Stochastic Block BFGS: Squeezing More Curvature out of Data

> Robert Mansel Gower Joint work with Donald Goldfarb and Peter Richtárik

International Conference on Machine Learning, New York, June 2016

The Problem

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w).$$

- Each f_i is strongly convex and twice continuously differentiable.
- Far more data samples than features $n \gg d$, access through subsampling

The Problem

Motivation is from stochastic optimization, such as empirical risk minimization

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w).$$

- Each f_i is strongly convex and twice continuously differentiable.
- Far more data samples than features $n \gg d$, access through subsampling

The Problem

Motivation is from stochastic optimization, such as empirical risk minimization

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w).$$

- Each f_i is strongly convex and twice continuously differentiable.
- Far more data samples than features $n \gg d$, access through subsampling

$$\nabla f_S(w) \stackrel{\text{def}}{=} \frac{1}{|S|} \sum_{i \in S} \nabla f_i(w) \qquad \nabla^2 f_T(x) \stackrel{\text{def}}{=} \frac{1}{|T|} \sum_{i \in T} \nabla^2 f_i(x)$$
$$S \subset \{1, \dots, n\} \qquad T \subset \{1, \dots, n\}$$

Variable Metric Method

$$w_{t+1} = w_t - \eta H_t g_t$$

Variable Metric Method

$$w_{t+1} = w_t - \eta H_t g_t$$

stepsize

Variable Metric Method

Exe: Newton's Method

$$w_{t+1} = w_t - \eta \nabla^2 f(w_t)^{-1} \nabla f(w_t)$$

Steepest descent

 $w_{t+1} = w_t - \eta \nabla f(w_t)$

• Stochastic gradient descent (SGD)

$$w_{t+1} = w_t - \eta \nabla f_S(w_t)$$

• SAG, SVRG, S2GD, ...etc

Exe: • Newton's Method

$$w_{t+1} = w_t - \eta \nabla^2 f(w_t)^{-1} \nabla f(w_t)$$

Steepest descent

 $w_{t+1} = w_t - \eta \nabla f(w_t)$

• Stochastic gradient descent (SGD)

$$w_{t+1} = w_t - \eta \nabla f_S(w_t)$$

◆ SAG, SVRG, S2GD, …etc

Challenge how to construct an effective H_t that is cheap to calculate?

Stochastic Second order Methods

 H_t is directly estimated from $\nabla^2 f_T(x_t)$

- Low rank decomposition (Agarwal, Bullins and Hazan 2016)
- SVD decomposition (Erdogdu and Montanari 2015)
- Sketching full Hessian (Pilanci and Wainwright 2015)
- H_t is updated using the (L)BFGS update
 - (Schraudolph, Yu and Gunter 2007)
 - (Mokhtari and Ribeiro 2014, 2015)
 - (Byrd, Hansen, Nocedal and Singer 2015)
 - (**MNJ** Moritz, Nishihara, Jordan 2016)

Fact: Calculating a directional derivative of the gradient is cheap

$$\nabla^2 f_T(x_t)v = \left. \frac{d}{d\alpha} \nabla f_T(x_t + \alpha v) \right|_{\alpha = 0}$$

Ideally H_t should satisfy the *inverse equation*

$$H_t \nabla^2 f_T(x_t) = I$$

Solving the sketched inverse equation is easier

$$H_t \nabla^2 f_T(x_t) D_t = D_t$$

Fact: Calculating a directional derivative of the of $O(eval(f_T(x)))$ with

Automatic Differentiation.

$$\nabla^2 f_T(x_t)v = \left. \frac{d}{d\alpha} \nabla f_T(x_t + \alpha v) \right|_{\alpha = 0}$$

Ideally H_t should satisfy the *inverse equation*

$$H_t \nabla^2 f_T(x_t) = I$$

Solving the sketched inverse equation is easier

$$H_t \nabla^2 f_T(x_t) D_t = D_t$$

Fact: Calculating a directional derivative of the of $O(eval(f_T(x)))$ with

Automatic Differentiation.

$$\nabla^2 f_T(x_t)v = \left. \frac{d}{d\alpha} \nabla f_T(x_t + \alpha v) \right|_{\alpha = 0}$$

Ideally H_t should satisfy the *inverse equation*

$$H_t \nabla^2 f_T(x_t) = I$$

Solving the sketched inverse equation is easier

$$H_t \nabla^2 f_T(x_t) D_t = D_t$$
$$D_t \in \mathbf{R}^{d \times q}, q \ll d$$

Fact: Calculating a directional derivative of the of $O(eval(f_T(x)))$ with

Automatic Differentiation.

$$\nabla^2 f_T(x_t)v = \left. \frac{d}{d\alpha} \nabla f_T(x_t + \alpha v) \right|_{\alpha = 0}$$

Ideally H_t should satisfy the *inverse equation*

$$H_t \nabla^2 f_T(x_t) = I$$

Solving the sketched inverse equation is easier

$$H_t \nabla^2 f_T(x_t) D_t = D_t$$

Cost of evaluating $\nabla^2 f_T(x_T) D_t$ is $q \times O(eval(f_T(x)))$

$$D_t \in \mathbf{R}^{d \times q}, q \ll d$$

Block BFGS: Least change formulation

$$H_t = \arg \min_{H \in \mathbb{R}^{d \times d}} ||H - H_{t-1}||_t^2$$

subject to $H\nabla^2 f_T(x_t) D_t = D_t, \quad H = H^T$

where
$$||H||_t^2 \stackrel{\text{def}}{=} \operatorname{Tr} \left(H \nabla^2 f_T(x_t) H^T \nabla^2 f_T(x_t) \right)$$
.

The constraint serves as a fidelity term, enforcing that a sketch of the inverse equation be satisfied

The objectives serves as a regularizor, enforcing a low rank update

Goldfarb, D. (1970). **A Family of Variable-Metric Methods Derived by Variational Means**. Mathematics of Computation, 24(109), 23.

Block BFGS: Random update formulation

$$H_t = D_t \Delta_t D_t^T \qquad D(d^2 \times q) + \left(I - D_t \Delta_t Y_t^T\right) H_{t-1} \left(I - Y_t \Delta_t D_t^T\right),$$

where
$$Y_t = \nabla^2 f_T(x_t) D_t$$
 and $\Delta_t = (D_t^T Y_t)^{-1}$

Cost of update:

0(12)

RMG and Peter Richtárik (2016). **Randomized quasi-Newton updates are linearly convergent matrix inversion algorithms**. arXiv:1602.01768

Initialize $H_{-1} = I, w_0 \in \mathbb{R}^d$, stepsize $\eta > 0$ **For** $t = 0, 1, \ldots,$

- 1 Calculate g_t
- 2. Sample $T_t \subseteq [n]$, independently
- 3. Form $D_t \in \mathbf{R}^{d \times q}$
- 4. Compute sketch $Y_t = \nabla^2 f_{T_t}(w_t) D_t$
- 5. $H_t = D_t \Delta_t D_t^T + (I D_t \Delta_t Y_t^T) H_{t-1} (I Y_t \Delta_t D_t)$

6. $d_t = H_t g_t$ 7. $w_{t+1} = w_t - \eta d_t$ Output w_{t+1}

Initialize $H_{-1} = I, w_0 \in \mathbb{R}^d$, stepsize $\eta > 0$ For $t = 0, 1, \ldots$,

- 1 Calculate g_t
- 2. Sample $T_t \subseteq [n]$, independently
- 3. Form $D_t \in \mathbf{R}^{d \times q}$
- 4. Compute sketch $Y_t = \nabla^2 f_{T_t}(w_t) D_t$
- 5. $H_t = D_t \Delta_t D_t^T + (I D_t \Delta_t Y_t^T) H_{t-1} (I Y_t \Delta_t D_t)$
- 6. $d_t = H_t g_t$ 7. $w_{t+1} = w_t - \eta d_t$ Output w_{t+1}

How to choose D_t ?

Initialize $H_{-1} = I, w_0 \in \mathbb{R}^d$, stepsize $\eta > 0$ For $t = 0, 1, \ldots$,

- 1 Calculate g_t
- 2. Sample $T_t \subseteq [n]$, independently
- 3. Form $D_t \in \mathbf{R}^{d \times q}$
- 4. Compute sketch $Y_t = \nabla^2 f_{T_t}(w_t) D_t$
- 5. $H_t = D_t \Delta_t D_t^T + (I D_t \Delta_t Y_t^T) H_{t-1} (I Y_t \Delta_t D_t)$
- 6. $d_t = H_t g_t$ 7. $w_{t+1} = w_t - \eta d_t$ Output w_{t+1}

How to choose D_t ?

Do we need to store H_t ?

Choosing the sketch matrix

$$H_t \nabla^2 f_T(x_t) D_t = D_t$$

We employ one of three strategies

•gauss: $D_t \sim \mathcal{N}(0, I)$ has Gaussian entries samplied i.i.d at each iteration

• **prev** (**prev**ious search directions delayed) : Let $d_t = H_t g_t$. Store q previous search directions $D_t = [d_{t-q}, \ldots, d_{t-1}]$, update H_t once every q iterations

•fact (factorized self-conditioning) : Sample the columns of a factored form L_t of H_t (*i.e.* $L_t L_t^T = H_t$) uniformly at random. Fortunately we can maintain and update L_t efficiently.

Expanding $M \in \mathbb{N}$ block BFGS updates gives

 $H_t = \left(I - D_t \Delta_t Y_t^T\right) H_{t-1} \left(I - Y_t \Delta_t D_t^T\right) + D_t \Delta_t D_t^T$

=FUNCTION $(H_{t-M}, D_t, Y_t, \Delta_t, \dots, D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M})$

Expanding $M \in \mathbb{N}$ block BFGS updates gives

$$H_{t} = \left(I - D_{t}\Delta_{t}Y_{t}^{T}\right)H_{t-1}\left(I - Y_{t}\Delta_{t}D_{t}^{T}\right) + D_{t}\Delta_{t}D_{t}^{T}$$

$$\vdots$$

=FUNCTION $\left(H_{t-M}, D_{t}, Y_{t}, \Delta_{t}, \dots, D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right)$

 H_t is a function of H_{t+1-M} and $(D_{t+1-i}, Y_{t+1-i}, \Delta_{t+1-i})$ for $i = 1, \ldots M$

Expanding $M \in \mathbb{N}$ block BFGS updates gives

 $H_{t} = (I - D_{t}\Delta_{t}Y_{t}^{T}) H_{t-1} (I - Y_{t}\Delta_{t}D_{t}^{T}) + D_{t}\Delta_{t}D_{t}^{T}$ \vdots =FUNCTION (H_{t} , M, D_{t} , Y_{t} , Δ_{t} , ..., D_{t+1-M} , Y_{t+1-M} , Δ_{t+1-M}) =FUNCTION (D_{t} , Y_{t} , Δ_{t} , ..., D_{t+1-M} , Y_{t+1-M} , Δ_{t+1-M})

 H_t is a function of H_{t+1-M} and $(D_{t+1-i}, Y_{t+1-i}, \Delta_{t+1-i})$ for $i = 1, \ldots M$

To simplify $H_{t-M} = I$

Store the M block triples

$$(D_t, Y_t, \Delta_t), \dots, (D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M})$$

Store the M block triples

Store $M(2qd + q^2)$ doubles

$$(D_t, Y_t, \Delta_t), \dots, (D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M})$$

Store the M block triples

Store $M(2qd + q^2)$ doubles

$$(D_t, Y_t, \Delta_t), \dots, (D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M})$$

Calculate $H_t g_t$ using the following algorithm

Two-loop recursion inputs $g_t \in \mathbf{R}^d, D_i, Y_i \in \mathbf{R}^{d \times q}$ and $\Delta_i \in \mathbf{R}^{q \times q}$ For $i = t, \dots, t - M + 1$ $\alpha_i \leftarrow \Delta_i D_i^T v$ $v \leftarrow v - Y_i \alpha_i$ For $i = t - M + 1, \dots, t$ $\beta_i \leftarrow \Delta_i Y_i^T v$ $v \leftarrow v + D_i(\alpha_i - \beta_i)$ Costs Mq(4d + 2q) to apply output $H_t g_t \leftarrow v$

Initialize $H_{-1} = I, w_0 \in \mathbb{R}^d$, stepsize $\eta > 0$ **For** t = 0, 1, ...,1. Calculate g_t Using SVRG 2. Sample $T_t \subseteq [n]$, independently 3. Form $D_t \in \mathbb{R}^{d \times q}$ 4. Compute sketch $Y_t = \nabla^2 f_T(w_t) D_t$ 5. $d_t = H_t g_t$ Two-loop recursion 6. $w_{t+1} = w_t - \eta d_t$ **Output** w_{t+1}

Initialize $H_{-1} = I, w_0 \in \mathbf{R}^d$, stepsize $\eta > 0$ For t = 0, 1, ...,Compute $\mu = \nabla f(w_t)$ 1. 2. Set $x_0 = w_t$ For k = 0, 1, ..., m - 1Sample $S_k, T_k \subseteq [n]$, independently 3. $g_k = \nabla f_{S_k}(x_k) - \nabla f_{S_k}(w_t) + \mu$ 4. 5. Form $D_k \in \mathbf{R}^{d \times q}$ $6. \qquad x_{k+1} = x_k - \eta H_k g_k$ **Option I:** Set $w_{t+1} = x_m$ 7. **Option I:** Set $w_{t+1} = x_i$, where *i* is selected uniformly 8. at random from $[m] = \{1, 2, ..., m\}$

Output w_{t+1}

Experiments

Logistic regression with L2 regularizer

Test problem

$$\min_{w} \sum_{i=1}^{n} \ln\left(1 + \exp(-y_i a^i, w)\right) + \frac{1}{n} ||w||_2^2,$$

where $[a^1, \ldots, a^n] \in \mathbf{R}^{d \times n}$ and $y \in \{0, 1\}^n$ are the given data.

Data taken from LIBSVM

Key to methods

SVRG	Johnson Zhang (2013)
MNJ	Moritz, Nishihara Jordan (2013)
gauss_q_M	Gaussian elements
fact_q_M	Self-conditioning factorized sampling
prev_q_M	Previous search directions delayed

Key to methods

SVRG	Johnson Zhang (2013)
MNJ	Moritz, Nishihara Jordan (2013)
gauss_q_M	Gaussian elements
fact_q_M	Self-conditioning factorized sampling
prev_q_M	Previous search directions delayed
	Stochastic Block BFGS Methods

Key to methods

gisette, n= 6,000, d= 5,000

covtype.binary, n= 581,012, d= 54

Higgs, n=11,000,000 , d= 28

url-combined n = 2,396,130, d = 3,231,961

Conclusions

- New metric learning framework. A block BFGS framework for gradually learning the metric of the underlying function using sketches of subsampled Hessian matrices
- New limited memory block BFGS method. May also be of interest for non-stochastic optimization
- Several matrix sketching possibilities.
- More reasonable bounds on eigenvalues of H_k which lead to more reasonable conditions for step size, as compared to MNJ

Convergence results

More Numerics

R. Johnson and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction. NIPS.

P. Moritz, R. Nishihara and M. I. Jordan (2016). A Linearly-Convergent Stochastic L-BFGS Algorithm, AISTATS.

RMG and Peter Richtárik (2016) Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms arXiv:1602.01768

Convergence

Convergence

Assumption

There exists $0 < \lambda \leq \Lambda$ such that $\lambda I \preceq \nabla^2 f_T(x) \preceq \Lambda I$ For all $x \in \mathbf{R}^d$ and all $T \subseteq [n]$.

Lemma [GGR'16]

There exists $0 < \gamma \leq \Gamma$ such that

$$\gamma I \preceq H_t \preceq \Gamma I, \qquad \forall t$$

Furthermore

$$\frac{1}{1+M\Lambda} \leq \gamma \leq \Gamma \leq (1 + \sqrt{\kappa})^{2M} (1 + \frac{1}{\lambda(2\sqrt{\kappa} + \kappa)})$$

where $\kappa = \Lambda/\lambda$

Theorem [GGR'16]

If

$$m \ge \frac{1}{2\eta \left(\gamma \lambda - \eta \Gamma^2 \Lambda (2\Lambda - \lambda)\right)} \qquad \eta < \gamma \lambda / (2\Gamma^2 \Lambda^2)$$

Theorem [GGR'16]

If

$$m \ge \frac{1}{2\eta \left(\gamma \lambda - \eta \Gamma^2 \Lambda (2\Lambda - \lambda)\right)} \qquad \eta < \gamma \lambda / (2\Gamma^2 \Lambda^2)$$

$$\label{eq:main_state} \begin{array}{l} \text{Theorem [GGR'16]} \\ \text{If} \\ m \geq \frac{1}{2\eta \left(\gamma\lambda - \eta\Gamma^2\Lambda(2\Lambda - \lambda)\right)} \qquad \eta < \gamma\lambda/(2\Gamma^2\Lambda^2) \\ & & & \\ &$$

Experimental results error X datapasses

epsilon_normalized n= 400,000 , d=2,000

rcv1-training n = 20,242, d = 47,236

Experimental results error X time

gisette, n= 6,000, d= 5,000

covtype.binary, n= 581,012, d= 54

Higgs, n=11,000,000 , d= 28

epsilon_normalized n = 400,000, d = 2,000

rcv1-training n = 20,242, d = 47,236

url-combined n = 2,396,130, d = 3,231,961

Experimental results parameter exploration

w8a n = 49,749, d = 300

Testing the memory parameter M

a9a n = 32,561, d = 123

Testing the subsampling size with S=T

a9a n = 32,561, d = 123

Testing update size (delay size) q

The Stochastic Variance Reduced Gradient

$$g_t = \nabla f_S(w_t) - \nabla f_S(x_k) + \nabla f(x_k)$$

Where x_k is a reference point.

Unbiased :
$$\mathbf{E}_{S}[g_{t}] = \mathbf{E}[\nabla f_{S}(w_{t})] - \mathbf{E}[\nabla f_{S}(x_{k})] + \nabla f(x_{k})$$

 $= \nabla f(w_{t}) + \nabla f(x_{k}) - \nabla f(x_{k})$
 $= \nabla f(w_{t})$
Maintain x_{k} fixed and
iterate in t for m iterations

R. Johnson and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction. NIPS, 1(3), 1–9.