Stochastic Block BFGS: Squeezing More Curvature out of Data

Robert Mansel Gower Joint work with Donald Goldfarb and Peter Richtárik

International Conference on Machine Learning, New York, June 2016

The Problem

$$
\min _{w \in \mathbf{R}^{d}} f(w) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w) .
$$

- Each f_{i} is strongly convex and twice continuously differentiable.
- Far more data samples than features $n \gg d$, access through subsampling

The Problem

Motivation is from

 stochastic optimization, such as empirical risk minimization$$
\min _{w \in \mathbf{R}^{d}} f(w) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

- Each f_{i} is strongly convex and twice continuously differentiable.
- Far more data samples than features $n \gg d$, access through subsampling

The Problem

Motivation is from

 stochastic optimization, such as empirical risk minimization$$
\min _{w \in \mathbf{R}^{d}} f(w) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

- Each f_{i} is strongly convex and twice continuously differentiable.
- Far more data samples than features $n \gg d$, access through subsampling

$$
\begin{array}{ll}
\nabla f_{S}(w) \stackrel{\text { def }}{=} \frac{1}{|S|} \sum_{i \in S} \nabla f_{i}(w) & \nabla^{2} f_{T}(x) \stackrel{\text { def }}{=} \frac{1}{|T|} \sum_{i \in T} \nabla^{2} f_{i}(x) \\
S \subset\{1, \ldots, n\} & T \subset\{1, \ldots, n\}
\end{array}
$$

Variable Metric Method

$$
w_{t+1}=w_{t}-\eta H_{t} g_{t}
$$

Variable Metric Method

$$
w_{t+1}=w_{t}-\eta H_{t} g_{t}
$$

stepsize

Variable Metric Method

$$
w_{t+1}=w_{t}-\eta H_{t} g_{t}
$$

$$
\mathbf{E}\left[g_{t}\right]=\nabla f\left(w_{t}\right)
$$

Variable Metric Method

$$
H_{t} \approx \nabla^{2} f\left(w_{t}\right)^{-1}
$$

$$
w_{t+1}=w_{t}-\eta H_{t} g_{t}
$$

stepsize

$$
\mathbf{E}\left[g_{t}\right]=\nabla f\left(w_{t}\right)
$$

Variable Metric Method

$$
H_{t} \approx \nabla^{2} f\left(w_{t}\right)^{-1}
$$

$$
w_{t+1}=w_{t}-\eta H_{t} g_{t}
$$

stepsize

$\mathbf{E}\left[g_{t}\right]=\nabla f\left(w_{t}\right)$
Exe: Newton's Method

$$
w_{t+1}=w_{t}-\eta \nabla^{2} f\left(w_{t}\right)^{-1} \nabla f\left(w_{t}\right)
$$

- Steepest descent

$$
w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right)
$$

- Stochastic gradient descent (SGD)

$$
w_{t+1}=w_{t}-\eta \nabla f_{S}\left(w_{t}\right)
$$

- SAG, SVRG, S2GD, ...etc

Variable Metric Method

$$
H_{t} \approx \nabla^{2} f\left(w_{t}\right)^{-1}
$$

$$
w_{t+1}=w_{t}-\eta H_{t} g_{t}
$$

stepsize

$\mathbf{E}\left[g_{t}\right]=\nabla f\left(w_{t}\right)$
Exe: *Newton's Method

$$
w_{t+1}=w_{t}-\eta \nabla^{2} f\left(w_{t}\right)^{-1} \nabla f\left(w_{t}\right)
$$

- Steepest descent

$$
w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right)
$$

- Stochastic gradient descent (SGD)

$$
w_{t+1}=w_{t}-\eta \nabla f_{S}\left(w_{t}\right)
$$

- SAG, SVRG, S2GD, ...etc

Challenge how to construct an effective H_{t} that is cheap to calculate?

Stochastic Second order Methods

H_{t} is directly estimated from $\nabla^{2} f_{T}\left(x_{t}\right)$

- Low rank decomposition (Agarwal, Bullins and Hazan 2016)
- SVD decomposition (Erdogdu and Montanari 2015)
- Sketching full Hessian (Pilanci and Wainwright 2015)
H_{t} is updated using the (L)BFGS update
- (Schraudolph, Yu and Gunter 2007)
- (Mokhtari and Ribeiro 2014, 2015)
- (Byrd, Hansen, Nocedal and Singer 2015)
- (MNJ Moritz, Nishihara, Jordan 2016)

Hessian Sketching

Fact: Calculating a directional derivative of the gradient is cheap

$$
\nabla^{2} f_{T}\left(x_{t}\right) v=\left.\frac{d}{d \alpha} \nabla f_{T}\left(x_{t}+\alpha v\right)\right|_{\alpha=0}
$$

Ideally H_{t} should satisfy the inverse equation

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right)=I
$$

Solving the sketched inverse equation is easier

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}
$$

Hessian Sketching

Fact: Calculating a directional derivative of the of $O\left(\operatorname{eval}\left(f_{T}(x)\right)\right.$ with
Automatic Differentiation.

$$
\nabla^{2} f_{T}\left(x_{t}\right) v=\left.\frac{d}{d \alpha} \nabla f_{T}\left(x_{t}+\alpha v\right)\right|_{\alpha=0}
$$

Ideally H_{t} should satisfy the inverse equation

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right)=I
$$

Solving the sketched inverse equation is easier

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}
$$

Hessian Sketching

Fact: Calculating a directional derivative of the of $O\left(\operatorname{eval}\left(f_{T}(x)\right)\right.$ with
Automatic Differentiation.

$$
\nabla^{2} f_{T}\left(x_{t}\right) v=\left.\frac{d}{d \alpha} \nabla f_{T}\left(x_{t}+\alpha v\right)\right|_{\alpha=0}
$$

Ideally H_{t} should satisfy the inverse equation

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right)=I
$$

Solving the sketched inverse equation is easier

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}
$$

$$
D_{t} \in \mathbf{R}^{d \times q}, q \ll d
$$

Hessian Sketching

Fact: Calculating a directional derivative of the of $O\left(\operatorname{eval}\left(f_{T}(x)\right)\right.$ with
Automatic Differentiation.

$$
\nabla^{2} f_{T}\left(x_{t}\right) v=\left.\frac{d}{d \alpha} \nabla f_{T}\left(x_{t}+\alpha v\right)\right|_{\alpha=0}
$$

Ideally H_{t} should satisfy the inverse equation

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right)=I
$$

Solving the sketched inverse equation is easier

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t} \quad \begin{gathered}
\nabla^{2} f_{T}\left(x_{T}\right) D_{t} \quad \text { is } \\
\mathrm{q} \times O\left(\operatorname{eval}\left(f_{T}(x)\right)\right.
\end{gathered}
$$

Cost of evaluating

$$
D_{t} \in \mathbf{R}^{d \times q}, q \ll d
$$

Block BFGS: Least change formulation

$$
\begin{aligned}
H_{t}= & \arg \min _{H \in \mathbb{R}^{d \times d}}\left\|H-H_{t-1}\right\|_{t}^{2} \\
& \text { subject to } H \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}, \quad H=H^{T}
\end{aligned}
$$

$$
\text { where }\|H\|_{t}^{2} \stackrel{\text { def }}{=} \operatorname{Tr}\left(H \nabla^{2} f_{T}\left(x_{t}\right) H^{T} \nabla^{2} f_{T}\left(x_{t}\right)\right)
$$

The constraint serves as a fidelity term, enforcing that a sketch of the inverse equation be satisfied

The objectives serves as a regularizor, enforcing a low rank update by Variational Means. Mathematics of Computation, 24(109), 23.

Block BFGS: Random update formulation

Cost of update:

$$
\begin{aligned}
H_{t} & =D_{t} \Delta_{t} D_{t}^{T} \\
& +\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}^{T}\right)
\end{aligned}
$$

where $Y_{t}=\nabla^{2} f_{T}\left(x_{t}\right) D_{t}$ and $\Delta_{t}=\left(D_{t}^{T} Y_{t}\right)^{-1}$ updates are linearly convergent matrix inversion algorithms.

Stochastic Block BFGS Method

Initialize $H_{-1}=I, w_{0} \in \mathbf{R}^{d}$, stepsize $\eta>0$
For $t=0,1, \ldots$,
1 Calculate g_{t}
2. Sample $T_{t} \subseteq[n]$, independently
3. Form $D_{t} \in \mathbf{R}^{d \times q}$
4. Compute sketch $Y_{t}=\nabla^{2} f_{T_{t}}\left(w_{t}\right) D_{t}$
5. $H_{t}=D_{t} \Delta_{t} D_{t}^{T}$

$$
+\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}\right)
$$

6. $\quad d_{t}=H_{t} g_{t}$
7. $w_{t+1}=w_{t}-\eta d_{t}$

Output w_{t+1}

Stochastic Block BFGS Method

Initialize $H_{-1}=I, w_{0} \in \mathbf{R}^{d}$, stepsize $\eta>0$
For $t=0,1, \ldots$,
1 Calculate g_{t}
2. Sample $T_{t} \subseteq[n]$, independently
3. Form $D_{t} \in \mathbf{R}^{d \times q}$
4. Compute sketch $Y_{t}=\nabla^{2} f_{T_{t}}\left(w_{t}\right) D_{t}$
5. $H_{t}=D_{t} \Delta_{t} D_{t}^{T}$

$$
+\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}\right)
$$

6. $\quad d_{t}=H_{t} g_{t}$
7. $w_{t+1}=w_{t}-\eta d_{t}$

Output w_{t+1}
How to choose D_{t} ?

Stochastic Block BFGS Method

Initialize $H_{-1}=I, w_{0} \in \mathbf{R}^{d}$, stepsize $\eta>0$
For $t=0,1, \ldots$,
1 Calculate g_{t}
2. Sample $T_{t} \subseteq[n]$, independently
3. Form $D_{t} \in \mathbf{R}^{d \times q}$
4. Compute sketch $Y_{t}=\nabla^{2} f_{T_{t}}\left(w_{t}\right) D_{t}$
5. $H_{t}=D_{t} \Delta_{t} D_{t}^{T}$

$$
+\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}\right)
$$

6. $\quad d_{t}=H_{t} g_{t}$
7. $w_{t+1}=w_{t}-\eta d_{t}$

Output w_{t+1}
How to choose D_{t} ?
Do we need to store H_{t} ?

Choosing the sketch matrix

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}
$$

We employ one of three strategies
-gauss: $D_{t} \sim \mathcal{N}(0, I)$ has Gaussian entries samplied i.i.d at each iteration
${ }^{\text {s }}$ prev (previous search directions delayed) : Let $d_{t}=H_{t} g_{t}$.
Store q previous search directions $D_{t}=\left[d_{t-q}, \ldots, d_{t-1}\right]$, update H_{t} once every q iterations

- fact (factorized self-conditioning) : Sample the columns of a factored form L_{t} of $H_{t}\left(\right.$ i.e. $\left.L_{t} L_{t}^{T}=H_{t}\right)$ uniformly at random. Fortunately we can maintain and update L_{t} efficiently.

Limited Memory Block BFGS

Expanding $M \in \mathbb{N}$ block BFGS updates gives

$$
H_{t}=\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}^{T}\right)+D_{t} \Delta_{t} D_{t}^{T}
$$

$=\operatorname{FUNCTION}\left(H_{t-M}, D_{t}, Y_{t}, \Delta_{t}, \ldots, D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right)$

Limited Memory Block BFGS

Expanding $M \in \mathbb{N}$ block BFGS updates gives

$$
\begin{aligned}
& H_{t}=\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}^{T}\right)+D_{t} \Delta_{t} D_{t}^{T} \\
& \quad \vdots \\
& = \\
& \quad=\operatorname{FUNCTION}\left(H_{t-M}, D_{t}, Y_{t}, \Delta_{t}, \ldots, D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right)
\end{aligned}
$$

H_{t} is a function of H_{t+1-M} and $\left(D_{t+1-i}, Y_{t+1-i}, \Delta_{t+1-i}\right)$ for $i=1, \ldots M$

Limited Memory Block BFGS

Expanding $M \in \mathbb{N}$ block BFGS updates gives

$$
\begin{aligned}
& H_{t}=\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}^{T}\right)+D_{t} \Delta_{t} D_{t}^{T} \\
& \quad \vdots \\
& = \\
& =\operatorname{FUNCTION}\left(H_{t-M}, D_{t}, Y_{t}, \Delta_{t}, \ldots, D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right) \\
& =
\end{aligned}
$$

H_{t} is a function of H_{t+1-M} and $\left(D_{t+1-i}, Y_{t+1-i}, \Delta_{t+1-i}\right)$ for $i=1, \ldots M$

To simplify $H_{t-M}=I$

Limited Memory Block BFGS

Store the M block triples

$$
\left(D_{t}, Y_{t}, \Delta_{t}\right), \ldots,\left(D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right)
$$

Limited Memory Block BFGS

Store the M block triples
Store $M\left(2 q d+q^{2}\right)$ doubles

$$
\left(D_{t}, Y_{t}, \Delta_{t}\right), \ldots,\left(D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right)
$$

Limited Memory Block BFGS

Store the M block triples

$$
\left(D_{t}, Y_{t}, \Delta_{t}\right), \ldots,\left(D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right)
$$

Calculate $H_{t} g_{t}$ using the following algorithm

$$
\begin{aligned}
& \text { Two-loop recursion } \\
& \text { inputs } g_{t} \in \mathbf{R}^{d}, D_{i}, Y_{i} \in \mathbf{R}^{d \times q} \text { and } \Delta_{i} \in \mathbf{R}^{q \times q} \\
& \text { For } i=t, \ldots, t-M+1 \\
& \quad \alpha_{i} \leftarrow \Delta_{i} D_{i}^{T} v \\
& \quad v \leftarrow v-Y_{i} \alpha_{i}
\end{aligned}
$$

$$
\text { For } i=t-M+1, \ldots, t
$$

$$
\beta_{i} \leftarrow \Delta_{i} Y_{i}^{T} v
$$

$$
v \leftarrow v+D_{i}\left(\alpha_{i}-\beta_{i}\right)
$$

$$
\text { Costs } M q(4 d+2 q) \text { to apply }
$$

$$
\text { output } H_{t} g_{t} \leftarrow v
$$

Stochastic Block BFGS Method

Initialize $H_{-1}=I, w_{0} \in \mathbf{R}^{d}$, stepsize $\eta>0$
For $t=0,1, \ldots$,

1. Calculate g_{t}

Using SVRG
2. Sample $T_{t} \subseteq[n]$, independently
3. Form $D_{t} \in \mathbf{R}^{d \times q}$
4. Compute sketch $Y_{t}=\nabla^{2} f_{T}\left(w_{t}\right) D_{t}$
5. $\quad d_{t}=H_{t} g_{t}$

Two-loop recursion
6. $w_{t+1}=w_{t}-\eta d_{t}$

Output w_{t+1}

Stochastic Block BFGS Method

Initialize $H_{-1}=I, w_{0} \in \mathbf{R}^{d}$, stepsize $\eta>0$
For $t=0,1, \ldots$,

1. Compute $\mu=\nabla f\left(w_{t}\right)$
2. \quad Set $x_{0}=w_{t}$

For $k=0,1, \ldots, m-1$
3. \quad Sample $S_{k}, T_{k} \subseteq[n]$, independently
4. $\quad g_{k}=\nabla f_{S_{k}}\left(x_{k}\right)-\nabla f_{S_{k}}\left(w_{t}\right)+\mu$
5. Form $D_{k} \in \mathbf{R}^{d \times q}$
6. $\quad x_{k+1}=x_{k}-\eta H_{k} g_{k}$
7. Option I: Set $w_{t+1}=x_{m}$
8. Option I: Set $w_{t+1}=x_{i}$, where i is selected uniformly at random from $[m]=\{1,2, \ldots, m\}$
Output w_{t+1}

Experiments

Logistic regression with L2 regularizer

Test problem

$$
\min _{w} \sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i} a^{i}, w\right)\right)+\frac{1}{n}\|w\|_{2}^{2}
$$

where $\left[a^{1}, \ldots, a^{n}\right] \in \mathbf{R}^{d \times n}$ and $y \in\{0,1\}^{n}$ are the given data.

Data taken from LIBSVM

Key to methods

SVRG	Johnson Zhang (2013)
MNJ	Moritz, Nishihara Jordan (2013)
gauss_q_M	Gaussian elements
fact_q_M	Self-conditioning factorized sampling
prev_q_M	Previous search directions delayed

Key to methods

SVRG

MNJ

Johnson Zhang (2013)

Moritz, Nishihara Jordan (2013)

Gaussian elements

Self-conditioning factorized sampling

Previous search directions delayed

Key to methods

SVRG

MNJ

Johnson Zhang (2013)

Moritz, Nishihara Jordan (2013)
gauss_q_M

Gaussian elements
fact_q_M
Self-conditioning factorized sampling

Previous search directions delayed
$D_{t} \in \mathbf{R}^{n \times q}$
$M \in \mathbf{N}$ number of block triples stored

gisette, $n=6,000, d=5,000$

covtype.binary, n=581,012, d= 54

Higgs, $\mathrm{n}=11,000,000$, $\mathrm{d}=28$

url-combined $n=2,396,130, d=3,231,961$

Conclusions

- New metric learning framework. A block BFGS framework for gradually learning the metric of the underlying function using sketches of subsampled Hessian matrices
- New limited memory block BFGS method. May also be of interest for non-stochastic optimization
- Several matrix sketching possibilities.
- More reasonable bounds on eigenvalues of H_{k} which lead to more reasonable conditions for step size, as compared to MNJ

PDF

R. Johnson and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction. NIPS.
P. Moritz, R. Nishihara and M. I. Jordan (2016). A Linearly-Convergent Stochastic L-BFGS Algorithm, AISTATS.

RMG and Peter Richtárik (2016) Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms
arXiv:1602.01768

Convergence

Convergence

Assumption

$$
\begin{array}{r}
\text { There exists } 0<\lambda \leq \Lambda \text { such that } \\
\qquad \lambda \preceq \nabla^{2} f_{T}(x) \preceq \Lambda I
\end{array}
$$

For all $x \in \mathbf{R}^{d}$ and all $T \subseteq[n]$.

Lemma [GGR'16]

There exists $0<\gamma \leq \Gamma$ such that

$$
\gamma I \preceq H_{t} \preceq \Gamma I, \quad \forall t
$$

Furthermore

$$
\frac{1}{1+M \Lambda} \leq \gamma \leq \Gamma \leq(1+\sqrt{\kappa})^{2 M}\left(1+\frac{1}{\lambda(2 \sqrt{\kappa}+\kappa)}\right)
$$

where $\kappa=\Lambda / \lambda$

Complexity / Convergence

 Theorem [GGR'16]If

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)} \quad \eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)
$$

Complexity / Convergence

 Theorem [GGR'16]If

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)} \quad \eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)
$$

Complexity / Convergence

 Theorem [GGR'16]If

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)} \quad \eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)
$$

Inner iterations
of SVRG

Complexity / Convergence

Theorem [GGR'16]
If

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)}
$$

Inner iterations
of SVRG

Complexity / Convergence

Theorem [GGR'16]
If

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)} \quad \eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)
$$

Inner iterations
of SVRG

$$
\mathbf{E}\left[f\left(w_{t}\right)-f\left(w_{*}\right)\right] \leq \rho^{t}\left(f\left(w_{0}\right)-f\left(w_{*}\right)\right)
$$

Where,

$$
\rho=\frac{1 / 2 m \eta+\eta \Gamma^{2} \Lambda(\Lambda-\lambda)}{\gamma \lambda-\eta \Gamma^{2} \Lambda^{2}}<1
$$

Experimental results error X datapasses

epsilon_normalized $n=400,000, d=2,000$

rcv1-training $n=20,242, d=47,236$

Experimental results error X time

gisette, $n=6,000, d=5,000$

covtype.binary, n=581,012, d= 54

Higgs, $\mathrm{n}=11,000,000$, $\mathrm{d}=28$

epsilon_normalized n=400,000 , d=2,000

rcv1-training $\mathrm{n}=20,242, \mathrm{~d}=47,236$

url-combined $n=2,396,130, \mathrm{~d}=3,231,961$

Experimental results parameter exploration

w8a $n=49,749, d=300$

Testing the memory parameter M
a9a $n=32,561, d=123$

Testing the subsampling size with $\mathrm{S}=\mathrm{T}$

a9a $\mathrm{n}=32,561, \mathrm{~d}=123$

Testing update size (delay size) q

SVRG

The Stochastic Variance Reduced Gradient

$$
g_{t}=\nabla f_{S}\left(w_{t}\right)-\nabla f_{S}\left(x_{k}\right)+\nabla f\left(x_{k}\right)
$$

Where x_{k} is a reference point.
Unbiased : $\mathbf{E}_{S}\left[g_{t}\right]=\mathbf{E}\left[\nabla f_{S}\left(w_{t}\right)\right]-\mathbf{E}\left[\nabla f_{S}\left(x_{k}\right)\right]+\nabla f\left(x_{k}\right)$

$$
\begin{aligned}
& =\nabla f\left(w_{t}\right)+\nabla f\left(x_{k}\right)-\nabla f\left(x_{k}\right) \\
& =\nabla f\left(w_{t}\right) \quad \text { Maintain } x_{k} \text { fixed and }
\end{aligned}
$$

$$
\text { iterate in } t \text { for } m \text { iterations }
$$ descent using predictive variance reduction. NIPS, 1(3), 1-9.

