
Greedystochasticalgorithms forentropy-regularizedoptimal
transportproblems
Brahim Khalil Abid and Robert M. Gower

brahim-khalil.abid@polytechnique.edu robert.gower@telecom-paristech.fr

1. Introduction
Probability distributions are the backbone of ma-
chine learning and statistics. Optimal Transport
(OT) provides a meaningful notion of distance
between probability distributions and histograms.
Here we develop a family of fast and practical
stochastic algorithms for solving the optimal trans-
port problem with an entropic penalization.

2. The discrete OT problem
The regularised discrete OT problem can be seen as
an optimal resource allocation given by:

P ∗λ = arg min
P∈Rn×n

+

〈P,C〉 − 1

λ
E(P ),

subject to P1 = r, P>1 = c, (1)

where the entropy is E(P ) =
∑n
i,j=1−Pij log(Pij),

r, c ∈ ∆n
def
= {x ∈ Rn |

∑n
i=1 xi = 1} are respec-

tively the initial and target distributions, C ∈ Rn×n+

the transport cost matrix and 1 ∈ Rn is a vector of
all ones.

Figure 1: Regularized transport polytope (thanks
to Michiel Stock)

3. Equivalence to matrix scaling

Let A
def
= e−λC . The dual formulation of (1) is

(x∗, y∗) = arg max
x,y

n∑
i,j=1

Aije
xi+yj − 〈r, x〉 − 〈c, y〉 ,

where P ∗λ = D(ex
∗
)AD(ey

∗
). Let u = ex and v =

ey. Writing out the �rst order optimality conditions
of the dual gives the matrix scaling problem:

D(u)AD(v)1 = r and D(v)A>D(u)1 = c

We design new stochastic methods for �nding the
(u, v) solution to this matrix scaling problem.

4. Transport Polytope

Let r(P ) = P1 and c(P ) = P>1 denote the row

sum and column sum vectors of P . Let Ur,c be the
transport polytope de�ned by

Ur,c
def
= {P ∈ Rn×n+ | r(P ) = r, c(P ) = c}.

To measure the distance from the transport poly-
tope we use

dist(A,Ur,c)
def
= ‖r(A)− r‖1 + ‖c(A)− c‖1 (2)

5. Sinkhorn Algorithm
The Sinkhorn algorithms e�ciently solves the ma-
trix scaling problem using only matrix vector prod-
ucts (Cuturi 2013)

Input: A = e−λC ∈ Rn×n+ , r, c ∈ Rn+, ε > 0
Initialization: u,v = 1
while dist(D(u)AD(v),Ur,c) ≥ ε do

u = r./(Av)
v = c./(A>u)

Output: u, v ∈ Rn+.

6. Sampling rows/columns
To measure violations of each row/column of a ma-
trix with respect to the transport polytope we use

ρ(a, b) = b− a+ a log(
a

b
), for a, b ∈ R+

ρ(P ) =
(
ρ(r1, r1(P )), . . . , ρ(rn, rn(P )),

ρ(c1, c1(P )), . . . , ρ(cn, cn(P ))
)
∈ R2n

Using ρ(P ) we now de�ne probability distributions
that prioritize the most violated rows or columns.

De�nition 1 Let g : R+ 7→ R+ be a positive and

increasing function. We say that Ψ where

Ψ(h) =

(
g(hk)∑2n
i=1 g(hi)

)
k=1..2n

∈ ∆2n, ∀h ∈ R2n
+

is an increasing probability function.

Several examples of an increasing probability func-
tion are given as follows

Ψ(h) =

(
hαi∑

j=1..2n h
α
j

)
i=1,...,2n

, (3)

Ψ(h) =

(
e(hi/T )∑

j=1..2n e
(hj/T )

)
i=1,...,2n

, (4)

where T, α ≥ 0 are parameters. If Ak =
D(uk)AD(vk) is our current best guess for solving
the matrix scaling problem, then Ψ(ρ(Ak)) = p ∈
∆2n. When ρ(Ak)i is large, the probability pi of se-
lecting the corresponding column or row of Ak will
be large.

6. Greenhorn Algorithm
The Greenkhorn (Greedy Sinkhorn) algorithm pro-
posed by Altschuler, Weed, and Rigollet 2017 is a
limiting case of the GSS algorithm when α→∞ or
T = 0 is used together with Ψ de�ned by in (3) or
in (4), respectively. On the other extreme α = 0
in (3) or T →∞ in (4) gives uniform distribution.

7. Greedy Stochastic Sinkhorn
We propose the Greedy Stochastic Sinkhorn
(GSS) algorithm based on selecting rows / columns
according to an increasing probability function.

Input: A = e−λC ∈ Rn×n+ , r, c ∈ Rn+, ε > 0
Initialization: u,v = 1
while dist(D(u)AD(v),Ur,c) ≥ ε do

Let p = Ψ(ρ(D(u)AD(v))) ∈ ∆2n

Sample i ∼ pi where i ∈ {1, 2, . . . , 2n}
if i ≤ n (row update) then

ui = ri./(Av)i
else if i > n (column update) then

vi−n = ci−n./(A
>u)i−n

Output: u, v ∈ Rn+

8. Convergence theorem

Theorem 2 Let l = mini,j |Aij |, s = ‖A‖1. and Ak
def
= D(uk)AD(vk) be the iterates produced by the Greedy

Stochastic Sinkhorn Algorithm. For a given ε > 0 and every increasing probability function Ψ, we have that

there exists k ∈ N such that

k ≤ 28n

ε2
log
(s
l

)
⇒ E

[
dist(Ak, Ur,c)

]
≤ ε.

9. Numerics
We compare Sinkhorn, Greenkhorn and several
other variates of Greedy Stochastic Sinkhorn.

Figure 2: The GSS performs best in regimes of low
penalization (λ = 10) on MNIST dataset. For the
x-axis, one should read �number of row and column
updates� in the sense that one iteration on the x-
axis represents one update of a row or a column.

Figure 3: Greedy Stochastic Sinkhorn with di�er-
ent probability functions, and Greenkhorn as limit-
ing case. Left: polynomial probabilities (3), Right:
softmax probabilities (4).

References
Altschuler, Jason, Jonathan Weed, and Philippe

Rigollet (2017). �Near-linear time approxi-
mation algorithms for optimal transport via
Sinkhorn iteration�. In: CoRR abs/1705.09634.

Cuturi, Marco (2013). �Sinkhorn Distances: Light-
speed Computation of Optimal Transport�. In:
Advances in Neural Information Processing Sys-

tems 26, pp. 2292�2300.

Acknowledgements
Both authors are indebted to Marco Cuturi for
teaching both of them about OT and many inspir-
ing discussions.


