# Greedy stochastic algorithms for entropy-regularized optimal transport problems 

Brahim Khalil Abid

## 1. Introduction

Probability distributions are the backbone of machine learning and statistics. Optimal Transport (OT) provides a meaningful notion of distance between probability distributions and histograms Here we develop a family of fast and practical stochastic algorithms for solving the optimal transport problem with an entropic penalization.

## 2. The discrete OT problem

The regularised discrete OT problem can be seen as an optimal resource allocation given by:

$$
\begin{aligned}
P_{\lambda}^{*}= & \arg \min _{P \in \mathbb{R}_{+}^{n \times n}}\langle P, C\rangle-\frac{1}{\lambda} E(P) \\
& \text { subject to } \quad P \mathbf{1}=r, P^{\top} \mathbf{1}=c,
\end{aligned}
$$ where the entropy is $E(P)=\sum_{i, j=1}^{n}-P_{i j} \log \left(P_{i j}\right)$, $r, c \in \Delta_{n} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}=1\right\}$ are respectively the initial and target distributions, $C \in \mathbb{R}_{+}^{n \times n}$ the transport cost matrix and $\mathbf{1} \in \mathbb{R}^{n}$ is a vector of all ones.



Figure 1: Regularized transport polytope (thanks to Michiel Stock)

## 3. Equivalence to matrix scaling

 Let $A \stackrel{\text { def }}{=} e^{-\lambda C}$. The dual formulation of (1) is $\left(x^{*}, y^{*}\right)=\arg \max _{x, y} \sum_{i, j=1}^{n} A_{i j} e^{x_{i}+y_{j}}-\langle r, x\rangle-\langle c, y\rangle$, where $P_{\lambda}^{*}=D\left(e^{x^{*}}\right) A D\left(e^{y^{*}}\right)$. Let $u=e^{x}$ and $v=$ $e^{y}$. Writing out the first order optimality conditions of the dual gives the matrix scaling problem:$$
D(u) A D(v) \mathbf{1}=r \quad \text { and } \quad D(v) A^{\top} D(u) \mathbf{1}=c
$$

We design new stochastic methods for finding the $(u, v)$ solution to this matrix scaling problem.
robert.gower@telecom-paristech.fr

## 6. Sampling rows/columns

To measure violations of each row/column of a matrix with respect to the transport polytope we use $\rho(a, b)=b-a+a \log \left(\frac{a}{b}\right), \quad$ for $a, b \in \mathbb{R}_{+}$
$\rho(P)=\left(\rho\left(r_{1}, r_{1}(P)\right), \ldots, \rho\left(r_{n}, r_{n}(P)\right)\right.$,

$$
\left.\rho\left(c_{1}, c_{1}(P)\right), \ldots, \rho\left(c_{n}, c_{n}(P)\right)\right) \in \mathbb{R}^{2 n}
$$

Using $\rho(P)$ we now define probability distributions that prioritize the most violated rows or columns.
Definition 1 Let $g: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$be a positive and increasing function. We say that $\Psi$ where

$$
\Psi(h)=\left(\frac{g\left(h_{k}\right)}{\sum_{i=1}^{2 n} g\left(h_{i}\right)}\right)_{k=1 . .2 n} \in \Delta_{2 n}, \quad \forall h \in \mathbb{R}_{+}^{2 n}
$$

is an increasing probability function
Several examples of an increasing probability function are given as follows

$$
\begin{align*}
& \Psi(h)=\left(\frac{h_{i}^{\alpha}}{\sum_{j=1 . .2 n} h_{j}^{\alpha}}\right)_{i=1, .}  \tag{3}\\
& \Psi(h)=\left(\frac{e^{\left(h_{i} / T\right)}}{\sum_{j=1 . .2 n} e^{\left(h_{j} / T\right)}}\right) \tag{4}
\end{align*}
$$

where $T, \alpha \geq 0$ are parameters. If $A^{k}=$ $D\left(u^{k}\right) A D\left(v^{k}\right)$ is our current best guess for solving the matrix scaling problem, then $\Psi\left(\rho\left(A^{k}\right)\right)=p \in$ $\Delta_{2 n}$. When $\rho\left(A^{k}\right)_{i}$ is large, the probability $p_{i}$ of selecting the corresponding column or row of $A^{k}$ will be large.

## 6. Greenhorn Algorithm

The Greenkhorn (Greedy Sinkhorn) algorithm proposed by Altschuler, Weed, and Rigollet 2017 is a limiting case of the GSS algorithm when $\alpha \rightarrow \infty$ or $T=0$ is used together with $\Psi$ defined by in (3) or in (4), respectively. On the other extreme $\alpha=0$ in (3) or $T \rightarrow \infty$ in (4) gives uniform distribution.

## 8. Convergence theorem

Theorem 2 Let $l=\min _{i, j}\left|A_{i j}\right|, s=\|A\|_{1}$. and $A^{k} \stackrel{\text { def }}{=} D\left(u^{k}\right) A D\left(v^{k}\right)$ be the iterates produced by the Greedy Stochastic Sinkhorn Algorithm. For a given $\epsilon>0$ and every increasing probability function $\Psi$, we have that there exists $k \in \mathbb{N}$ such that

$$
k \leq \frac{28 n}{\epsilon^{2}} \log \left(\frac{s}{l}\right) \quad \Rightarrow \quad \mathbf{E}\left[\operatorname{dist}\left(A^{k}, U_{r, c}\right)\right] \leq \epsilon .
$$

## 9. Numerics

We compare Sinkhorn, Greenkhorn and several other variates of Greedy Stochastic Sinkhorn.


Figure 2: The GSS performs best in regimes of low penalization ( $\lambda=10$ ) on MNIST dataset. For the x -axis, one should read "number of row and column updates" in the sense that one iteration on the x axis represents one update of a row or a column.


Figure 3: Greedy Stochastic Sinkhorn with differ ent probability functions, and Greenkhorn as limiting case. Left: polynomial probabilities (3), Right: softmax probabilities (4).

## References

Altschuler, Jason, Jonathan Weed, and Philippe Rigollet (2017). "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration". In: CoRR abs/1705.09634. Cuturi, Marco (2013). "Sinkhorn Distances: Light speed Computation of Optimal Transport". In: Advances in Neural Information Processing Systems 26, pp. 2292-2300.

## Acknowledgements

Both authors are indebted to Marco Cuturi for teaching both of them about OT and many inspiring discussions.

