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1. High Dimensional Optimization

Consider the optimization problem
x∗ = arg min

x∈Rd

f (x) , (1)

where f : Rd 7→ R is C2 and d is very big. This arises
in training ML models with a very large number of parame-
ters, or when data is high dimensional and acquiring data is
expensive/hard.
Example: genomics, seismology, neurology and high resolu-
tion sensors in medicine.
Notation:
• Gradient & Hessian: g(x) := ∇f (x) & H(x) := ∇2f (x)
• Level set: Q :=

{
x ∈ Rd : f (x) ≤ f (x0)

}
• Hessian inner product: 〈u, v〉H(x) := 〈H(x)u, v〉

2. Assumptions (New)

Assumption 1: Gradient invariance:
g(x) ∈ Range (H(x)) for all x ∈ Rd. (2)

Assumption 2: f is L̂-smooth and µ̂-convex relative to
its Hessian. That is, there exist L̂ ≥ µ̂ > 0 such that for all
x, y ∈ Q:

f (x) ≤ f (y) + 〈g(y), x− y〉 + L̂

2
‖x− y‖2

H(y)︸ ︷︷ ︸
:=T (x,y)

, (3)

f (x) ≥ f (y) + 〈g(y), x− y〉 + µ̂

2
‖x− y‖2

H(y). (4)

This is a weak assumption since:
L-smoothness
µ-convexity ⇒ c-stability [1] ⇒ L̂-smoothness

µ̂-convexity

Example: Both assumptions hold for smooth generalized
linear models with L2 regularization.

3. Newton’s Method

Newton’s method applied to problem (1) has the form
xk+1 = xk − γ ·H†(xk)g(xk) ,

where
• γ > 0 is the stepsize
• H†(xk) is the Moore-Penrose pseudoinverse of H(xk)

Pros: Can handle curvature, invariant to coordinate trans-
formations
Cons : Cost of each iteration is very high: O(d3)

Figure: Gradient descent (left) and Newton’s method (right) 50 iterations.

4. Sketching and Dimension Reduction

Let S ∈ Rd×s be a random matrix drawn from S ∼ D.
S> x

∈ Rd =

S>x}
∈ Rs

Assumption 3: With probability 1, the sketching matrix S
satisfies:

Null
(
S>H(x)S

)
= Null(S), ∀x ∈ Q. (5)

5. Randomized Subspace Newton

Algorithm 1 RSN: Randomized Subspace Newton
1: input: x0 ∈ Rd

2: parameters: D = distribution over random matrices
3: for k = 0, 1, 2, . . . do
4: Sample a fresh sketching matrix: Sk ∼ D
5: xk+1 = xk − 1

L̂
Sk
(
S>k H(xk)Sk

)†S>k g(xk)
6: end for
7: output: last iterate xk

Computation of sketched Newton direction:
g(x)

S>7−→
S>g(x)

(S>H(x)S)†7−→
(S>H(x)S)†S>g(x)

S7−→

S(S>H(x)S)†S>g(x)

Can be computed with directional derivatives:
df (x + λS)

dλ

∣∣∣∣
λ=0

= S>g(x) d2f (x + λS)
dλ2

∣∣∣∣
λ=0

= S>H(x)S

Advantages of RSN:
• Uses second-order information & hence enjoys better

dependence on condition number
• Enjoys global convergence theory
• Is a descent method: f (xk+1) ≤ f (xk)
• Is a feasible method: xk ∈ Q for all k ≥ 0
• Applicable for very large d

Example: Single Column Sketches

Let 0 ≺ U ∈ Rd×d be a symmetric positive definite matrix
such that H(x) � U, ∀x ∈ Rd. Let M = [m1, . . . ,md] ∈
Rd×d be an invertible matrix such that m>i H(x)mi 6= 0 for all
x ∈ Q and i = 1, . . . , d. If we sample according to

Prob (Sk = mi) = pi := m>i Umi

Trace (M>UM)
,

then the update on line 5 of Algorithm 1 is given by

xk+1 = xk −
1
L̂

m>i g(xk)
m>i H(xk)mi

mi, with probability pi, (6)

costs O(d) and has linear iteration complexity (10) given by

k ≥ max
x∈Q

Trace
(
M>UM

)
λ+

min(H1/2(x)MM>H1/2(x))
L̂

µ̂
log
(

1
ε

)
.

6. RSN: Equivalent Viewpoints

1. Minimization of T (·, xk) over a random subspace:
xk+1 = arg min

x∈Rd, λ∈Rs

T (x, xk) (7)

subject to x = xk + Skλ.
2. Projection of the Newton direction
n(xk) := − H†(xk)g(xk) onto a random subspace:

xk+1 = arg min
x∈Rd, λ∈Rs

∥∥∥∥x− (xk − 1
L̂
n(xk)

)∥∥∥∥2

H(xk)
(8)

subject to x = xk + Skλ.
3. Projection of the current iterate xk onto a
sketched Newton system:
xk+1 ∈ arg min

x∈Rd

‖x− xk‖2
H(xk) (9)

subject to S>k H(xk)(x− xk) = − 1
L̂

S>k g(xk).

Remark: If Range (Sk) ⊂ Range (Hk(xk)), then xk+1 is the
unique solution to (9).

7. Convergence Theory

Let G(x) := ES∼D

[
S
(
S>H(x)S

)†S] and define

ρ(x) := min
v∈Range(H(x))

〈H1/2(x)G(x)H1/2(x)v,v〉
‖v‖2

2
, ρ := min

x∈Q
ρ(x) ≤ 1.

Global Linear Convergence of RSN

Let f (x0) > f∗ := minx f (x). If all assumptions hold, then

E [f (xk)]− f∗ ≤
(

1− ρµ̂
L̂

)k
(f (x0)− f∗).

Consequently, given ε > 0, if ρ > 0 then

k ≥ 1
ρ

L̂

µ̂
log
(

1
ε

)
⇒ E [f (xk)− f∗]

f (x0)− f∗
≤ ε. (10)

Sublinear Convergence of RSN

If the assumptions hold with L̂ > µ̂ = 0 and
R := inf

x∗∈arg min f
sup
x∈Q
‖x− x∗‖H(x) < +∞ ,

and ρ > 0 then

E [f (xk)]− f∗ ≤
2L̂R2

ρk
. (11)

Example: RSN includes Newton’s method as a special case
with Sk = I ∈ Rd×d. In this case, ρ(xk) ≡ 1 and thus (10)
recovers the L̂/µ̂ log (1/ε) complexity given in [1] and (11) gives
a new sublinear result.

Sufficient Condition for ρ > 0

If (5) holds and Range (H(xk)) ⊂
Range

(
E
[
SkS>k

])
, then ρ > 0, and

ρ = λ+
min

(
ES∼D

[
H1/2(xk)Sk

(
S>k H(xk)Sk

)†S>k H1/2(xk)
])

Example: Generalized Linear Models

Let 0 ≤ u ≤ `. Let φi : R 7→ R+ be a twice differentiable
function such that

u ≤ φ′′i (t) ≤ `, for i = 1, . . . , n. (12)
Let ai ∈ Rd for i = 1, . . . , n and A = [a1, . . . , an] ∈ Rd×n.
We say that f : Rd→ R is a generalized linear model when

f (x) = 1
n

n∑
i=1
φ(a>i x) + λ

2 ‖x‖
2
2 . (13)

f is L̂-smooth and µ̂-convex relative to its Hessian with

L̂ = `σ2
max(A) + nλ

uσ2
max(A) + nλ

and µ̂ = uσ2
max(A) + nλ

`σ2
max(A) + nλ

. (14)

RSN has iteration complexity (10) given by

k ≥ 1
ρ

(
`σ2

max(A) + nλ

uσ2
max(A) + nλ

)2

log
(

1
ε

)
. (15)

8. Experiments

We compare RSN to Gradient descent (GD), accelerated gradi-
ent descent (AGD) [2] and full Newton method. For RSN we use
coordinate sketches defined by Sk ∈ {0, 1}d×s, with exactly
one non-zero entry per row and per column of Sk.
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Figure: Highly dense problems, favoring RSN methods.
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Figure: Moderately sparse problems favor the RSN method. The full
Newton method is infeasible due to high dimensionality.
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Figure: Due to extreme sparsity, accelerated gradient is competitive with
the Newton type methods.
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