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Variable Metric Method

Challenge how to 
construct an effective     
       that is cheap to 
calculate?



Stochastic Second order 
Methods
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Block BFGS: Least change 
formulation

Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived 
by Variational Means. Mathematics of Computation, 24(109), 23.

The constraint  serves as a fidelity term, enforcing 
that a sketch of the inverse equation be satisfied

The objectives  serves as a regularizor, 
enforcing a low rank update



Block BFGS: Random update 
formulation

RMG and Peter Richtárik (2016). Randomized quasi-Newton 
updates are linearly convergent matrix inversion algorithms. 
arXiv:1602.01768

Cost of update: 
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Choosing the sketch matrix
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Limited Memory Block BFGS
Store the M block triples

Calculate              using the following algorithm



Stochastic Block BFGS 
Method

Using SVRG

Two-loop recursion

 Full Algorithm



Stochastic Block BFGS 
Method

 Back



Experiments



Logistic regression with L2 
regularizer

Test problem

 Data taken from LIBSVM 
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gisette, n= 6,000, d= 5,000



covtype.binary, n= 581,012, d= 54



Higgs, n=11,000,000 , d= 28



url-combined n = 2,396,130, d = 3,231,961 



Conclusions 

 More Numerics  Convergence results



P. Moritz, R. Nishihara and M. I. Jordan 
(2016). A Linearly-Convergent 
Stochastic L-BFGS Algorithm, AISTATS. 

RMG and Peter Richtárik (2016)
Randomized Quasi-Newton Updates 
are Linearly Convergent Matrix 
Inversion Algorithms
arXiv:1602.01768

R. Johnson and T. Zhang (2013). 
Accelerating stochastic gradient 
descent using predictive variance 
reduction. NIPS. 
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Experimental results 
error X datapasses
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Higgs, n=11,000,000 , d= 28
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Experimental results 
parameter exploration



w8a n = 49,749, d = 300 

 Testing the memory parameter M 



a9a n = 32,561, d = 123 

 Testing the subsampling size with S=T



a9a n = 32,561, d = 123 

 Testing update size (delay size) q



SVRG



The Stochastic Variance 
Reduced Gradient

R. Johnson and T. Zhang (2013). Accelerating stochastic gradient 
descent using predictive variance reduction. NIPS, 1(3), 1–9. 
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