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Linear Systems



The Problem

We can also think of this as m 
linear equations, where the ith 
equation looks as follows:

Assumption: The system is consistent (i.e., has a solution)



The Problem

B: Symmetric and positive 
definite

Insight: As there are possibly multiple 
solutions, we compute the solution with the 
least B-norm. 



Standard Randomized 
Methods



The return of old methods

Old methods (Kaczmarz 1937, Guass-Seidel 
1823) make a randomized return, why?

● Often suitable for Big Data problems (short 
recurrence, low iteration cost, low memory, block 
variants...etc)

● Easy to implement

● Easy to analyse, good complexity

● Often fits in parallel/distributed architecture  

 



Randomized Kaczmarz 
T. Strohmer and R. Vershynin. A Randomized Kaczmarz Algorithm 
with Exponential Convergence. Journal of Fourier Analysis and 
Applications 15(2), pp. 262–278, 2009

G.N. Hounsfield. Computerized transverse axial scanning (tomography): 
Part I. description of the system. British Journal Radiology. 1973

Karczmarz, M. S. (1937). Angenäherte Auflösung von Systemen 
linearer Gleichungen. Bulletin International de l’Académie Polonaise 
Des Sciences et Des Lettres, 35, 355–357. 



Framework for 
Randomized Methods



1. Relaxation Viewpoint
“Sketch and Project”

B: Symmetric and positive 
definite

S: random              matrix



2. Optimization Viewpoint 
“Constrain and Approximate”



3. Geometric Viewpoint 
“Random Intersect”

(2)

(1)



4. Algebraic Viewpoint
“Random Linear Solve”

Unknown: x Unknown: y



5. Algebraic Viewpoint
“Random Update”

Moore-Penrose 
pseudo inverse

Random Update 
Vector

Fact:

Small            matrix



6. Analytic Viewpoint
“Random Fixed Point”

Random Iteration 
Matrix



Theory



Complexity / Convergence

Theorem [GR‘15]
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Proof of      for A full column rank    1



Case study of 

Special Choice of Parameters

No zero rows in A                        is positive definite

Weak assumption



The rate: lower and upper 
bounds

Theorem [RG‘15]

Insight: The 
method is a 
contraction 
(without any 
assumptions on S 
whatsoever). That 
is, things can not 
get worse.

Insight: The lower bound on the rate is better for A low rank 
and when the dimension of the search space in the “constrain and 
approximate” viewpoint grows.



Special Case: 
Randomized 

Kaczmarz Method



Randomized Kaczmarz: 
derivation and rate

General Method

Special Choice of Parameters

Complexity Rate. 
  



Special Case: 
Randomized 

Coordinate Descent



Randomized Coordinate 
Descent: derivation and rate
General Method

Special Choice of Parameters

Complexity Rate

positve definite



Theory recovers known and new 
convergence results

Method Convergence Rate  

Randomized CD
Least square

B S

T. Strohmer and R. Vershynin. A Randomized Kaczmarz Algorithm 
with Exponential Convergence. Journal of Fourier Analysis and 
Applications 15(2), pp. 262–278, 2009

*Leventhal, D., & Lewis, A. S. (2010). Randomized Methods for 
Linear Constraints: Convergence Rates and Conditioning. 
Mathematics of Operations Research, 35(3), 641–654.

Gaussian psd

Gaussian Kaczmarz



Convenient probability  

Theorem [GR‘15]



Conclusion for linear systems

● Unites many randomized methods under a 
single framework

● Improved convergence:  New lower bound, 
less assumptions, RK convergence without full 
rank assumption.

● Design new methods: S = Guassian, count-
sketch, Walsh-Hadamard ...etc

● Optimal Sampling: We can choose a sampling 
that optimizes the convergence rate. 

 



Inverting a Matrix



The Problem

Assumption: The matrix A is nonsingular

Identity matrix



Why iteratively invert a matrix?

● Needed to calculate a Schur complement or a 
projection operator

● Iterative methods are good when we can tolerate 
an error or have an initial guess

● Staging for randomized variable metric 
methods and randomized preconditioning



Randomized Methods for 
Nonsymmetric Matrices



Equivalence to solving linear 
systems 

B: Symmetric and positive 
definite

S: random             matrix

This method is equivalent to the sketch and project 
method for solving linear systems, but applied 
simultanously to the n equations defined by AX = I



Randomized Methods for  
Symmetric Matrices



Sketch and Project

Connection to quasi-Newton Methods: This is a 
randomized block extension of the quasi-Newton 
updates. In the quasi-Newton setting

and A is an unknown operator. However, we can sample 
its action Aδ and

is known as the secant equation

Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived 
by Variational Means. Mathematics of Computation, 24(109), 23.



Constrain and Approximate

Duality: This is dual problem of the 
sketch and project viewpoint, new 
insight into quasi-Newton methods. 



New viewpoint for BFGS

Duality: The BFGS minimizes a 
residual restricted to an affine 
space of symmetric matrices

Constrain and approximate

Sketch and project



Random Update

Random Fixed Point
Low rank 3 X τ  update



Complexity / Convergence

Theorem [GR‘16]
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Special Case:
Randomized Block BFGS



Randomized BFGS

Special Choice of Parameters

Complexity Rate. 
  

positve definite



Randomized Block BFGS

Special Choice of Parameters

Complexity Rate. 
  

positve definite

Idea: To minimize condition number, choose S so that S is an 
approximate inverse of A1/2



BFGS with Randomized Self-
Conditioning (RASC)

Self conditioning sampling:

*Gratton, S., Sartenaer, A., & Ilunga, J. T. (2011). On a Class of Limited 
Memory Preconditioners for Large-Scale Nonlinear Least-
Squares Problems. SIAM Journal on Optimization, 21(3), 912–935.



Experiments



Current state of the art

Symmetric Newton-Schulz

Self-conditioning Minimal Residual (MR)



Synthetic Problems
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Synthetic Problems
S
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Ridge Regression Hessian
LI

B
S

V
M
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a
ta

(aloi, n = 128)



Ridge Regression Hessian
LI
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S

V
M
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a
ta

(aloi, n = 20,958)



Sparse Matrices from 
Engineering

U
F 

co
lle

ct
io

n

(Nasa-nasa, n = 4,705)



Sparse Matrices from 
Engineering
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(ND-nd6k, n = 18,000)



Consequences and Future 
Work



Smooth minimization

Cheap to calculate, costs 
τ X function evaluations  



Variable metric methods

Update metric with 
RASC update 



Preconditioning Sketched 
Newton

Sketch and project Newton 
system 

 

Update metric with 
RASC update 



Conclusion for Inverting Matrices

● New randomized methods capable of inverting 
large-scale matrices

● Convergence rates which can form the basis of 
convergence of preconditioning or variable metric 
methods.

● Dual viewpoints of classic quasi-Newton 
methods 

● Can be extended to calculating pseudo-inverse



Thank you,
Questions?
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