1. High Dimensional Optimization

Consider the optimization problem
T, = argmin f(x) , (1)
reR?

where f : R? — R is C? and d is very big.  This arises
in training ML models with a very large number of parame-
ters, or when data is high dimensional and acquiring data is
expensive/hard.

genomics, seismology, neurology and high resolu-
tion sensors in medicine.

Notation:
e Gradient & Hessian: g(z) := Vf(z) & H(z) := V*f(z)
o [evel set: O = {:1: c R% - f(
e Hessian inner product: (u, v)g,) :

2. Assumptions (New)

Assumption 1: Gradient invariance:
g(z) € Range (H(z)) forall z e R< (2)
Assumption 2: fis L-smooth and [I-convex relative to

its Hessian. That is, there exist [ > (i > 0 such that for all
xr,y € Q:
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This is a weak assumption since:

[-smoothness
[I-convexity

L-smoothness

. = c-stability [1] =
p-convexity

Both assumptions hold for smooth generalized
linear models with Lo regularization.

3. Newton’s Method

Newton’s method applied to problem (1) has the form

Tht1 = Tk — 7 HT(I’/@)Q(CEH )
where
e ~ > () is the stepsize
e H'(z;) is the Moore-Penrose pseudoinverse of H(xy,)

Pros: Can handle curvature, invariant to coordinate trans-
formations
Cons : Cost of each iteration is very high: O(d”)
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Figure: Gradient descent (left) and Newton’s method (right) 50 iterations.
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4. Sketching and Dimension Reduction

Let S € RS be a random matrix drawn from S ~ D.
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Assumption 3: With probability 1, the sketching matrix S
satisfies:

Null (S'H(z)S) = Null(S), Vze Q. (5)

5. Randomized Subspace Newton

Algorithm 1 RSN: Randomized Subspace Newton

1. input: z, € R?

2. parameters: D = distribution over random matrices
3: for k=0,1,2,... do

4 Sample a fresh sketching matrix: S ~ D

D: L1 = T — %Sk (S]II‘I(ZL’;C)S]{)]L S;g(xk)
6: end for
7. output: last iterate x;.

Computation of sketched Newton direction:
g(z) S(S"H(z)S)'S " g()

S'g(x) (S'H(z)S)'S g()
s’ (STH(x)8)T S
— — —

Can be computed with directional derivatives:

@ 28) gy Cf(z + AS)
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Advantages of RSN:

e Uses second-order information & hence enjoys better
dependence on condition number

Enjoys global convergence theory
[s a descent method: f(xi1) < f(xg)

[s a feasible method: z, € O for all &k > 0
Applicable for very large d

Let 0 < U € R¥? be a symmetric positive definite matrix
such that H(z) < U, Vo € RY Let M = [my,...,my| €
R%*? he an invertible matrix such that m; H(z)m; # 0 for all
r e Qandi=1,...,d. If wesample according to

m; Um;,
Trace (MTUM)’
then the update on line 5 of Algorithm 1 is given by

Prob (Sk:mz) = p; =

1 my g(zp)

costs O(d) and has linear iteration complexity (10) given by

Thi1l = T m;, with probability p;, (6)

" Trace (MTUM) zl 1
= e N (HP@)MMTH (@) i \e)
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6. RSN: Equivalent Viewpoints

1. Minimization of T'(-,z;) over a random subspace:

Ty = argmin T (x, x) (7)
r€RY )\cRs

subject to x = ;. + SiA.

2. Projection of the Newton direction

n(zp) = — H'(z;)g(z;) onto a random subspace:
| 2
Tpe1 = argmin ||z — <:1:k — Tn(azk)> (8)
r€RL \cRs L H(z;,)

subject to x = xp + SiA.

3. Projection of the current iterate r; onto a
sketched Newton system:

T+1 € argmin ||z — $kH%1(a;k) 9)
reR?
- T Lot
subject to S, H(xp)(x — x3) = _Esk g(xk).

Remark: If Range (S;) C Range (Hy(x)), then x;.q is the
unique solution to (9).

7. Convergence Theory

Let G(z) = Egp [S (STH(:E)S)T S} and define

L . <H1/2(:1:)G(af)H1/2(:c)v,v> . <
,0(33) - vERafglé?H(a:)) Joll; . 1:;‘%15 p<x) =L

E [f(zy)] — f. < (1 _,

Consequently, given € > 0, if p > 0 then

11 1
k > —— 10g (—> =
p L €

If the assumptions hold with L > (L =0 and

= inf — <
x*eirgminfigg HZE x*HH(x) TO0

and p > 0 then

RSN includes Newton’s method as a special case
with S = I € R%?. In this case, p(z;) = 1 and thus (10)
recovers the L/ log (1/¢) complexity given in [1] and (11) gives
a new sublinear result.

Sufficient Condition for p > 0

holds and
then
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Let 0 < u < /(. Let ¢; : R — R, be a twice differentiable
function such that

u< @ty <, fori=1,...,n. (12)

Let a; € R fori =1,....,nand A = [a,...,a,] € R
We say that f : R — R is a generalized linear model when

/(@) I%Zﬁ(ahH%HwH% - (13)

fis L-smooth and [i-convex relative to its Hessian with

. lo? (A)+n)\ uo?  (A) + n\
L — max d A — max . 14
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RSN has iteration complexity (10) given by
1 [l (A)+n\\". (1
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8. Experiments

We compare RSN to Gradient descent (GD), accelerated gradi-
ent descent (AGD) [2| and full Newton method. For RSN we use

coordinate sketches defined by S; € {0,1}%%%, with exactly
one non-zero entry per row and per column of Sy.
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Figure: Highly dense problems, favoring RSN methods.
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Figure: Moderately sparse problems favor the RSN method. The full
Newton method is infeasible due to high dimensionality.
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Figure: Due to extreme sparsity, accelerated gradient is competitive with
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