{1} d, D \Phi^{1}\right)+\left(D^{2} \Phi^{1}, D \Phi^{1} d\right)\right)
\end{gathered}
$$

Solve in reverse, apply inductively, solve a case with ℓ compositions.

Reverse Hessian on Graph

Reverse Hessian Results

- Implemented version average 9s for Hessian matrices $10^{6} \times 10^{6}$ from CUTE.
- Faster then state-of-the-art graph coloring based methods, Gebremedhin, Manne, Pothen, Walther, Tarafdar
$D^{2} f(x)$
$D^{2} f(x) S$

圊
Robert Gower, M P Mello (2012)
A new framework for the computation of Hessians
Optimization Methods and Software 2(27), 251-2738.

Reverse Hessian Results

- Implemented version average 9s for Hessian matrices $10^{6} \times 10^{6}$ from CUTE.
- Faster then state-of-the-art graph coloring based methods, Gebremedhin, Manne, Pothen, Walther, Tarafdar

$D^{2} f(x) S$
\Rightarrow

圊
Robert Gower, M P Mello (2012)
A new framework for the computation of Hessians
Optimization Methods and Software 2(27), 251-2738.

Reverse Hessian Results

- Implemented version average 9s for Hessian matrices $10^{6} \times 10^{6}$ from CUTE.
- Faster then state-of-the-art graph coloring based methods, Gebremedhin, Manne, Pothen, Walther, Tarafdar

R Robert Gower, M P Mello (2012)
A new framework for the computation of Hessians
Optimization Methods and Software 2(27), 251-2738.

Differentiating operators works for higher orders

Same induction technique, design reverse method for

Differentiating operators works for higher orders

Same induction technique, design reverse method for $D^{3} f(x)=$

A sparse symmetric cube

Differentiating operators works for higher orders

Same induction technique, design reverse method for $D^{3} f(x)=$

$$
\left.\frac{d}{d t} D^{2} f(x+t d)\right|_{0}=D^{3} f(x) \cdot d=
$$

A sparse symmetric cube

Differentiating operators works for higher orders

Same induction technique, design reverse method for
$D^{3} f(x)=$

$$
\left.\frac{d}{d t} D^{2} f(x+t d)\right|_{0}=D^{3} f(x) \cdot d=
$$

A sparse symmetric cube

Differentiating operators works for higher orders

Same induction technique, design reverse method for
$D^{3} f(x)=$

$$
\left.\frac{d}{d t} D^{2} f(x+t d)\right|_{0}=D^{3} f(x) \cdot d=
$$

A sparse symmetric cube

A sparse symmetric matrix. No cube ever formed.

Tests calculating $D^{3} f(x) \cdot v$ is fast

Average 10 seconds for dimension $=10^{6} \times 10^{6}$ Costs 1.08% of $D^{2} f(x)$, on average

Tests calculating $D^{3} f(x) \cdot v$ is fast

Average 10 seconds for dimension $=10^{6} \times 10^{6}$ Costs 1.08% of $D^{2} f(x)$, on average

name	Pattern	$\mathrm{nnz} / \mathrm{n}$	$D^{3} f(x) \cdot v+D^{2} f(x)$
cosine	B 3	3.0000	5.25
chainwood	B 3	1.4999	7.22
morebv	B 3	9.44	
scon1dls	B 3	8.12	
bdexp	B 5	3.86	
pspdoc	B 5	0.7000	5.97
augmlagn	5×5 diagonal blocks	4.9999	9.28
brybnd	B 11	12.9996	38.79
chainros_trigexp	B 3 + D 6	4.4999	12.87
toiqmerg	B 7	6.9998	8.89
arwhead	arrow	3.0000	6.78
nondquar	arrow + B 3	4.9999	5.61
sinquad	frame + diagonal	4.9999	10.01
bdqrtic	arrow + B 7	8.9998	19.62
noncvxu2	irregular	6.9998	9.55
ncvxqp3	irregular	6.9997	6.48
heavey_band	B 39	38.9995	$61=27$

Large dimensional tests become possible Sometimes Newton is faster

$$
\text { Arrow head }(x)=\sum_{i=1}^{n-1}\left(-4 x_{i}+3.0+\left(x_{i}^{2}+x_{n-1}^{2}\right)^{2}\right)
$$

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
$2 \cdot 10^{5}$	$5(7 \mathrm{~s})$	$5(14 \mathrm{~s})$	$5(11 \mathrm{~s})$	$5(11 \mathrm{~s})$

$\operatorname{Broyden} \operatorname{banded}(x)=\sum_{i=1}^{n}\left(x_{i}\left(2+5 x_{i}^{2}\right)+1-\sum_{j \in J_{i}} x_{j}\left(1+x_{j}\right)\right)^{2}$
$J_{i}=\{j \in 1 \cdots n: \max (1, i-1) \leq j \leq \min (n, i+5)\}$, for $i=1, \ldots, n$.

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
$2 \cdot 10^{5}$	$125(290 \mathrm{~s})$	$117(768 \mathrm{~s})$	$117(770 \mathrm{~s})$	$118(791 \mathrm{~s})$

Large dimensional tests become possible Sometimes Newton is faster

$$
\text { Arrow head }(x)=\sum_{i=1}^{n-1}\left(-4 x_{i}+3.0+\left(x_{i}^{2}+x_{n-1}^{2}\right)^{2}\right)
$$

n	Newton	HalIC $\lambda=0$	HalIC $\lambda=0.5$	HalIC $\lambda=1.0$
$2 \cdot 10^{5}$	$5(7 \mathrm{~s})$	$5(14 \mathrm{~s})$	$5(11 \mathrm{~s})$	$5(11 \mathrm{~s})$

$\operatorname{Broyden} \operatorname{banded}(x)=\sum_{i=1}^{n}\left(x_{i}\left(2+5 x_{i}^{2}\right)+1-\sum_{j \in J_{i}} x_{j}\left(1+x_{j}\right)\right)^{2}$
$J_{i}=\{j \in 1 \cdots n: \max (1, i-1) \leq j \leq \min (n, i+5)\}$, for $i=1, \ldots, n$.

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
$2 \cdot 10^{5}$	$125(290 \mathrm{~s})$	$117(768 \mathrm{~s})$	$117(770 \mathrm{~s})$	$118(791 \mathrm{~s})$

Sometimes Halley-Chebyshev is better
λ makes a difference

Chain $\operatorname{Wood}(x)$	$=\sum_{i=1}^{n / 2-2}\left(100\left(x_{2 i}-x_{2 i-1}^{2}\right)^{2}+\left(1.0-x_{2 i-1}\right)^{2}\right.$
	$+90\left(x_{2 i+2}-x_{2 i+1}^{2}\right)^{2}+\left(1.0-x_{2 i+1}\right)^{2}$
	$\left.+10\left(x_{2 i}+x_{2 i+2}-2.0\right)^{2}+\left(x_{2 i}-x_{2 i+2}\right)^{2} / 10\right)$

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
$2 \cdot 10^{5}$	NC	NC	NC	18 (54.7s)

$\operatorname{bdqrtic}(x)=\sum_{i=1}^{n-4}\left(\left(-4 x_{i}+3.0\right)^{2}+\left(x_{i}^{2}+2 x_{i+1}^{2}+3 x_{i+2}^{2}+4 x_{i+3}^{2}+5 x_{n}^{2}\right)^{2}\right)$

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
100	$2683(2.6 \mathrm{~s})$	$62(0.2 \mathrm{~s})$	$62(0.2 \mathrm{~s})$	$51(0.2 \mathrm{~s})$
10^{4}	$10^{5}>(20 \mathrm{~min})$	$94(40 \mathrm{~s})$	$94(40 \mathrm{~s})$	$93(40 \mathrm{~s})$

Sometimes Halley-Chebyshev is better
λ makes a difference

$$
n / 2-2
$$

Chain $\operatorname{Wood}(x)=\sum_{i=1}\left(100\left(x_{2 i}-x_{2 i-1}^{2}\right)^{2}+\left(1.0-x_{2 i-1}\right)^{2}\right.$

$$
+90\left(x_{2 i+2}-x_{2 i+1}^{2}\right)^{2}+\left(1.0-x_{2 i+1}\right)^{2}
$$

$$
\left.+10\left(x_{2 i}+x_{2 i+2}-2.0\right)^{2}+\left(x_{2 i}-x_{2 i+2}\right)^{2} / 10\right)
$$

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
$2 \cdot 10^{5}$	NC	NC	NC	18 (54.7s)

$\operatorname{bdqrtic}(x)=\sum_{i=1}^{n-4}\left(\left(-4 x_{i}+3.0\right)^{2}+\left(x_{i}^{2}+2 x_{i+1}^{2}+3 x_{i+2}^{2}+4 x_{i+3}^{2}+5 x_{n}^{2}\right)^{2}\right)$

n	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
100	$2683(2.6 \mathrm{~s})$	$62(0.2 \mathrm{~s})$	$62(0.2 \mathrm{~s})$	$51(0.2 \mathrm{~s})$
10^{4}	$10^{5}>(20 \mathrm{~min})$	$94(40 \mathrm{~s})$	$94(40 \mathrm{~s})$	$93(40 \mathrm{~s})$

Conclusions \& Contributions

- method for designing high order AD algorithms
- new third-order methods for large-scale

Robert Gower, Artur Gower (2013)
Higher-order Reverse Automatic Differentiation with emphasis on the third-order submitted www.maths.ed.ac.uk/ERGO/

- Automatic derivatives \Rightarrow Empirical comparisons of high order methods possible.
- Too many failures for Halley-Cheby on general nonlinear. Step size \& damping required.

Conclusions \& Contributions

- method for designing high order AD algorithms
- new third-order methods for large-scale

E Robert Gower, Artur Gower (2013)
Higher-order Reverse Automatic Differentiation with emphasis on the third-order submitted www.maths.ed.ac.uk/ERGO/

- Automatic derivatives \Rightarrow Empirical comparisons of high order methods possible.
- Too many failures for Halley-Cheby on general nonlinear. Step size \& damping required.
- What is possible if high order information is not so expensive?

References

R
J．M．Gutiérrez and M．a．Hernández（1997）
A family of Chebyshev－Halley type methods in Banach spaces
Bulletin of the Australian Mathematical Society 1（55），113－133．
害
Geir Gundersen and Trond Steihaug（2012）
On diagonally structured problems in unconstrained optimization using an inexact super Halley method
Journal of Computational and Applied Mathematics 15（236），3685－3695．
击 W．Hock and K．Schittkowski（1980）
Test examples for nonlinear programming codes
Journal of Optimization Theory and Applications，30，pp．127－129．
宔
Ladislav Luksan and Jan VIcek（2003）
Test problems for unconstrained optimization

QUESTIONS?

We have hand-picked sixteen problems from the CUTE collection, augm- lagn from [Hock, 1980], toiqmerg (Toint Quadratic Merging problem) and chainros trigexp (Chained Rosenbrook function with Trigonometric and exponential constraints) from [VIcek, 2003] for the experiments. We have also created a function

$$
\text { heavey_band }(x, \text { band })=\sum_{i=0}^{n-\text { band }} \sin \left(\sum_{j=0}^{\text {band }} x_{i+j}\right)
$$

For our experiments, we tested heavey band(x, 20).

Preliminary tests Halley-Chebychev \times Newton

 Halley-Chebyshev iteration costs 2 to 3 X Newton step- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name:dimension	Newton	HalIC $\lambda=0$	HalIC $\lambda=0.5$	HalIC $\lambda=1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10	FAIL	FAIL	FAIL	18
brybnd: 10^{5}	125	117	117	118
arwhead:2.10	5	5	5	5
sinquad:2.10	29	18	18	20
bdqrtic: 100	2683	62	62	51
bdqrtic: 10^{4}	$10^{5}>$	94	94	93

Preliminary tests Halley-Chebychev \times Newton

 Halley-Chebyshev iteration costs 2 to 3 X Newton step- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name:dimension	Newton	HallC $\lambda=0$	HalIC $\lambda=0.5$	HallC $\lambda=1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10	FAIL	FAIL	FAIL	18
brybnd:10	125	117	117	118
arwhead:2.10	5	5	5	5
sinquad:2.10	29	18	18	20
bdqrtic: 100	2683	62	62	51
bdqrtic: 10^{4}	$10^{5}>$	94	94	93

Preliminary tests Halley-Chebychev \times Newton

 Halley-Chebyshev iteration costs 2 to 3 X Newton step- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name:dimension	Newton	HalIC $\lambda=0$	HalIC $\lambda=0.5$	HalIC $\lambda=1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10	FAIL	FAIL	FAIL	18
brybnd: 10^{5}	125	117	117	118
arwhead:2.10	5	5	5	5
sinquad:2.10	29	18	18	20
bdqrtic: 100	2683	62	62	51
bdqrtic: 10^{4}	$10^{5}>$	94	94	93

Preliminary tests Halley-Chebychev \times Newton

 Halley-Chebyshev iteration costs 2 to 3 X Newton step- Large dimensional tests become possible
- Some cases Halley-Chebyshev better
- Some cases Newton is better
- λ makes a difference!

Name:dimension	Newton	HallC $\lambda=0$	HalIC $\lambda=0.5$	HallC $\lambda=1.0$
cosine:30	FAIL	74	74	74
cragglevy:10	FAIL	218	218	225
chainwood:2.10	FAIL	FAIL	FAIL	18
brybnd: 10^{5}	125	117	117	118
arwhead: 2.10^{5}	5	5	5	5
sinquad:2.10	29	18	18	20
bdqrtic: 100	2683	62	62	51
bdqrtic: 10^{4}	$10^{5}>$	94	94	93

Name:dimension	Newton	HallC $\lambda=0$	HallC $\lambda=0.5$	HallC $\lambda=1.0$
cosine: 30	FAIL	0.03	0.02	0.02
cragglevy:10	FAIL	0.05	0.03	0.04
chainwood:2 10^{5}	FAIL	FAIL	FAIL	54.7
brybnd:10	289.96	767.51	769.36	790.02
arwhead:2 10^{5}	6.31	13.54	10.79	10.98
sinquad:2 20^{5}	22.67	39.56	39.65	44.07
bdqrtic: 100	2.58	0.18	0.16	0.14
Bdqrtic: 10^{4}	$1492>$	39.57	39.78	39.34

Algorithm 1: Reverse Hessian Directional Derivative initialization: $\dot{\mathrm{v}}^{1}=d, \overline{\mathrm{v}}=y, W=T d=0 \in \mathbb{R}^{m_{\ell} \times m_{\ell}}$
for $i=1, \ldots, \ell$ do
$\dot{\mathrm{v}}^{i} \leftarrow D \Phi^{i} \cdot \dot{\mathrm{v}}^{i-1}$
end
for $i=\ell, \ldots, 1$ do
$T d \leftarrow T d \cdot\left(D \Phi^{i}, D \Phi^{i}\right)$
$T d \leftarrow T d+W \cdot\left(\left(D \Phi^{i}, D^{2} \Phi^{i} 111 d o t \dot{\mathrm{v}}^{i-1}\right)+\left(D^{2} \Phi^{i} \cdot \dot{\mathrm{v}}^{i-1}, D \Phi^{i}\right)\right)$
$T d \leftarrow T d+W \cdot\left(D^{2} \Phi^{i}, D \Phi^{i} \cdot \dot{\mathrm{v}}^{i-1}\right)$
$T d \leftarrow T d+\overline{\mathrm{v}}^{T} D^{3} \Phi^{i} \cdot \dot{\mathrm{v}}^{i-1}$
$W \leftarrow W \cdot\left(D \Phi^{i}, D \Phi^{i}\right)+\overline{\mathrm{v}}^{T} D^{2} \Phi^{i}$
$\overline{\mathrm{v}}^{T} \leftarrow \overline{\mathrm{v}}^{T} D \Phi^{i}$
end
Output: $y^{T} D^{3} F(x) \cdot d \leftarrow T d, y^{T} D^{2} F \leftarrow W, y^{T} D F \leftarrow \overline{\mathrm{v}}^{T}$

