(Greedy stochastic algorithms for entropy-regularized optimal

1. Introduction

Probability distributions are the backbone of ma-
chine learning and statistics. Optimal Transport
(OT) provides a meaningful notion of distance
between probability distributions and histograms.
Here we develop a family of fast and practical
stochastic algorithms for solving the optimal trans-
port problem with an entropic penalization.

2. The discrete OT problem

The regularised discrete OT problem can be seen as
an optimal resource allocation given by:

1
Py = arg min (P,C)— —FE(P),
PER?{_X” A

subject to Pl=7r, P'l1=c¢, (1)
where the entropy is E(P) = > . ._, —P;;log(P;;),

ij=1
r.c € A, ot {x € R"| > ", x; = 1} are respec-
tively the initial and target distributions, C' € R}™"
the transport cost matrix and 1 € R"™ is a vector of
all ones.

Figure 1: Regularized transport polytope (thanks
to Michiel Stock)

3. Equivalence to matrix scaling

Let A% ¢=2C. The dual formulation of (1) is

(x™,y") = arg max Z A €™ Y —(r z) — (c,y),
7Y =1

where Py = D(e” JAD(e?" ). Let u = €% and v =

eY. Writing out the first order optimality conditions

of the dual gives the matrixz scaling problem:

D(u)AD(v)1=r and D(v)A'D(u)l =c

é D

\, J

We design new stochastic methods for finding the
(u,v) solution to this matrix scaling problem.
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4. Transport Polytope

Let »(P) = P1 and ¢(P) = P'1 denote the row
sum and column sum vectors of P. Let U, . be the
transport polytope defined by

U ¢ ! {PeRY™|r(P)=r c¢(P)=c}

To measure the distance from the transport poly-
tope we use

dist(A, Uy.e) © [r(A) = rlls + lle(A) = el (2

5. Sinkhorn Algorithm

The Sinkhorn algorithms efficiently solves the ma-

trix scaling problem using only matrix vector prod-
ucts (Cuturi 2013)

Input: A =e ¢ ¢ Rix”, r,ce R, e >0
Initialization: v,v — 1
while dist(D(u)AD(v),U,.) > € do
u=r./(Av)
v=c./(A"u)

Output: u,v € R .

7. Greedy Stochastic Sinkhorn

We propose the Greedy Stochastic Sinkhorn
(GSS) algorithm based on selecting rows / columns
according to an increasing probability function.

Input: A =e ¢ ¢ RE*™ r,c e RZ, e >0
Initialization: uv,v = 1
while dist(D(u)AD(v),U,.) > € do
Let p = W(p(D(u)AD(v))) € A2y,
Sample ¢ ~ p; where ¢ € {1,2,...,2n}
if + < n (row update) then
U; — TZ/(AU)Z
else if 7 > n (column update) then
Vi—n — Ci—n-/(ATu)i—n

Output: u,v € RY

8. Convergence theorem
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6. Sampling rows/columns

To measure violations of each row /column of a ma-
trix with respect to the transport polytope we use

pla,b) = b—cH—alog(%),
pP) =

(/O(Tlvrl(P))v e ,p(?“n,Tn(P)),

p(ci,c1(P)),...,plcn, cn(P))) € R?"

Using p(P) we now define probability distributions
that prioritize the most violated rows or columns.

fOf CL,b - R_|_

Definition 1 Let g : R, — R, be a positive and
increasing function. We say that V where

h
( gths) ) € Az, Vh € R
2ii=19(i) )y s,

—

s an increasing probability function.

Several examples of an increasing probability func-
tion are given as follows

I
— 7 (3)
(Zjl..Qn hj )il 9,

’u..’

Zj:l--% et/ 1) i=1,...,2n |
where T, a >

> () are parameters. If A" =
D(uF)AD(v*) is our current best guess for solving
the matrix scaling problem, then ¥ (p(A*)) = p &
As,. When p(AF); is large, the probability p; of se-
lecting the corresponding column or row of A" will
be large.
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]

6. Greenhorn Algorithm

The Greenkhorn (Greedy Sinkhorn) algorithm pro-
posed by Altschuler, Weed, and Rigollet 2017 is a
limiting case of the GSS algorithm when o — oo or
T = 0 is used together with W defined by in (3) or
in (4), respectively. On the other extreme o = 0
in (3) or T'— oo in (4) gives uniform distribution.

Theorem 2 Let | = min; ; |A;;], s = ||Al|1. and A" d:efD(uk)AD(vk) be the iterates produced by the Greedy

Stochastic Sinkhorn Algorithm. For a given ¢ > 0 and every increasing probability function ¥V, we have that

there exists k € N such that

r

2
k< =8n log (;) = E [dist(Ak, Ur.)| <e.
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9. Numerics

We compare Sinkhorn, Greenkhorn and several
other variates of Greedy Stochastic Sinkhorn.
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Figure 2: The GSS performs best in regimes of low
penalization (A = 10) on MNIST dataset. For the
x-axis, one should read “number of row and column
updates” in the sense that one iteration on the x-
axis represents one update of a row or a column.
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Figure 3: Greedy Stochastic Sinkhorn with differ-
ent probability functions, and Greenkhorn as limit-
ing case. Left: polynomial probabilities (3), Right:
softmax probabilities (4).
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