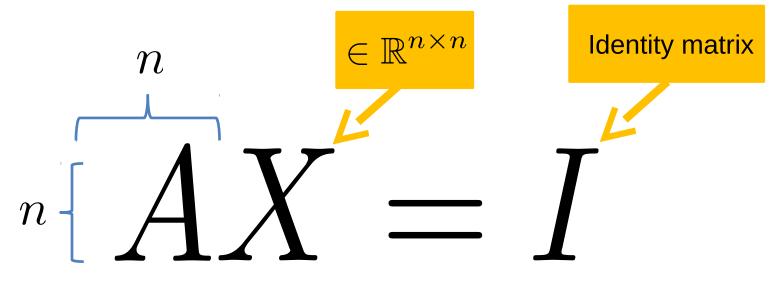
Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms

Robert Mansel Gower Joint work with Peter Richtárik

ICCOPT Tokyo, August 2016

Inverting a Matrix

The Problem

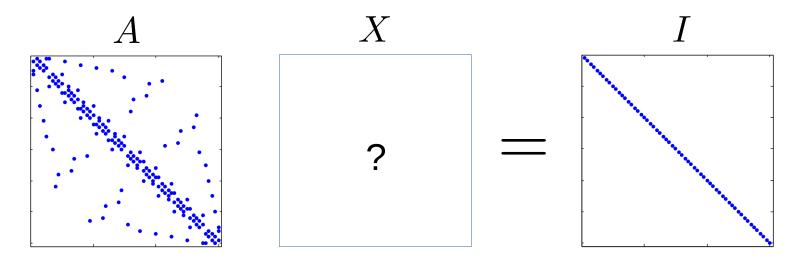


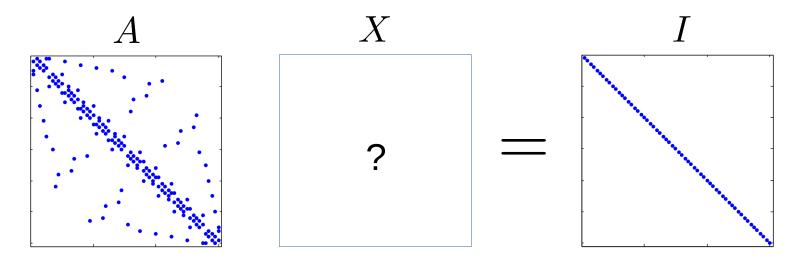
Assumption: The matrix *A* is nonsingular

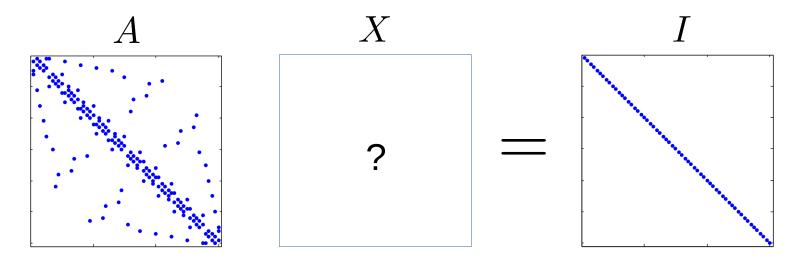
Why iteratively invert a matrix?

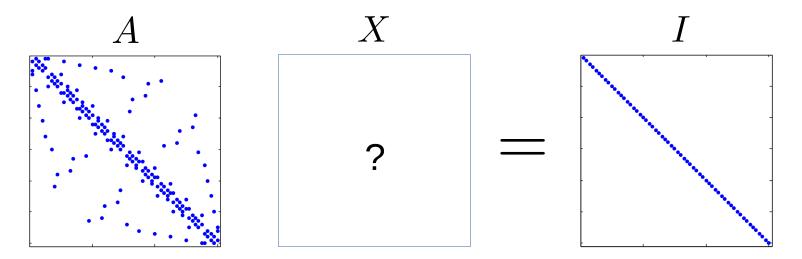
- Matrix inverse standard tool (needed to calculate a Schur complement or a projection operator)
- Starting point for randomized variable metric
- Starting point for randomized preconditioning

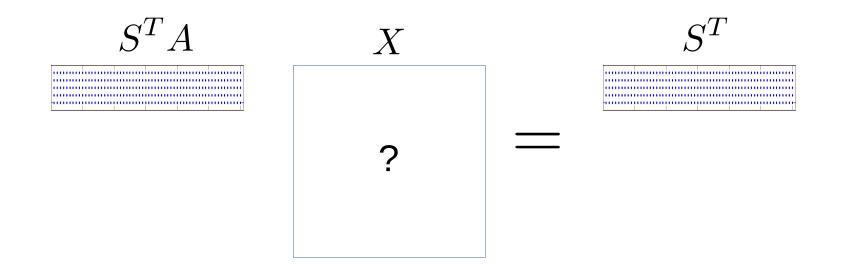
Randomized Methods for Nonsymmetric Matrices











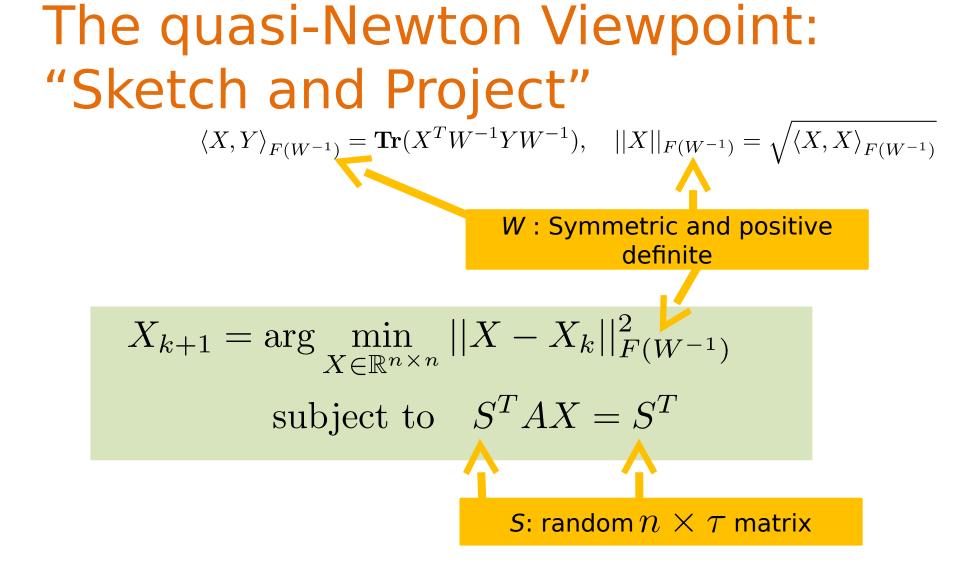
$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$$

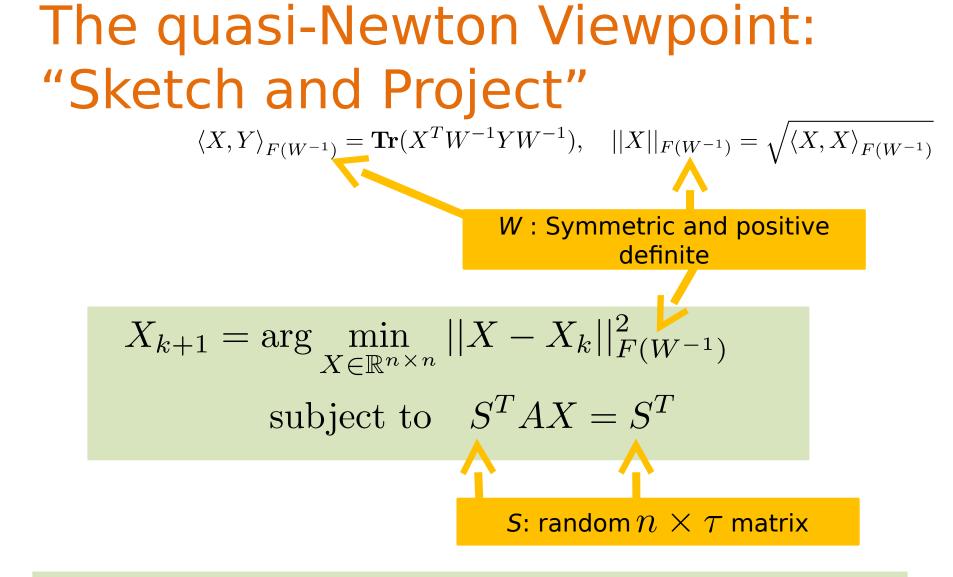
subject to $S^T A X = S^T$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$$

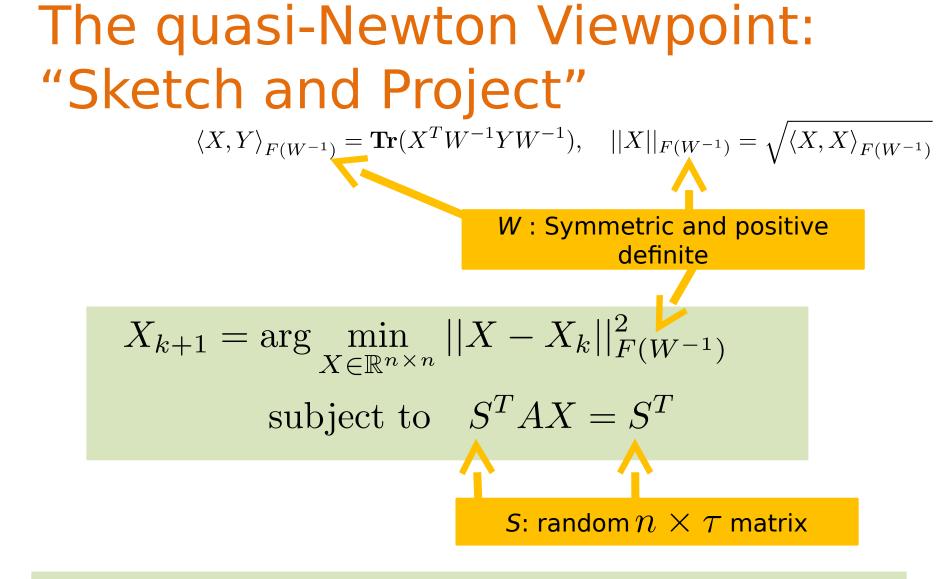
subject to $S^T A X = S^T$

The quasi-Newton Viewpoint: "Sketch and Project" $\langle X, Y \rangle_{F(W^{-1})} = \mathbf{Tr}(X^T W^{-1} Y W^{-1}), \quad ||X||_{F(W^{-1})} = \sqrt{\langle X, X \rangle_{F(W^{-1})}}$ W : Symmetric and positive definite $X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$ subject to $S^T A X = S^T$





$$X_{k+1} = X_k - WA^T S (S^T A W A^T S)^{\dagger} S^T (A X_k - I)$$



$$X_{k+1} = X_k - WA^T S (S^T A W A^T S)^{\dagger} S^T (A X_k - I)$$

Includes methods good/bad Broyden, simultaneous Kaczmarz ...etc

Randomized Methods for Symmetric Matrices $A = A^T$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

Connection to quasi-Newton Methods: randomized block extension of the quasi-Newton updates.

$$S = \delta \in \mathbb{R}^n$$
 and $\gamma := A\delta$

and A is a "Hessian" we would like to invert. To be cheap, we can only sample the action $A\delta$

secant equation:

$$XAS = S$$
 $X\gamma = \delta$

Goldfarb, D. (1970). **A Family of Variable-Metric Methods Derived by Variational Means**. Mathematics of Computation, 24(109), 23.

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}^2$$

subject to $S^T A X = S^T$, $X = X^T$
$$\int_0^1 \nabla^2 f(x_k + t\delta) \delta dt$$

i-Newton Methods: randomized
e quasi-Newton updates.
$$S = \delta \in \mathbb{R}^n \text{ and } \gamma := A\delta$$

and A is a "Hessian" we would like to invert. To be cheap,
we can only sample the action $A\delta$
secant equation: $XAS = S$ $X\gamma = \delta$

Goldfarb, D. (1970). **A Family of Variable-Metric Methods Derived by Variational Means**. Mathematics of Computation, 24(109), 23.

2. The Approx. Preconditioning viewpoint: "Constrain and Approximate"

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} ||X - A^{-1}||_{F(W^{-1})}^2$$

subject to $X = X_k + YS^TAW + WA^TSY^T$

 $Y \in \mathbb{R}^{n \times \tau}$ is free

2. The Approx. Preconditioning viewpoint: "Constrain and Approximate"

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} ||X - A^{-1}||_{F(W^{-1})}^2$$

subject to $X = X_k + YS^TAW + WA^TSY^T$

 $Y \in \mathbb{R}^{n \times \tau}$ is free

Duality: This is a dual problem of the sketch and project viewpoint, new insight into quasi-Newton methods.

Sketch and project

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $X\gamma = \delta, \quad X = X^T$

Sketch and project

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $X\gamma = \delta, \quad X = X^T$

Sketch and project

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $X\gamma = \delta, \quad X = X^T$

Constrain and approximate

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - A^{-1}||_{F(A)}^{2}$$

subject to $X = X_{k} + y\delta^{T} + \delta y^{T}$
 $y \in \mathbb{R}^{n}$ is free

Sketch and project

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $X\gamma = \delta, \quad X = X^T$

Constrain and approximate

$$X_{k+1} = \arg \min_{\substack{X \in \mathbb{R}^{n \times n}}} ||X - A^{-1}||_{F(A)}^{2}$$

subject to $X = X_{k} + y\delta^{T} + \delta y^{T}$
 $y \in \mathbb{R}^{n}$ is free

Duality: The BFGS projects the inverse onto a 2-dimensional space of symmetric matrices

3. Algebraic Viewpoint "Random Update"

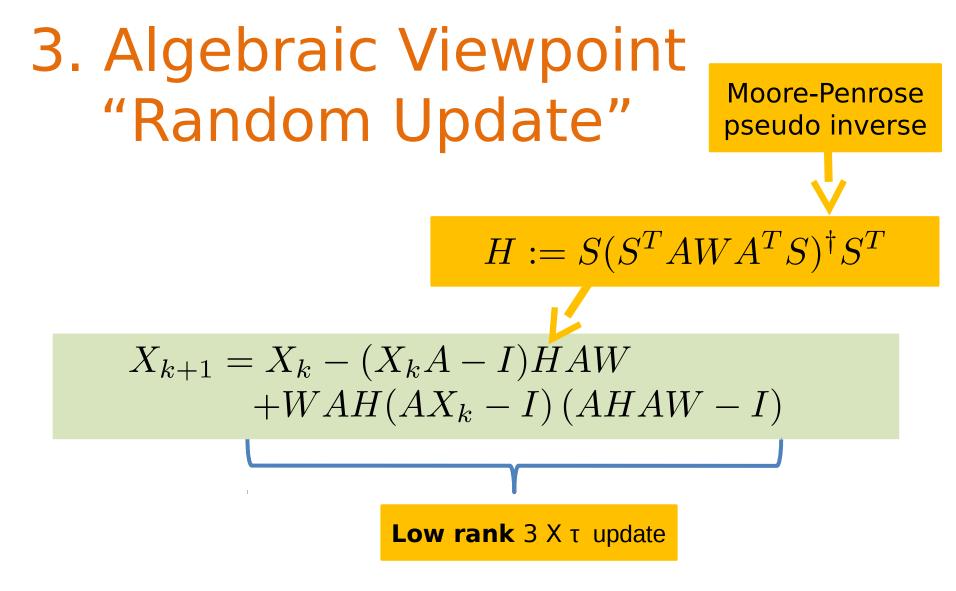
 $H := S(S^T A W A^T S)^{\dagger} S^T$ $X_{k+1} = X_k - (X_k A - I) H A W$ $+ W A H (A X_k - I) (A H A W - I)$

3. Algebraic Viewpoint "Random Update"

Moore-Penrose pseudo inverse

 $H := S(S^T A W A^T S)^{\dagger} S^T$ $X_{k+1} = X_k - (X_k A - I) H A W$ $+ W A H (A X_k - I) (A H A W - I)$

Fact: Every (not necessarily square) real matrix M has a real pseudo-inverse M^{\dagger} .



Fact: Every (not necessarily square) real matrix M has a real pseudo-inverse M^{\dagger} .

4. Analytic Viewpoint "Random Fixed Point"

$$R_k := X_k - A^{-1}$$

$$R_{k+1} = (I - WA^T HA)R_k(I - AHA^T W)$$

4. Analytic Viewpoint "Random Fixed Point"

$$R_k := X_k - A^{-1}$$

$R_{k+1} = (I - WA^T HA)R_k(I - AHA^T W)$

A positive Linear operator applied to old residual defines the new residual

Theorem [GR'16]

If S has full column rank with probability one then

1
$$||\mathbf{E}[X_k - A^{-1}]||_{W^{-1}} \le \rho^k ||X_0 - A^{-1}||_{W^{-1}}$$

Theorem [GR'16] $||A||_{W^{-1}} = ||W^{-1/2}AW^{-1/2}||_2$ If *S* has full column rank with probability one then $||\mathbf{E}[X_k - A^{-1}]||_{W^{-1}} \le \rho^k ||X_0 - A^{-1}||_{W^{-1}}$

Theorem [GR'16] $||A||_{W^{-1}} = ||W^{-1/2}AW^{-1/2}||_2$ If *S* has full column rank with probability one then $||\mathbf{E}[X_k - A^{-1}]||_{W^{-1}} \le \rho^k ||X_0 - A^{-1}||_{W^{-1}}$ $\rho := 1 - \lambda_{\min}(W^{1/2}A^T \mathbf{E}[H]AW^{1/2})$

 $\lambda_{\min}(\cdot) =$ smallest eigenvalue

Theorem [GR'16] $||A||_{W^{-1}} = ||W^{-1/2}AW^{-1/2}||_2$ If S has full column rank with probability one then 1 $||\mathbf{E}[X_k - A^{-1}]||_{W^{-1}} \le \rho^k ||X_0 - A^{-1}||_{W^{-1}}$ $\rho := 1 - \lambda_{\min}(W^{1/2}A^T \mathbf{E}[H]AW^{1/2})$ $\lambda_{\min}(\cdot) = \text{smallest eigenvalue}$ and if $\mathbf{E}[H] \succ 0$ then $\mathbf{E}[||X_k - A^{-1}||_{F(W^{-1})}^2] \le \overset{\checkmark}{\rho}{}^k ||X_0 - A^{-1}||_{F(W^{-1})}^2$ 2

Case study of E[H]

$$H := S(S^T A W A^T S)^{\dagger} S^T$$

$$W = I$$
$$\mathbf{P}(S = e^i) = \frac{1}{m}$$

$$H := S(S^T A W A^T S)^{\dagger} S^T$$

$$W = I$$
$$\mathbf{P}(S = e^i) = \frac{1}{m} \longrightarrow S = e^i$$

$$H := S(S^T A W A^T S)^{\dagger} S^T$$

$$\mathbf{P}(S = e^{i}) = \frac{1}{m} \rightarrow S = e^{i}$$

$$\mathbf{E}[H] = \frac{1}{m} \sum_{i=1}^{m} \frac{e_{i}e_{i}^{T}}{||A_{i:}||_{2}^{2}}$$

$$= \operatorname{diag}(||A_{i:}||_{2}^{2})$$

$$H := S (S^T A W A^T S)^{\dagger} S^T$$

$$W = I$$

$$F(S = e^{i}) = \frac{1}{m} \rightarrow S = e^{i}$$

$$E[H] = \frac{1}{m} \sum_{i=1}^{m} \frac{e_{i}e_{i}^{T}}{||A_{i:}||_{2}^{2}}$$

$$= \operatorname{diag}(||A_{i:}||_{2}^{2})$$

$$H := S(S^T A W A^T S)^{\dagger} S^T$$

$$W = I$$

$$F(S = e^{i}) = \frac{1}{m} \rightarrow S = e^{i}$$

$$E[H] = \frac{1}{m} \sum_{i=1}^{m} \frac{|e_{i}e_{i}^{T}|}{||A_{i:}||_{2}^{2}}$$

$$= \operatorname{diag}(||A_{i:}||_{2}^{2})$$

$$H := S(S^T A W A^T S)^{\dagger} S^T$$

Special Choice of Parameters

$$W = I$$
$$\mathbf{P}(S = e^i) = \frac{1}{m} \rightarrow S = e^i$$

$$\mathbf{E}[H] = \frac{1}{m} \sum_{i=1}^{m} \frac{e_i e_i^T}{||A_{i:}||_2^2} \\ = \operatorname{diag}(||A_{i:}||_2^2)$$

Positive definite when A has no zero rows

Theorem [RG'15]

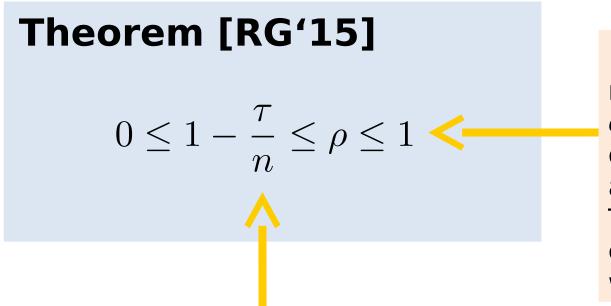
$$0 \le 1 - \frac{\tau}{n} \le \rho \le 1$$

Theorem [RG'15] $0 \le 1 - \frac{\tau}{n} \le \rho \le 1 \checkmark$

Insight: The method is a *contraction* (with only full rank assumption on *S*). That is, things can not get worse.

Theorem [RG'15] $0 \le 1 - \frac{\tau}{n} \le \rho \le 1 \checkmark$

Insight: The method is a *contraction* (with only full rank assumption on *S*). That is, things can not get worse.



Insight: The method is a *contraction* (with only full rank assumption on *S*). That is, things can not get worse.

Insight: The lower bound on the rate is better for *S* high rank, that is, when the dimension of the search space in the "constrain and approximate" viewpoint grows.

Special Case: Randomized Block BFGS

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

Special Choice of Parameters

positve definite $W = A^{-1}$ $P(S = e_i) = p_i$ $S = e_i$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

positve definite

$$W = A^{-1}$$

 $\mathbf{P}(S = e_i) = p_i$
 $S = e_i$

$$X_{k+1} = H + (I - HA)X_k(I - AH)$$

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

positve definite

$$W = A^{-1}$$

$$X_{k+1} = H + (I - HA)X_k(I - AH)$$

$$K_{k+1} = H + (I - HA)X_k(I - AH)$$

$$K_{k+1} = H + (I - HA)X_k(I - AH)$$

$$E[H] \succ 0$$

$$F[H] \succ 0$$

$$F[H] \succ 0$$

$$F[H] \vdash 0$$

$$F[H] \vdash 0$$

$$F[H] \vdash 0$$

$$F[H] \vdash 0$$

Convenient probability

Theorem [GR'15]

 $\bar{S} := [S_1, \dots, S_r] \text{ is nonsingular}$ $\mathbf{P}(S = S_i) = p_i = \frac{\mathbf{Tr}(S_i^T A W A^T S_i)}{\mathbf{Tr}(\bar{S}^T A W A^T \bar{S})}$

Convenient probability

Theorem [GR'15]

 $S := [S_1, \ldots, S_r]$ is nonsingular $\mathbf{P}(S = S_i) = p_i = \frac{\mathbf{Tr}(S_i^T A W A^T S_i)}{\mathbf{Tr}(\bar{S}^T A W A^T \bar{S})}$ $\rho = 1 - \frac{1}{\kappa^2 (W^{1/2} A^T \bar{S})}$

 $\kappa(W^{1/2}A^T\bar{S}) := ||(W^{1/2}A^T\bar{S})^{-1}||_2 ||W^{1/2}A^T\bar{S}||_F \ge \sqrt{n}$

Randomized Block BFGS

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

Special Choice of Parameters

positve definite $W = A^{-1}$ $X_{k+1} = H + (I - HA)X_k(I - AH)$ $P(S = S_i) = p_i$

Complexity Rate. If A is positive definite $\Rightarrow \mathbf{E}[H]$ is nonsingular

$$p_{i} = \frac{\operatorname{Tr}(S_{i}^{T}AS_{i})}{\operatorname{Tr}(\bar{S}^{T}A\bar{S})} \bigoplus \mathbf{E}[||AX_{k} - I||_{F}^{2}] \leq \left(1 - \frac{1}{\kappa^{2}(A^{1/2}\bar{S})}\right)^{k} ||AX_{0} - I||_{F}^{2}$$

Randomized Block BFGS

$$X_{k+1} = \arg \min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}^2$$

subject to $S^T A X = S^T, \quad X = X^T$

Special Choice of Parameters

> $W = A^{-1}$

positve definite

 $\mathbf{P}(S=S_i) = p_i \quad > S = S_i$

 $X_{k+1} = H + (I - HA)X_k(I - AH)$

ar

Idea: To minimize condition number, choose S so that \overline{S} is an approximate inverse of $A^{1/2}$

$$p_{i} = \frac{\operatorname{Tr}(S_{i}^{T}AS_{i})}{\operatorname{Tr}(\bar{S}^{T}A\bar{S})} \bigoplus \mathbf{E}[||AX_{k} - I||_{F}^{2}] \leq \left(1 - \frac{1}{\kappa^{2}(A^{1/2}\bar{S})}\right)^{k} ||AX_{0} - I||_{F}^{2}$$

Adaptive Randomized Block BFGS (adaRBFGS)

$$\mathbf{E}[||AX_k - I||_F] \le \left(1 - \frac{1}{\kappa^2(A^{1/2}\bar{S})}\right)^k ||AX_0 - I||_F$$

To minimize condition number: If $\bar{S} = A^{-1/2}$ then $\kappa(A^{1/2}\bar{S}) = \kappa(I) = \sqrt{n}$

$$X_k \to A^{-1} \qquad \qquad X_k^{1/2} \to A^{-1/2}$$

$$\dot{\varsigma}\bar{S} = X_k^{1/2}?$$

Adaptive Randomized Block BFGS (adaRBFGS)

Maintain and update
$$L_k = X_k^{1/2}$$

adaRBFGS_cols:

 $S = L_k I_{:C}, \quad C \subset \{1, \dots, n\}$ random set $\bar{S} = L_k = X_k^{1/2}$

adaRBFGS_guass: $S \sim \mathcal{N}(0, X_k)$

Adaptive Randomized Block BFGS (adaRBFGS)

Maintain and update
$$L_k = X_k^{1/2}$$

adaRBFGS_cols:

$$S = L_k I_{:C}, \quad C \subset \{1, \dots, n\}$$
 random set
 $\bar{S} = L_k = X_k^{1/2}$

adaRBFGS_guass:
$$S \sim \mathcal{N}(0, X_k)$$

Experiments

Current state of the art

Symmetric Newton-Schulz

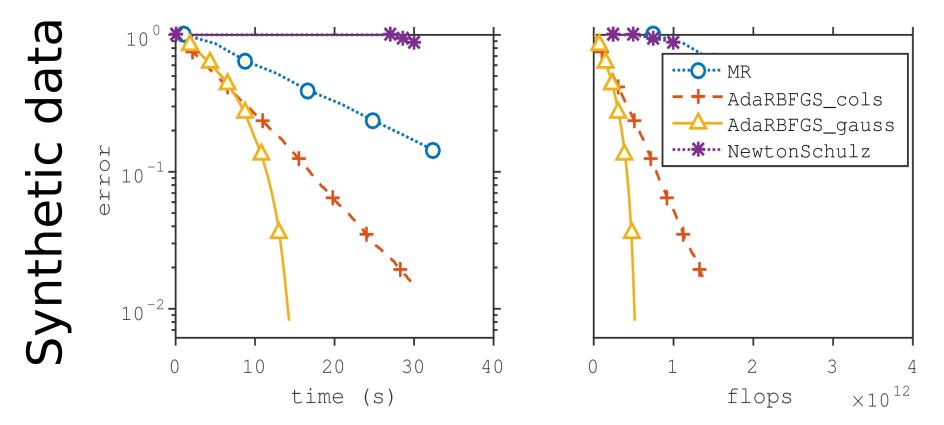
$$X_{k+1} = 2X_k - X_k A X_k$$

Self-conditioning Minimal Residual (MR)

$$X_{k+1} = \arg_X \quad \min ||AX - I||_F^2$$

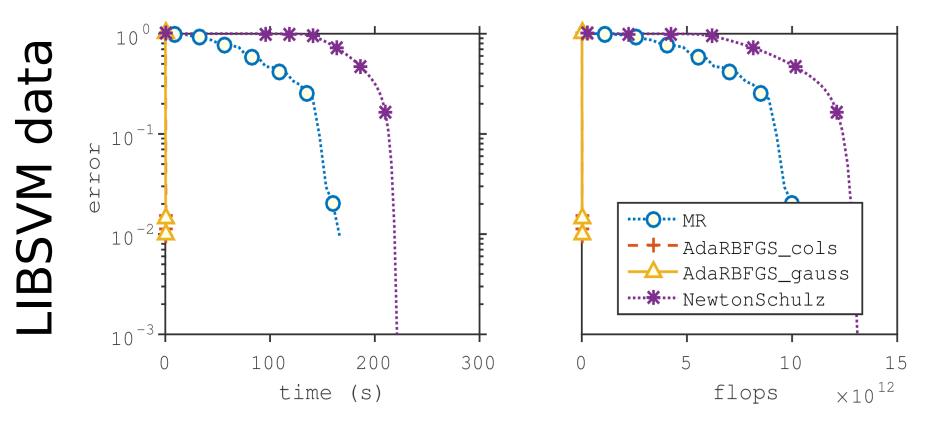
subject to $X = X_k + \alpha X_k (AX_k - I)$

Synthetic Problem



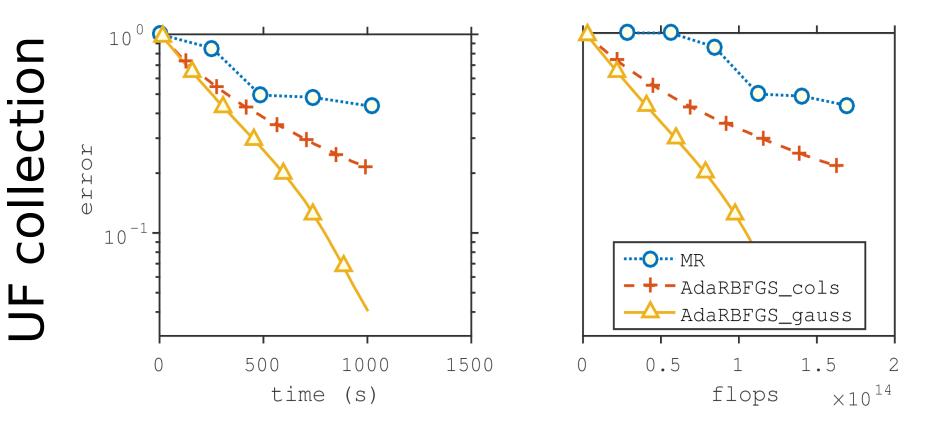
(randn, n = 5000)

Ridge Regression Hessian



(gisette, n = 5,000)

Sparse Matrices from Engineering



(GHS psdef/wathen100, n = 30,401)

Conclusion

- New randomized methods for calculating of approximate inverses of large-scale matrices
- Convergence rates which can form the basis of convergence of preconditioning or variable metric methods.
- Dual viewpoints of classic quasi-Newton methods, connection to Approximate Inverse Preconditioning methods
- Can be extended to calculating pseudo-inverse

Thank you, Questions?

RMG and Peter Richtárik Randomized Iterative Methods for Linear Systems

SIAM. J. Matrix Anal. & Appl., 36(4), 1660-1690, 2015

RMG, D. Goldfarb and Peter Richtárik Stochastic Block BFGS: Squeezing More Curvature out of Data ICML, 2016

RMG and Peter Richtárik **Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms** Preprint arXiv:1602.01768, 2016