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Goal: Empirical Risk Minimization

Consider the optimization problem

x∗ = arg min
x∈Rd

{
f (x) := 1

n

n∑
i=1

fi(x)

}
, (1)

where
• f is L-smooth and µ-strongly convex
• each fi is Lmax-smooth

Stochastic Variance Reduced Gradient

Algorithm 1 SVRG [4]
Parameters: inner loop size m'''Lmax

µ
, step size α, pt := 1

m

Initialization: w0 = xm0 ∈ Rd

for s = 1, 2, . . . do
x0
s = ws−1

for t = 0, 1, . . . ,m− 1 do
Sample it uniformly at random in {1, . . . , n}
gts = ∇fit(xts)−∇fit(ws−1) +∇f (ws−1)
xt+1
s = xts − αgts

end for
ws =

∑m−1
t=0 ptx

t
s

end for

Problem: SVRG differs from practice
• Constraint on the size of the loop m
• First iterate reset to the average of past iterates
• No theoretical justification for benefits of mini-batching

Motivations

• Close gap between theory and practice of SVRG
• Offer theoretical convergence guarantees
• Demonstrate benefits from mini-batching

Stochastic Reformulation

Problem (1) can be reformulated as

x∗ = arg min
x∈Rd

Ev∼D

[
1
n

n∑
i=1

vifi(x)

]
=: Ev∼D [fv(x)] , (2)

where Ev∼D [v] = 1n. To solve (2), we can use SVRG:
xt+1
s = xts − α

(
∇fvt(xts)−∇fvt(ws−1) +∇f (ws−1)

)
,

where vt ∼ D is sampled at each iteration.
Arbitrary sampling includes all types of sampling.

Example: mini-batching without
replacement

Let S ⊂ {1, . . . , n} be a random set such that
P [S = B] = 1

/(
n
b

)
for all B ⊂ {1, . . . , n}, |B| = b .

Let vi =
{
n/b if i ∈ S
0 otherwise

Then, fv(x) = 1
b

∑
i∈S

fi(x) and ∇fv(x) = 1
b

∑
i∈S
∇fi(x) .

Proposed algortihm: Free-SVRG

Algorithm 2 Free-SVRG (or 1-SVRG [5])
Parameters: Free inner loop length m, step size α,

pt := (1− αµ)m−1−t
/

m−1∑
i=0

(1− αµ)m−1−i

Initialization: w0 = xm0 ∈ Rd

for s = 1, 2, . . . do
x0
s = xm

s−1
for t = 0, 1, . . . ,m− 1 do

Sample vt ∼ D
gts = ∇fvt(xts)−∇fvt(ws−1) +∇f (ws−1)
xt+1
s = xts − αgts

end for
ws =

∑m−1
t=0 ptx

t
s

end for

Solves several issues with SVRG
• Inner iterates (xts) continuously updated (no resetting)
• Free choice of the inner loop size
• Much easier analysis

Algorithm analysis

An essential constant for the analysis:

Lemma: Expected smoothness

Let v ∼ D be a sampling vector. There exists L ≥ 0 such
that for all x ∈ Rd,

Ev∼D
[
‖∇fv(x)−∇fv(x∗)‖2

2

]
≤ 2L (f (x)− f (x∗)) .

Example: mini-batching without replacement [1, 2]

L = L(b) = 1
b

n− b

n− 1
Lmax + n

b

b− 1
n− 1

L .

In particular, L(1) = Lmax and L(n) = L .

Lyapunov Convergence Theorem 1

Let φs := ‖xms − x∗‖
2
2 + 8α2LSm(f (ws)− f (x∗)),

where Sm =
m−1∑
i=0

(1 − αµ)m−1−i. If α ≤ 1/6L, then the
iterates of Algorithm 2 converge with
E [φs] ≤ βsφ0, where β = max

{
(1− αµ)m, 1

2
}
.

Total complexity for mini-batching

The total complexity of finding an ε > 0 approximate
solution that satisfies E

[
‖xms − x∗‖

2
2

]
≤ ε φ0 is

Cm(b) := 2
(n
m

+ 2b
)

max
{

3L(b)
µ

,m

}
log
(

1
ε

)
.

And for mini-batching (dropping the log term):

Cm(b) := 2
(n
m

+ 2b
)

max
{

3
b

n− b

n− 1
Lmax

µ
+ 3n

b

b− 1
n− 1

L

µ
,m

}
.

Alternative algorithm: L-SVRG-D

Problem: SVRG requires the strong convexity
• SVRG relies on knowing µ

Solution: [3] proposed a loopless version of SVRG.
Improvement: when the variance of the estimate of the
gradient is high, decrease the step size.
Algorithm 3 L-SVRG-D (Loopless-SVRG-Decrease)
Parameters: step size α, p ∈ (0, 1]
Initialization: w0 = x0 ∈ Rd, α0 = α
for k = 0, 1, 2, . . . do

Sample vk ∼ D
gk = ∇fvk(xk)−∇fvk(wk) +∇f (wk)
xk+1 = xk − αkgk

(wk+1, αk+1) =
{

(xk, α) with prob. p
(wk,

√
1 − p αk) with prob. 1− p

end for

Lyapunov Convergence Theorem 2

Consider the iterates of Algorithm 3 and let

φk :=
∥∥xk − x∗∥∥2

2 + 8α2
kL

p(3− 2p)
(
f (wk)− f (x∗)

)
.

If p ≈ 1
n and α / 2/7L, then

E
[
φk
]
≤ βkφ0, where β = max

{
1− 2

3
αµ, 1− p

2

}
.

Benefits
• Bigger step size for the first iterations of the loop,

when the variance is low
• Smaller step size for the last iterations of the loop,

when the variance is high

Same total complexity and optimal parameter set-
tings as Free-SVRG (up to constants).

How to set the inner loop size?

We found a range of valuesminimizing the total complexity.
If m ∈ [min (n, Lmax/µ) ,max (n, Lmax/µ)], then

Cm(1) = O

((
n+

Lmax

µ

)
log

(1
ε

))
.

B Includes the practical choice m = n B

How to set the mini-batch size?

For any fixed inner loop size m
• the total complexity is a convex function of b
• the step size is an increasing function of b
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Figure: The total complexity (left) and the step size (right) as b increases.

We obtain the optimal mini-batch size for Free-SVRG
(resp. L-SVRG-D) for the usual choice m = n

(
resp. p = 1

n

)
:

b∗ =


1 if n ≥ 3Lmax

µ⌊
min(b̃, b̂)

⌋
if 3L

µ < n < 3Lmax
µ⌊

b̂
⌋

otherwise, if n ≤ 3L
µ

where b̂ :=
√

n
2
Lmax−L
nL−Lmax

and b̃ := 3n(Lmax−L)
n(n−1)µ−3(nL−Lmax) .

Experiments

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)
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Figure: Theoretical settings for SVRG, Free-SVRG and L-SVRG-D.
Left: l2−regularized logistic regression on ijcnn1.

Right: l2−regularized ridge regression on YearPredictionMSD.
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Mini-batch size b
b= 1,α * (b) = 3.03e− 06
b= 100,α * (b) = 2.94e− 04
b= √n = 231,α * (b) = 6.54e− 04
b= n= 53500,α * (b) = 9.39e− 03
b= b * (n) = 31,α * (b) = 9.31e− 05

Figure: Different mini-batch sizes for Free-SVRG for a l2−regularized
ridge regression problem on the slice data set.

Inner loop size
m= n m= 2n m≈ Lmax/μ m≈ 3L μ3Lmax/μ=m *
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Inner loop size m
n= 141691
2n= 283382
Lmax/μ= 51499
3Lmax/μ=m * = 154496

Figure: Different inner loop sizes for Free-SVRG for a l2−regularized
logistic regression problem on the ijcnn1 data set.
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