

1. High Dimensional Optimization

Consider the optimization problem

$$x_* = \underset{x \in \mathbb{R}^d}{\arg\min f(x)} , \qquad (1)$$

where $f : \mathbb{R}^d \mapsto \mathbb{R}$ is C^2 and d is very big. This arises in training ML models with a very large number of parameters, or when data is high dimensional and acquiring data is expensive/hard.

Example: genomics, seismology, neurology and high resolution sensors in medicine.

Notation:

- Gradient & Hessian: $g(x) := \nabla f(x) \& \mathbf{H}(x) := \nabla^2 f(x)$
- Level set: $\mathcal{Q} := \{ x \in \mathbb{R}^d : f(x) \le f(x_0) \}$
- Hessian inner product: $\langle u, v \rangle_{\mathbf{H}(x)} := \langle \mathbf{H}(x)u, v \rangle$

2. Assumptions (New)

Assumption 1: Gradient invariance:

$$q(x) \in \text{Range}(\mathbf{H}(x)) \quad \text{for all} \quad x \in \mathbb{R}^d.$$
 (2)

Assumption 2: f is \hat{L} -smooth and $\hat{\mu}$ -convex relative to its Hessian. That is, there exist $\hat{L} \geq \hat{\mu} > 0$ such that for all $x, y \in \mathcal{Q}$:

$$f(x) \le \underbrace{f(y) + \langle g(y), x - y \rangle + \frac{L}{2} \|x - y\|_{\mathbf{H}(y)}^{2}}_{:=T(x,y)}, \qquad (3)$$

$$f(x) \ge f(y) + \langle g(y), x - y \rangle + \frac{\hat{\mu}}{2} \|x - y\|_{\mathbf{H}(y)}^2.$$
(4)

This is a weak assumption since:

$$\begin{array}{l} L\text{-smoothness} \\ \mu\text{-convexity} \end{array} \Rightarrow c\text{-stability [1]} \Rightarrow \begin{array}{l} \hat{L}\text{-smoothness} \\ \hat{\mu}\text{-convexity} \end{array}$$

Example: Both assumptions hold for smooth generalized linear models with L_2 regularization.

3. Newton's Method

Newton's method applied to problem (1) has the form

$$x_{k+1} = x_k - \gamma \cdot \mathbf{H}^{\dagger}(x_k)g(x_k) ,$$

where

• $\gamma > 0$ is the stepsize

• $\mathbf{H}^{\dagger}(x_k)$ is the Moore-Penrose pseudoinverse of $\mathbf{H}(x_k)$

Pros: Can handle curvature, invariant to coordinate transformations

Cons : Cost of each iteration is very high: $\mathcal{O}(d^3)$

Figure: Gradient descent (left) and Newton's method (right) 50 iterations.

RSN: Randomized Subspace Newton

Robert M. Gower¹ Dmitry Kovalev² Felix Lieder³ Peter Richtárik²

¹LTCI, Télécom Paris, Institut Polytechnique de Paris ²KAUST ³Heinrich-Heine-Universität Düsseldorf University

(9)

6. RSN: Equivalent Viewpoints

1. Minimization of $T(\cdot, x_k)$ over a random subspace: (7) $x_{k+1} = \arg \min T(x, x_k)$ $x \in \mathbb{R}^d, \lambda \in \mathbb{R}^s$ subject to $x = x_k + \mathbf{S}_k \lambda$.

2. Projection of the Newton direction $n(x_k) := - \mathbf{H}^{\dagger}(x_k)g(x_k)$ onto a random subspace:

$$x_{k+1} = \underset{x \in \mathbb{R}^{d}, \ \lambda \in \mathbb{R}^{s}}{\operatorname{arg min}} \left\| x - \left(x_{k} - \frac{1}{\hat{L}} n(x_{k}) \right) \right\|_{\mathbf{H}(x_{k})}^{2}$$
(8)
subject to $x = x_{k} + \mathbf{S}_{k} \lambda.$

Projection of the current iterate x_k onto a sketched Newton system:

$$x_{k+1} \in \underset{x \in \mathbb{R}^d}{\arg\min} \|x - x_k\|_{\mathbf{H}(x_k)}^2$$

subject to
$$\mathbf{S}_k^{\top} \mathbf{H}(x_k)(x - x_k) = -\frac{1}{\hat{L}} \mathbf{S}_k^{\top} g(x_k).$$

Remark: If Range $(\mathbf{S}_k) \subset \text{Range}(\mathbf{H}_k(x_k))$, then x_{k+1} is the unique solution to (9).

7. Convergence Theory

t
$$\mathbf{G}(x) := \mathbb{E}_{\mathbf{S}\sim\mathcal{D}} \left[\mathbf{S} \left(\mathbf{S}^{\top} \mathbf{H}(x) \mathbf{S} \right)^{\dagger} \mathbf{S} \right]$$
 and define
 $x) := \min_{v \in \operatorname{Range}(\mathbf{H}(x))} \frac{\left\langle \mathbf{H}^{1/2}(x) \mathbf{G}(x) \mathbf{H}^{1/2}(x) v, v \right\rangle}{\|v\|_2^2}, \ \rho := \min_{x \in \mathcal{Q}} \rho(x) \leq 1$

Global Linear Convergence of RSN

Let
$$f(x_0) > f_* := \min_x f(x)$$
. If all assumptions hold, then
 $\mathbb{E}\left[f(x_k)\right] - f_* \le \left(1 - \rho \frac{\hat{\mu}}{\hat{L}}\right)^k (f(x_0) - f_*).$
Consequently, given $\epsilon > 0$, if $\rho > 0$ then
 $k \ge \frac{1}{\rho \hat{\mu}} \log\left(\frac{1}{\epsilon}\right) \implies \frac{\mathbb{E}\left[f(x_k) - f_*\right]}{f(x_0) - f_*} \le \epsilon.$ (10)

Sublinear Convergence of RSN

If the assumptions hold with $\hat{L} > \hat{\mu} = 0$ and $\mathcal{R} := \inf_{x_* \in \arg\min f} \sup_{x \in \mathcal{Q}} \|x - x_*\|_{\mathbf{H}(x)} < +\infty ,$

and
$$\rho > 0$$
 then

$$\mathbb{E}\left[f(x_k)\right] - f_* \le \frac{2\hat{L}\mathcal{R}^2}{\rho k}.$$
(11)

Example: RSN includes Newton's method as a special case with $\mathbf{S}_k = \mathbf{I} \in \mathbb{R}^{d \times d}$. In this case, $\rho(x_k) \equiv 1$ and thus (10) recovers the $\hat{L}/\hat{\mu} \log(1/\epsilon)$ complexity given in [1] and (11) gives a new sublinear result.

Sufficient	t Cond	lition for	o > 0	
f (5) holds Range ($\mathbb{E} \left[\mathbf{S}_k \mathbf{S}_k^\top \right]$), $\boldsymbol{\rho} = \lambda_{\min}^+ \left(\mathbb{E}_{\mathbf{S} \sim \mathcal{D}} \left[\mathbf{H} \right] \right)$	and then $^{1/2}(x_k)\mathbf{S}_k$	Range ($\mathbf{H}($ $\rho >$ $(\mathbf{S}_{k}^{\top}\mathbf{H}(x_{k})\mathbf{S}_{k})$	$(x_k)) \ 0, \ \mathbf{S}_k^\top \mathbf{H}^{1/2}$	$\begin{bmatrix} \\ \text{and} \\ \\ \frac{1}{2}(x_k) \end{bmatrix} \Big)$

Let	0	<
func	cti	C

$$f$$
 is \hat{L} -s
 $\hat{L} = -\frac{k}{2}$
RSN has

[1]	S. F Glo stre
	$ar\lambda$
[2]	V]

2014.

Example: Generalized Linear Models

 $\leq u \leq \ell$. Let $\phi_i : \mathbb{R} \mapsto \mathbb{R}_+$ be a twice differentiable on such that

$$u \le \phi_i''(t) \le \ell$$
, for $i = 1, \dots, n$. (12)

Let $a_i \in \mathbb{R}^d$ for $i = 1, \ldots, n$ and $\mathbf{A} = [a_1, \ldots, a_n] \in \mathbb{R}^{d \times n}$. We say that $f : \mathbb{R}^d \to \mathbb{R}$ is a generalized linear model when

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \phi(a_i^{\top} x) + \frac{\lambda}{2} \|x\|_2^2 .$$
 (13)

-smooth and $\hat{\mu}$ -convex relative to its Hessian with

$$\frac{\ell\sigma_{\max}^2(\mathbf{A}) + n\lambda}{u\sigma_{\max}^2(\mathbf{A}) + n\lambda} \quad \text{and} \quad \hat{\boldsymbol{\mu}} = \frac{u\sigma_{\max}^2(\mathbf{A}) + n\lambda}{\ell\sigma_{\max}^2(\mathbf{A}) + n\lambda}.$$
(14)

as iteration complexity (10) given by

$$k \geq \frac{1}{\rho} \left(\frac{\ell \sigma_{\max}^2(\mathbf{A}) + n\lambda}{u \sigma_{\max}^2(\mathbf{A}) + n\lambda} \right)^2 \log\left(\frac{1}{\epsilon}\right).$$
(15)
8. Experiments

We compare **RSN** to Gradient descent (**GD**), accelerated gradient descent (AGD) [2] and full Newton method. For RSN we use coordinate sketches defined by $\mathbf{S}_k \in \{0,1\}^{d \times s}$, with exactly one non-zero entry per row and per column of \mathbf{S}_k .

Figure: Highly dense problems, favoring **RSN** methods.

Figure: Moderately sparse problems favor the **RSN** method. The full Newton method is infeasible due to high dimensionality.

Figure: Due to extreme sparsity, accelerated gradient is competitive with the Newton type methods.

References

P. Karimireddy, S. U. Stich, and M. Jaggi. bal linear convergence of Newton's method without ong-convexity or Lipschitz gradients. *Xiv:1806:0041*, 2018.

[2] Y. Nesterov.

Introductory Lectures on Convex Optimization: A Basic Course.

Springer Publishing Company, Incorporated, 1 edition,