

Stochastic Block BFGS: Squeezing More Curvature out of Data

Robert M. Gower[†]

Donald Goldfarb*

Peter Richtárik[†]

[†] University of Edinburgh *Columbia University

1. Problem

Find an approximate minima of

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x), \tag{1}$$

where $f_i: \mathbb{R}^d \to \mathbb{R}$ is convex and twice differentiable, d is large and n is very large.

2. Variable Metric Methods

Given $x_0 \in \mathbb{R}^d$, many successful methods for solving (1) fit the format

$$x_{t+1} = x_t - \eta H_t g_t,$$

where $\mathbf{E}[g_t] = \nabla f(x_t), H_t \approx \nabla^2 f(x_t)^{-1}, \text{ and } \eta > 0 \text{ is }$ a stepsize. To update g_t and H_t , effective methods use only the subsampled gradient and subsampled Hessian

$$\nabla f_S(x) \stackrel{\text{def}}{=} \frac{1}{|S|} \sum_{i \in S} \nabla f_i(x), \quad \nabla^2 f_T(x) \stackrel{\text{def}}{=} \frac{1}{|T|} \sum_{i \in T} \nabla^2 f_i(x)$$

where $S, T \subseteq [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$ selected uniformly at random.

Challenge: Update H_t using subsampled Hessians. Novelty: We develop a new stochastic Block BFGS method for updating/maintaining H_t based on sketching. We also present a new limited memory variant.

5. Block L-BFGS update

Let $V_t = I - D_t \Delta_t Y_t^T$. Expanding M block BFGS updates applied to H_{t-M} gives

$$H_{t} = V_{t}H_{t-1}V_{t}^{T} + D_{t}\Delta_{t}D_{t}^{T}$$

$$= V_{t}\cdots V_{t+1-M}H_{t-M}V_{t+1-M}^{T}\cdots V_{t}^{T}$$

$$+ \sum_{i=t}^{t+1-M} V_{t}\cdots V_{i+1}D_{i}\Delta_{i}D_{i}^{T}V_{i+1}^{T}\cdots V_{t}^{T}.$$

Therefore H_t is a function of H_{t-M} and the triples

$$(D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}), \dots, (D_t, Y_t, \Delta_t).$$
 (5)

Set $H_{t-M} = I$ and only store the triples in (5).

Algorithm 1 Block L-BFGS Update (Two-loop Recursion)

inputs: $g_t \in \mathbb{R}^d, D_i, Y_i \in \mathbb{R}^{d \times q}$ and $\Delta_i \in \mathbb{R}^{q \times q}$ for $i \in \{t + 1 - M, \dots, t\}.$ initiate: $v \leftarrow g_t$ for i = t, ..., t - M + 1 do $\alpha_i \leftarrow \Delta_i D_i^T v, \quad v \leftarrow v - Y_i \alpha_i$ end for for i = t - M + 1, ..., t do $\beta_i \leftarrow \Delta_i Y_i^T v, \quad v \leftarrow v + D_i (\alpha_i - \beta_i)$ end for

6. Algorithm

output $H_t g_t \leftarrow v$

Algorithm 2 Stochastic Block BFGS Method

inputs: $w_0 \in \mathbb{R}^d$, stepsize $\eta > 0$, q = sample actionsize, and length of inner loop m.

initiate: $H_{-1} = I$

for k = 0, 1, 2, ... do

Compute the full gradient $\mu = \nabla f(w_k)$

Set $x_0 = w_k$

for t = 0, ..., m - 1 do

Sample $S_t, T_t \subseteq [n]$, independently

Compute variance-reduced stochastic gradient $g_t = \nabla f_{S_t}(x_t) - \nabla f_{S_t}(w_k) + \mu$

Form $D_t \in \mathbb{R}^{d \times q}$ so that $\operatorname{rank}(D_t) = q$ Compute sketch $Y_t = \nabla^2 f_{T_t}(x_t) D_t$ Compute $d_t = -H_t g_t$ via Algorithm 1

Set $x_{t+1} = x_t + \eta d_t$ end for

Option I: Set $w_{k+1} = x_m$

Option II: Set $w_{k+1} = x_i$, where i is selected uniformly at random from $[m] = \{1, 2, \dots, m\}$

end for

output w_{k+1}

3. Hessian Sketching

Fact: Evaluating Hessian-vector products is cheap

$$\nabla^2 f_T(x_t)v = \left. \frac{d}{d\alpha} \nabla f_T(x_t + \alpha v) \right|_{\alpha = 0}$$
 (2)

We would like H_t to satisfy the inverse equation

$$H_t \nabla^2 f_T(x_t) = I,$$

but calculating the inverse of $d \times d$ matrix is expensive. **Solution:** finding H_t that satisfies a *sketched* version of inverse equation

$$H_t \nabla^2 f_T(x_t) D_t = D_t, \tag{3}$$

is cheap (2), where $D_t \in \mathbb{R}^{d \times q}$ and $q \ll \min\{d, n\}$. We employ three different sketching strategies:

- 1) gauss. D_t has standard Gaussian entries sampled i.i.d at each iteration.
- 2) prev. Let $d_t = -H_t g_t$. Store search directions $D_t =$ $[d_{t+1-q},\ldots,d_t]$ and update H_t once every q iterations.
- 3) fact. Sample $C_t \subseteq \{1,\ldots,d\}$ uniformly at random and set $D_t = L_{t-1}I_{:C_t}$, where $L_{t-1}L_{t-1}^T = H_{t-1}$ and $I_{:C_t}$ denotes the concatenation of the columns of the identity matrix indexed by a set $C_t \subset \{1, \ldots, d\}$.

4. Block BFGS Update

The sketched equation (3) is not enough to determine H_t uniquely. So we make use of the following projection

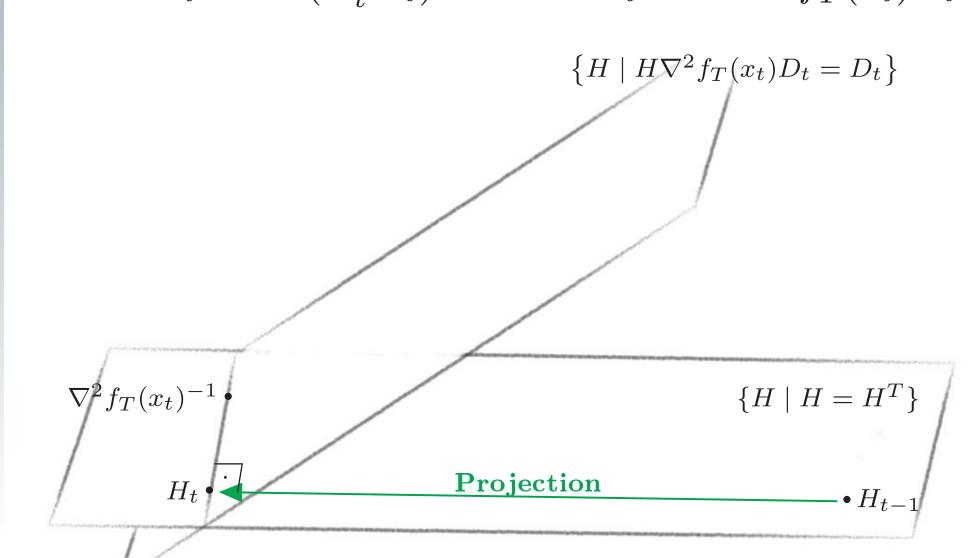
$$H_t = \arg\min_{H \in \mathbb{R}^d \times d} ||H - H_{t-1}||_t^2$$

subject to
$$H\nabla^2 f_T(x_t)D_t = D_t$$
, $H = H^T$, (4)

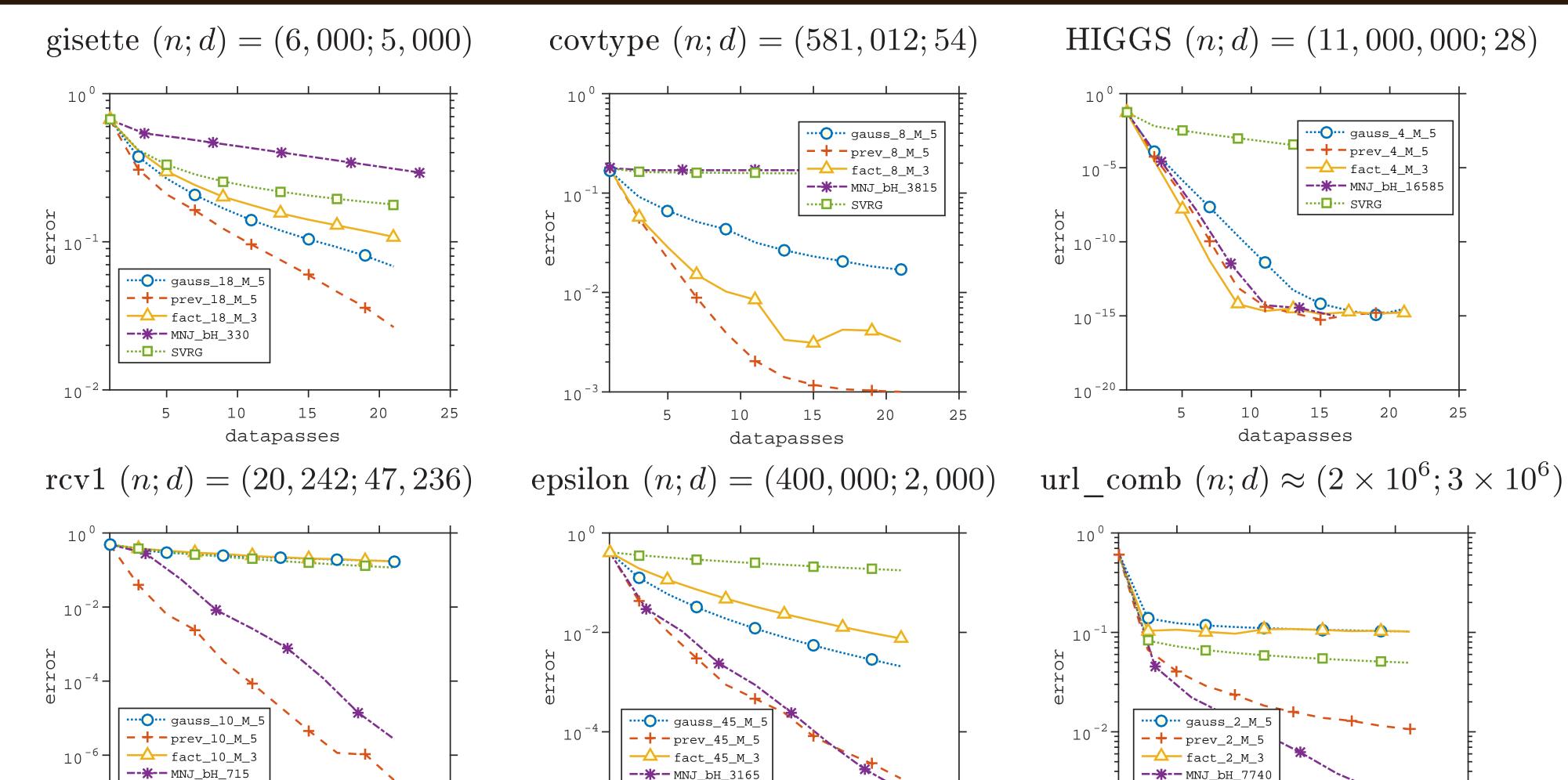
where $||H||_t^2 \stackrel{\text{def}}{=} \mathbf{Tr} \left(H \nabla^2 f_T(x_t) H^T \nabla^2 f_T(x_t) \right)$. The closed form solution of (4) is

$$H_t = D_t \Delta_t D_t^T + \left(I - D_t \Delta_t Y_t^T \right) H_{t-1} \left(I - Y_t \Delta_t D_t \right),$$

where
$$\Delta_t = (D_t^T Y_t)^{-1}$$
 and $Y_t = \nabla^2 f_T(x_t) D_t$.



7. Tests on logistic loss with L2 regularizer



datapasses

8. Convergence

Assumption 1. There exist constants $0 < \lambda \leq \Lambda$ such that

$$\lambda I \preceq \nabla^2 f_T(x) \preceq \Lambda I \tag{6}$$

for all $x \in \mathbb{R}^d$ and all $T \subseteq [n]$.

datapasses

Lemma 1. There exists $\Gamma \geq \gamma > 0$ such that

$$\gamma I \leq H_t \leq \Gamma I \qquad \forall t,$$
 (7)

where

$$\frac{1}{1 + \mathbf{M}\Lambda} \le \gamma \le \Gamma \le (1 + \sqrt{\kappa})^{2\mathbf{M}} (1 + \frac{1}{\lambda(2\sqrt{\kappa} + \kappa)})$$

and $\kappa \stackrel{def}{=} \Lambda/\lambda$.

Theorem 1. If we select parameters m, η such that

$$m \ge \frac{1}{2\eta \left(\gamma \lambda - \eta \Gamma^2 \Lambda (2\Lambda - \lambda)\right)}, \quad \eta < \gamma \lambda / (2\Gamma^2 \Lambda^2)$$

then Algorithm 2 with Option II gives

$$\mathbf{E}[f(w_k) - f(w_*)] \le \rho^k \mathbf{E}[f(w_0) - f(w_*)], \quad k \ge 0$$

where the convergence rate is given by

$$\rho = \frac{1/2m\eta + \eta \Gamma^2 \Lambda (\Lambda - \lambda)}{\gamma \lambda - \eta \Gamma^2 \Lambda^2} < 1.$$

9. Summary

We proposed a novel limited-memory stochastic block BFGS update for incorporating enriched curvature information in stochastic approximation methods. In our method, the estimate of the inverse Hessian matrix is updated at each iteration using a sketch of the Hessian. We presented three sketching strategies, a new quasi-Newton method that uses stochastic block BFGS updates combined with the variance reduction approach SVRG to compute batch stochastic gradients, and proved linear convergence of the resulting method.

datapasses

References

- [1] R.M. Gower and P. Richtárik (2016), Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms, arXiv:1602.01768.
- [2] R. Johnson and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction, NIPS.
- [3] P. Moritz, R. Nishihara and M. I. Jordan (2016). A Linearly-Convergent Stochastic L-BFGS Algorithm, AISTATS
- [4] R.M. Gower and Jacek Gondzio Action constrained quasi-Newton methods, 1412.8045 2014.