
A Very Simple Introduction to Diffusion Models

Robert Gower

October 21, 2022

This is a short note at how arrive at the correct loss function used to train Diffusion models with the
shortest explanation possible. I avoid entirely the VDM (Variational Diffusion Model) viewpoint. Instead,
here I motivate the loss directly as trying to minimize the error of the model in reversing one step of
the diffusion model. Both this direct approach, and the VDM approach are equally formal. Furthermore,
both approaches arrive at the correct loss function upto a multiplicative constant in time. In this sense,
both approaches are equally impractical. I also show a quick equivalence to score based modelling using
only simple calculus. Thus without resorting to Tweedie’s formula or finding the reverse of a Stochastic
Differential Equation.

1 What Does it Do?
Consider the task of generating natural images from random noise. Let X ⊂ RD be our space/set of natural
images. Let z ∼ N (0, I) where z ∈ Rd. We want to find a map xθ : Rd 7→ Rd parametrized in θ ∈ Rm such
that

x = xθ(z)

where x ∈ X is a convincing natural image, and θ ∈ Rm are the tunable parameters. We can take this further
by using some conditional information y ∈ Rm. For instance, y could be some embedding of a caption of
this image, or it may be the label corresponding to dog. In which case we want a map such that

xy = xθ(z | y) (1)

where xy is a natural image that is likely image conditioned on observing y. But here I will say no more on
conditional information.

The problem of generating natural images from noise is very challenging. The other direction, generating
noise from natural images is easy. So we will start there.

2 Target Data using a Diffusion
Let x0 ∈ X be a natural image. To train our model to generate images from noise, we start with x0 and
transform it into noise xT ∼ N (0, I) and then ask that our model to recover x0 from xT . This turns out to
be too difficult. So to help the model, we show it a sequence of images xt with increasing amounts of noise.

Diffusion. To make this inversion task easier (and possible), we generate a sequence of noisy images, each
with more noise. Let (αt) > 0 be a sequence of positive numbers. Our sequence of noisy images is given by

xt =
√
αtxt−1 +

√
1− αtϵt, for t = 1, . . . , n and ϵt ∼ N (0, I). (2)

Typically α1 = 10−4, and αt linearly increases to αT = 0.02, and T = 1000. These xt’s will be the target
for our model. Indeed our model will try to learn xt−1 from xt, which is possible if

√
1− αt is small.

1

3 How are they Trained?
We now allow our model xθ to take two inputs: A noisy image xt and a position t. Our objective is to
predict the slightly less noisy image xt−1 from xt. To do this end, we minimize the L2 loss between xθ(xt, t)
and xt−1 that is

min
θ

E
t∼U(1,...,T),x0∼X

[
∥xθ(xt, t)− xt−1∥2

]
, (3)

where t ∼ U(1, . . . , T) uniformly samples t from {1, . . . , T} and x0 ∼ X samples a natural image. In practice
our model is reparametrized to mimick the structure of xt−1. To see this structure, first note that the reverse
process of (2) is given by

xt−1 =
xt −

√
1− αtϵt√
αt

.

We could easily reverse this process if we knew ϵt. But in practice, for unseen/test data we don’t know ϵt.
Since we have this functional form for xt−1, we might as well choose xθ to mimick this form, that is

xθ(xt, t) =
xt −

√
1− αtϵθ(x

t, t)
√
αt

, (4)

where ϵθ is now a parametrized model with parameters θ ∈ Rm. The objective of this ϵθ(xt, t) is to output
the noisy part of xt. Substituting (4) into the loss (3) we get

min
θ

E
t∼U(1,...,T),x0∼M,ϵ∼N (0,I)

[
1− αt

αt
∥ϵθ(xt, t)− ϵ∥2

]
. (5)

The above has an issue with cost, since computing xt requires either saving all images x1, . . . , xt (typically
1000 images) or recomputing the diffusion. Luckily there is a fix.

Skipping ahead. In practice xt can be sampled directly without generating the whole sequence (2).

Indeed, since xt is a summation of Gaussian’s, it is also Gaussian (conditioned on x0). Let ᾱt =
√∏t

i=1 αi.

We can see this by expanding the recurrence (2):

xt =
√
αtxt−1 +

√
1− αtϵt

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1ϵt−1) +

√
1− αtϵt

=
√
αtαt−1xt−2 +

√
αt − αtαt−1ϵt−1 +

√
1− αtϵt

Now since
√
αt − αtαt−1ϵt−1 ∼ N (0, (αt − αtαt−1)I) and ϵt ∼ N (0, (1 − αt)I) are both normal random

variables, we can use the formula

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2)

to conclude that√
αt − αtαt−1ϵt−1 +

√
1− αtϵt ∼ N (0, (αt − αtαt−1 + 1− αt)I) = N (0, (1− αtαt−1)I).

Thus let ϵ∗t ∼ N (0, I) we have that

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

∗
t

...

=
√
ᾱtx0 +

√
1− ᾱtϵ

∗
0 ∼ N (

√
ᾱtx0, (1− ᾱt)I). (6)

So we can sample xt directly from x0 and a normal random variable.

2

Using (6) we can also substitute out xt and drop the normalizing constant 1−αt

αt
to give

min
θ

E
t∼U(1,...,T),x0∼M,ϵ∼N (0,I)

[
∥ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥2

]
. (7)

This normalizing constant 1−αt

αt
re-weight the terms depending on t. Thus dropping this normalizing constant

effectively changes the distribution of t. That is, solving (7) is not equal to solving (5). Yet this is what
is done in practice. This lack of formality in simply dropping this constant is also an issue with the VDM
viewpoint.

The full training algorithm is given by Algorithm 1. This is apparently amongst the most used training

Algorithm 1 Training
for k = 1, . . . ,K do

Sample x0 ∼ X
Sample t ∈ {1, . . . , T} uniformly
Sample ϵ ∼ N (0, I)
Update θk+1 = θk − γk∇θ∥ϵθk(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥2 ▷ Gradient update

loss and parametrization.

Generation/Inference. With the trained model, we can generate images by running the diffusion in the
reverse direction. That is, since isolating xt−1 in (2) gives

xt−1 =
xt −

√
1− αtϵt√
αt

, for t = 1, . . . , n and ϵt ∼ N (0, I). (8)

Consequently our generation algorithm is

xT ∼ N (0, I) (9)

xt−1 =
xt −

√
1− αtϵθ(x

t, t)
√
αt

, for t = T, . . . , 0. (10)

4 Score based Viewpoint
Diffusion models are often described through their connection with score based modelling. Let p(x0) be the
probability distribution of real images. The score based approach tries to fit a score function sθ(xt, t) to the
gradient of true probability distribution as follows

min
θ

E
x0∼p(x0),xt∼p(xt|x0)

[
∥sθ(xt)−∇ log p(xt)∥2

]
. (11)

Why do this? Intuitively (and formally) you can sample real images by following ∇ log p(x) towards the
most probable images. That this, ∇ log p(x) points in the steepest ascent direction. Thus if we had access
to this gradient, we could iterate gradient ascent, but with some noise to ensure exploration as follows

xT ∼ N (0, I) (12)
xt−1 = xt + γt∇ log p(xt) +

√
γtϵt, ϵt ∼ N (0, I), for t = T, . . . , 1, (13)

where γt → 0 are the learning rate. This process is known as Langevin dynamics.
This can also be show to be equivalent to (7) which can be useful, in particular for modelling the

conditional sampling. To show this equivalence, first we need to show that (11) is equivalent to (up to
additive constants) solving

min
θ

E
t∼U(1,...,T),x0∼p(x0),xt∼p(xt|x0)

[
∥sθ(xt)−∇xt

log p(xt|x0)∥2
]
. (14)

3

Proof. Expanding the squares of (14) we have

∥sθ(xt)−∇ log p(xt|x0)∥2 = ∥sθ(xt)∥2︸ ︷︷ ︸
=:I∗

−2 ⟨sθ(xt),∇ log p(xt|x0)⟩︸ ︷︷ ︸
=:II∗

+ ∥∇ log p(xt|x0)∥2︸ ︷︷ ︸
=:III∗

. (15)

Expanding the squares of (11) we have

∥sθ(xt)−∇ log p(xt)∥2 = ∥sθ(xt)∥2︸ ︷︷ ︸
=:I

−2 ⟨sθ(xt),∇ log p(xt)⟩︸ ︷︷ ︸
=:II

+ ∥∇ log p(xt)∥2︸ ︷︷ ︸
=:III

. (16)

Now note that III and III∗ does not depend on θ, so we can drop it in our minimization problem. As for
I, we have that I = I∗.

As for the II, using that

p(xt) =

∫
p(x0, xt)dx0 =

∫
p(xt|x0)p(x0)dx0.

we have that

E
x0∼p(x0),xt∼p(xt|x0)

[⟨sθ(xt),∇ log p(xt)⟩] = E
xt∼p(xt)

[⟨sθ(xt),∇ log p(xt)⟩]

= E
xt∼p(xt)

[〈
sθ(xt),

∇xtp(xt)

p(xt)

〉]
=

∫
⟨sθ(xt),∇p(xt)⟩ dxt

=

∫
xt

〈
sθ(xt),∇xt

∫
p(xt|x0)p(x0)dx0

〉
dxt

=

∫
xt

〈
sθ(xt),

∫
∇xtp(xt|x0)p(x0)dx0

〉
dxt

=

∫ 〈
sθ(xt),

∫
p(xt|x0)p(x0)∇xt

log(p(xt|x0))dx0

〉
dxt

=

∫ ∫
p(xt|x0)p(x0) ⟨sθ(xt),∇xt

log(p(xt|x0))⟩ dx0dxt

= E
(x0)∼p(x0)

[
E

xt∼p(xt|x0)
[⟨sθ(xt),∇xt

log(p(xt|x0))⟩]
]

= II∗

This is now the cross product term of (14), thus (11) and (14) are equal up to additive terms.

Now since we know that xt given x0 has a Gaussian distribution, we have from (6) that

p(xt|x0) =
1

√
1− ᾱt

√
2π

e−
1
2

(xt−
√

ᾱtx0)2

1−ᾱt .

Taking the gradient of the above gives

∇xt
log p(xt|x0) = −∇xt

1
2 (xt −

√
ᾱtx0)

2

1− ᾱt
(17)

= − (xt −
√
ᾱtx0)

1− ᾱt
. (18)

4

Now using (6) again, that is
xt =

√
ᾱtx0 +

√
1− ᾱtϵ

gives

∇xt
log p(xt|x0) = −

√
1− ᾱtϵ

1− ᾱt
. (19)

Consequently if we chose to parametrize the score function as

sθ(xt) = −
√
1− ᾱtϵθ(xt)

1− ᾱt
. (20)

Substituting both (19) and (20) into (14) gives

min
θ

E
t∼U(1,...,T),x0∼p(x0),xt∼p(xt|x0)

[
1√

1− ᾱt
∥ϵθ(xt, t)− ϵ∥2

]
, (21)

which after substituting in xt =
√
ᾱtx0 +

√
1− ᾱtϵ, and again dropping the multiplicative factor 1√

1−ᾱt
we

return to (7).

5 Variational Diffusion Model Viewpoint
If you ever read a paper on diffusion, most likely they will adopt the VDM (Variational Diffusion Model)
viewpoint. For instance the paper “Understanding Diffusion Models: A Unified Perspective” by Calvin Luo
is an excellent read.

The VDM viewpoint models the reverse process using a variational family that is assumed to be Gaussian.
Further this Gaussian and has the same variance as the forward process. Let

q(xt | xt−1) = N (
√
αtxt−1, (1− αt)I)

be the distributions of the forward diffusion. Since we use independent noise at each iteration we can
decompose the full probability as

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt | xt−1).

We now need to model the reverse process. Let pθ(x) such that we want pθ(x) to be large for x ∈ X . Let’s
assume that the probability reverse process is also Markov in that

p(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt) (22)

where we have imposed that
pθ(xt−1 | xT , . . . , xt) = pθ(xt−1 | xt).

Each pθ(xt−1 | xt) is modelled as a sequence of Gaussians with the same variance as the forward diffusion.
Only the mean is left to determine.

From this perspective our objective is to fit a distribution pθ such that pθ(x) is large for x ∈ X . That is
we want to find θ∗ such that log pθ(x) is large or

θ∗ ∈ max E
x∼p

[log pθ(x)] .

5

To minimize this we use that
log pθ(x0) =

∫
pθ(x0, . . . , xT)dx1:T .

This can be done by maximizing the lower bound in the following

log pθ(x0) ≥ E
q(x1:T | x0)

[
log

pθ(x0, . . . , xT)

q(x1:T | x0)

]
= −KL(q(x1:T | x0), pθ(x0, . . . , xT)).

Using the decomposition (22), and after many steps we have that

KL(q(x1:T | x0), pθ(x0, . . . , xT)) = − E
q(x1|x0)

[log pθ(x0|x1)] +

T∑
t=2

KL(q(xt−1|xt, x0), pθ(xt−1|xt)).

Finally assuming that
pθ(xt | xt−1) ∼ N (µθ, σ

2
t I),

where σt is the variance of q(xt−1|xt, x0) then minimizing the ELBO is equivalent to (7) upto multiplicative
constants, which are ignored anyway! The key behind this equivalence is that

KL(q(xt−1|xt, x0), pθ(xt−1|xt)) =
1

σ2
t

∥µθ − µqt∥2.

The final step is just to compute the mean µqt , which has the form

µqt = const1xt + const2ϵ

where ϵ ∼ N (0, I). We then simply choose to parametrize

µθ = const1xt + const2ϵθ

which brings up back to exactly the same form (up to multiplicative constants).

A Auxiliary Lemmas
For the score interpretation we need Tweedie’s formula

E [µz | z] = z +Σz∇z log p(z)

where z ∼ N (µz,Σz) and I guess µ ∼ N .

Lemma A.1 (Stein’s lemma). Let X ∼ N (0, 1) and let f(x) be a function such that E [Xf(X)] and
E [f ′(X)] are finite. It follows that

E [xf(x)] = E [f ′(x)] . (23)

Furthermore if
Y = µ+ σX

then
E [(Y − µ)f(Y)] = σE [f ′(Y)] .

Proof. Note that N (0, 1) = e−x2/2. Also note that∫
xe−x2/2dx = −e−x2/2 (24)

which follows by the change of variable y = x2.

6

Now let g′(x) = xe−x2/2. using integration by parts we have that

E [Xf(X)] =

∫
f(x)g′(x)dx

= f(x)g(x)|∞−∞ −
∫

f ′(x)g(x)dx

= −f(x)e−x2/2|∞−∞ +

∫
f ′(x)e−x2/2dx Using (24)

= E [f ′(X)]

Finally letting Y = µ+ σX thus Y−µ
σ = X we have

E [Y f(Y)] = E [(µ+ σX)f(µ+ σX)] = µE [f(Y)] + σE [Xf(µ+ σX)] .

Now we can compute E [Xf(µ+ σX)] using the same steps as above

E [Xf(µ+ σX)] =

∫
f(µ+ σx)g′(x)dx

= f(µ+ σx)g(x)|∞−∞ −
∫

σf ′(µ+ σx)g(x)dx

= −f(µ+ σx)e−x2/2|∞−∞ + σ

∫
f ′(µ+ σX)e−x2/2dx Using (24)

= σ2E [f ′(µ+ σX)]

Thus
E [(Y − µ)f(Y)] = σE [f ′(Y)] .

7

	What Does it Do?
	Target Data using a Diffusion
	How are they Trained?
	Score based Viewpoint
	Variational Diffusion Model Viewpoint
	Auxiliary Lemmas

