Exercise List: Proving convergence of the Stochastic Gradient Descent and Coordinate Descent on the Ridge Regression Problem.

Robert M. Gower \& Francis Bach \& Nidham Gazagnadou

December 3, 2019

Introduction

Consider the task of learning a rule that maps the feature vector $x \in \mathbb{R}^{d}$ to outputs $y \in \mathbb{R}$. Furthermore you are given a set of labelled observations $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$. We restrict ourselves to linear mappings. That is, we need to find $w \in \mathbb{R}^{d}$ such that

$$
\begin{equation*}
x_{i}^{\top} w \approx y_{i}, \quad \text { for } i=1, \ldots, n . \tag{1}
\end{equation*}
$$

That is the hypothesis function is parametrized by w and is given by $h_{w}: x \mapsto w^{\top} x .{ }^{1}$ To choose a w such that each $x_{i}^{\top} w$ is close to y_{i}, we use the squared loss $\ell(y)=y^{2} / 2$ and the squared regularizor. That is, we minimize

$$
\begin{equation*}
w^{*}=\arg \min _{w} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \tag{2}
\end{equation*}
$$

where $\lambda>0$ is the regularization parameter. We now have a complete training problem (2) ${ }^{2}$.

Using the matrix notation

$$
\begin{equation*}
X \stackrel{\text { def }}{=}\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}, \quad \text { and } \quad y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n}, \tag{3}
\end{equation*}
$$

we can re-write the objective function in (2) as

$$
\begin{equation*}
f(w) \stackrel{\text { def }}{=} \frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} . \tag{4}
\end{equation*}
$$

First we introduce some necessary notation.

[^0]Notation: For every $x, w, \in \mathbb{R}^{d}$ let $\langle x, w\rangle \xlongequal{\text { def }} x^{\top} y$ and let $\|x\|_{2}=\sqrt{\langle x, x\rangle}$. Let $A \in \mathbb{R}^{d \times d}$ be a matrix and let $\sigma_{\min }(A)$ and $\sigma_{\max }(A)$ be the smallest and largest singular values of A defined by

$$
\begin{equation*}
\sigma_{\min }(A) \stackrel{\text { def }}{=} \min _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \quad \text { and } \quad \sigma_{\max }(A) \stackrel{\text { def }}{=} \max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} . \tag{5}
\end{equation*}
$$

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the largest singular value of A can be defined instead as

$$
\begin{equation*}
\sigma_{\max }(A)=\max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\langle A x, x\rangle_{2}}{\|x\|_{2}^{2}}=\max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} . \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\langle A x, x\rangle}{\|x\|_{2}^{2}} \leq \sigma_{\max }(A), \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\|A x\|_{2}}{\|x\|_{2}} \leq \sigma_{\max }(A), \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} \tag{8}
\end{equation*}
$$

We will now solve the following ridge regression problem

$$
\begin{equation*}
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\left(\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \stackrel{\text { def }}{=} f(w)\right), \tag{9}
\end{equation*}
$$

using stochastic gradient descent and stochastic coordinate descent.

Exercise 1 : Stochastic Gradient Descent (SGD)

Some more notation: Let $\|A\|_{F}^{2} \stackrel{\text { def }}{=} \operatorname{Tr}\left(A^{\top} A\right)$ denote the Frobenius norm of A. Let

$$
\begin{equation*}
A \xlongequal{\text { def }} \frac{1}{n} X X^{\top}+\lambda I \in \mathbb{R}^{d \times d} \quad \text { and } \quad b \stackrel{\text { def }}{=} \frac{1}{n} X y . \tag{10}
\end{equation*}
$$

We can exploit the separability of the objective function (2) to design a stochastic gradient method. For this, first we re-write the problem $A w=b$ as a linear least squares problem

$$
\begin{equation*}
\hat{w}^{*}=\arg \min _{w} \frac{1}{2}\|A w-b\|_{2}^{2}=\arg \min _{w} \sum_{i=1}^{d} \frac{1}{2}\left(A_{i}: w-b_{i}\right)^{2} \quad \stackrel{\text { def }}{=} \quad \arg \min _{w} \sum_{i=1}^{d} p_{i} f_{i}(w), \tag{11}
\end{equation*}
$$

where $f_{i}(w)=\frac{1}{2 p_{i}}\left(A_{i}: w-b_{i}\right)^{2}, A_{i}$ denotes the i th row of A, b_{i} denotes the i th element of b and $p_{i}=\frac{\left\|A_{i}:\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for $i=1, \ldots, d$. Note that $\sum_{i=1}^{d} p_{i}=1$ thus the p_{i} 's are probabilities.

From a given $w^{0} \in \mathbb{R}^{d}$, consider the iterates

$$
\begin{equation*}
w^{t+1}=w^{t}-\alpha \nabla f_{j}\left(w^{t}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{\|A\|_{F}^{2}} \tag{13}
\end{equation*}
$$

and j is a random index chosen from $\{1, \ldots, d\}$ sampled with probability p_{j}. In other words, $\mathbb{P}(j=i)=p_{i}=\frac{\left\|A_{i}\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for all $i \in\{1, \ldots, d\}$.
Ex. 1 - Show that the solution \hat{w}^{*} to (11) and the solution to w^{*} to (9) are equal.

Answer (Ex. 1) - On the one hand, taking the gradient with respect to w in (9) and setting to zero gives

$$
\frac{1}{n} X\left(X^{\top} w-y\right)+\lambda w=\left(\frac{1}{n} X X^{\top}+\lambda I\right) w-\frac{1}{n} X y \stackrel{(10)}{=} A w-b=0 .
$$

On the other hand, differentiating (11) and setting to zero gives $A^{\top}(A w-b)=A(A w-b)=$ 0 . Since A is symmetric positive definite it is also invertible, thus

$$
A(A w-b)=0 \Leftrightarrow(A w-b)=0
$$

Ex. 2 - Show that

$$
\begin{equation*}
\nabla f_{j}(w)=\frac{1}{p_{j}} A_{j:}^{\top} A_{j:}\left(w-w^{*}\right) \tag{14}
\end{equation*}
$$

and that

$$
\mathbb{E}_{j \sim p}\left[\nabla f_{j}(w)\right] \stackrel{\text { def }}{=} \sum_{i=1}^{d} p_{i} \nabla f_{i}(w)=A^{\top} A\left(w-w^{*}\right)
$$

thus $\nabla f_{j}(w)$ is an unbiased estimator of the full gradient of the objective function in (11). This justifies applying the stochastic gradient method.

Answer (Ex. 2) - First note that

$$
\nabla f_{j}(w)=\frac{1}{p_{i}} A_{j:}^{\top}\left(A_{j:} w-b_{j}\right)=\frac{1}{p_{i}} A_{j:}^{\top} A_{j:}\left(w-w^{*}\right) .
$$

Taking expectation we have that

$$
\mathbb{E}\left[\nabla f_{j}(w)\right]=\sum_{i=1}^{n} \frac{p_{i}}{p_{i}} A_{j:}^{\top}\left(A_{j:} w-b_{j}\right)=A^{\top}(A w-b)=A^{\top} A\left(w-w^{*}\right)
$$

Ex. $3-$ Let $\Pi_{j} \stackrel{\text { def }}{=} \frac{A_{j}^{\top} A_{j}:}{\left\|A_{j:}:\right\|_{2}^{2}}$, show that

$$
\begin{equation*}
\Pi_{j} \Pi_{j}=\Pi_{j} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-\Pi_{j}\right)\left(I-\Pi_{j}\right)=I-\Pi_{j} . \tag{16}
\end{equation*}
$$

In other words, Π_{j} is a projection operator which projects orthogonally onto Range (A_{j} :) . Furthermore, if $j \sim p_{j}$ verify that

$$
\begin{equation*}
\mathbb{E}\left[\Pi_{j}\right]=\sum_{i=1}^{d} p_{i} \Pi_{i}=\frac{A^{\top} A}{\|A\|_{F}^{2}} \tag{17}
\end{equation*}
$$

Answer (Ex. 3) - We can see that Π_{j} is an orthogonal projector by verifying that

$$
\Pi_{j} \Pi_{j}=\frac{A_{j:}^{\top} A_{j:} A_{j:}^{\top} A_{j:}}{\left\|A_{j:}:\right\|_{2}^{2}\left\|A_{j:}\right\|_{2}^{2}}=\frac{A_{j}^{\top}:\left\|A_{j}:\right\|_{2}^{2} A_{j}}{\left\|A_{j:}^{2}\right\|_{2}^{2}\left\|A_{j:}\right\|_{2}^{2}}=\frac{A_{j:}^{\top} A_{j:}}{\left\|A_{j:}\right\|_{2}^{2}}=\Pi_{j},
$$

and

$$
\left(I-\Pi_{j}\right)\left(I-\Pi_{j}\right)=I-2 \Pi_{j}+\Pi_{j} \Pi_{j} \stackrel{(15)}{=} I-\Pi_{j}
$$

Finally, we have

$$
\mathbb{E}\left[\Pi_{j}\right]=\sum_{i=1}^{m} \mathbb{P}(j=i) \Pi_{i}=\sum_{i=1}^{m} \frac{\left\|A_{i:}\right\|_{2}^{2}}{\|A\|_{F}^{2}} \frac{A_{i:}^{\top} A_{i:}}{\left\|A_{i:}\right\|_{2}^{2}}=\sum_{i=1}^{m} \frac{A_{i:}^{\top} A_{i:}}{\|A\|_{F}^{2}}=\frac{A^{\top} A}{\|A\|_{F}^{2}} .
$$

Ex. 4 - Show that the distance to the solution satisfies the following recurrence

$$
\begin{equation*}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2}=\left\|w^{t}-w^{*}\right\|_{2}^{2}-\left\langle\frac{A_{j:}^{\top} A_{j}:}{\left\|A_{j:}\right\|_{2}^{2}}\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle . \tag{18}
\end{equation*}
$$

Answer (Ex. 4) — Using (14) and subtracting w^{*} from both sides of (12) we have

$$
\begin{aligned}
w^{t+1}-w^{*} & =w^{t}-w^{*}-\frac{\alpha_{j}}{p_{j}} A_{j:}^{\top} A_{j:}\left(w^{t}-w^{*}\right) \\
& \stackrel{(13)}{=}\left(I-\frac{A_{j:}^{\top} A_{j}}{\left\|A_{j:}:\right\|_{2}^{2}}\right)\left(w^{t}-w^{*}\right) .
\end{aligned}
$$

Taking norm squared in the above we have that

$$
\begin{aligned}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2} & =\left\|\left(I-\frac{A_{j:}^{\top} A_{j:}}{\left\|A_{j:}\right\|_{2}^{2}}\right)\left(w^{t}-w^{*}\right)\right\|_{2}^{2} \\
& \stackrel{(15)}{=}\left\langle\left(I-\frac{A_{j:}^{\top} A_{j}}{\left\|A_{j:}\right\|_{2}^{2}}\right)\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle \\
& =\left\|w^{t}-w^{*}\right\|_{2}^{2}-\left\langle\frac{A_{j:}^{\top} A_{j:}}{\left\|A_{j:}\right\|_{2}^{2}}\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle .
\end{aligned}
$$

Ex. 5 - Using the solutions to the previous equations show that the iterates (12) converge according to

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq\left(1-\frac{\sigma_{\min }(A)^{2}}{\|A\|_{F}^{2}}\right) \mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] . \tag{19}
\end{equation*}
$$

Answer (Ex. 5) - Taking expectation conditioned on w^{t} in the above gives

$$
\begin{aligned}
\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2} \mid w^{t}\right] & =\left\|w^{t}-w^{*}\right\|_{2}^{2}-\left\langle\mathbb{E}\left[\frac{A_{j:}^{\top} A_{j:}}{\left\|A_{j:}\right\|_{2}^{2}}\right]\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle \\
& \stackrel{(17)}{=}\left\|w^{t}-w^{*}\right\|_{2}^{2}-\frac{1}{\|A\|_{F}^{2}}\left\langle A^{\top} A\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle \\
& \stackrel{(7)}{\leq}\left\|w^{t}-w^{*}\right\|_{2}^{2}-\frac{\sigma_{\min }(A)^{2}}{\|A\|_{F}^{2}}\left\|w^{t}-w^{*}\right\|_{2}^{2} \\
& =\left(1-\frac{\sigma_{\min }(A)^{2}}{\|A\|_{F}^{2}}\right)\left\|w^{t}-w^{*}\right\|_{2}^{2} .
\end{aligned}
$$

It remains to take expectation in the above.
Remark: This is an amazing and recent result [2], since it shows that SGD converges exponentially fast despite the fact that the iterates (14) only require access to a single row of A at a time! This result can be extended to solving any linear system $A w=b$, including the case where A rank deficient. Indeed, so long as there exists a solution to $A w=b$, the iterates (14) converge to the solution of least norm and at rate of $\left(1-\frac{\sigma_{\min }^{+}(A)^{2}}{\|A\|_{F}^{2}}\right)$ where $\sigma_{\min }^{+}(A)$ is the smallest nonzero singular value of $A[1]$. Thus this method can solve any linear system.

BONUS

Exercise 2: Stochastic Coordinate Descent (CD)

Consider the minimization problem

$$
\begin{equation*}
w^{*}=\arg \min _{x \in \mathbb{R}^{d}}\left(f(w) \stackrel{\text { def }}{=} \frac{1}{2} w^{\top} A w-w^{\top} b\right) \tag{20}
\end{equation*}
$$

where $A \in \mathbb{R}^{d \times d}$ is a symmetric positive definite matrix, and $w, b \in \mathbb{R}^{d}$.
Ex. $\mathbf{6}$ - First show that, using the notation (10), solving (20) is equivalent to solving (9).

Answer (Ex. 6) - Differentiating (20) or (9) in w gives

$$
\nabla f(x)=A x-b
$$

Consequently the unique solution w^{*} to both of these problems is given by $w^{*}=A^{-1} b$.

Ex. 7 - Show that

$$
\begin{equation*}
\frac{\partial f(w)}{\partial w_{i}}=A_{i:} w-b_{i} \tag{21}
\end{equation*}
$$

where $A_{i \text { : }}$ is the i th row of A. Furthermore note that $w^{*}=A^{-1} b$, thus

$$
\begin{equation*}
\frac{\partial f(w)}{\partial w_{i}}=e_{i}^{\top}(A w-b)=e_{i}^{\top} A\left(w-w^{*}\right) \tag{22}
\end{equation*}
$$

Answer (Ex. 7) - Follows immediately from $\nabla f(x)=A x-b$ and $w^{*}=A^{-1} b$.

Ex. 8 - Question 2.3: Consider a step of the stochastic coordinate descent method

$$
\begin{equation*}
w^{k+1}=w^{k}-\alpha_{i} \frac{\partial f\left(w^{k}\right)}{\partial x_{i}} e_{i} \tag{23}
\end{equation*}
$$

where $e_{i} \in \mathbb{R}^{d}$ is the i th unit coordinate vector, $\alpha_{i}=\frac{1}{A_{i i}}$, and $i \in\{1, \ldots, d\}$ is sampled
i.i.d at each step according to $i \sim p_{i}$ where $p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)}$. Let $\|x\|_{A}^{2} \stackrel{\text { def }}{=} x^{\top} A x$.

First, let $\Pi_{i}=\frac{e_{i} e_{i}^{\top} A}{A_{i i}}$ and prove that

$$
\begin{equation*}
\left\|w^{k+1}-w^{*}\right\|_{A}^{2}=\left\langle\left(I-\Pi_{i}^{\top}\right) A\left(I-\Pi_{i}\right)\left(w^{k}-w^{*}\right), w^{k}-w^{*}\right\rangle \tag{24}
\end{equation*}
$$

Answer (Ex. 8) — Subtracting w^{*} from both sides of (23) gives

$$
\begin{align*}
& w^{k+1}-w^{*} \stackrel{(22)+(23)}{=} w^{k}-w^{*}-\alpha_{i} e_{i}^{\top} A\left(w^{k}-w^{*}\right) e_{i} \\
&=\left(I-\frac{e_{i} e_{i}^{\top} A}{A_{i i}}\right)\left(w^{k}-w^{*}\right) . \tag{25}
\end{align*}
$$

Taking the squared norm $\|\cdot\|_{A}$ on both sides of (25) gives

$$
\begin{aligned}
\left\|w^{k+1}-w^{*}\right\|_{A}^{2} & =\left\langle A\left(I-\Pi_{i}\right)\left(w^{k}-w^{*}\right),\left(I-\Pi_{i}\right)\left(w^{k}-w^{*}\right)\right\rangle \\
& =\left\langle\left(I-\Pi_{i}^{\top}\right) A\left(I-\Pi_{i}\right)\left(w^{k}-w^{*}\right), w^{k}-w^{*}\right\rangle .
\end{aligned}
$$

Ex. 9 - Question 2.4: Let $r^{k} \stackrel{\text { def }}{=} A^{1 / 2}\left(w^{k}-w^{*}\right)$. Deduce from (24) that

$$
\begin{equation*}
\left\|r^{k+1}\right\|_{2}^{2}=\left\|r^{k}\right\|_{2}^{2}-\left\langle\frac{A^{1 / 2} e_{i} e_{i}^{\top} A^{1 / 2}}{A_{i i}} r^{k}, r^{k}\right\rangle \tag{26}
\end{equation*}
$$

Answer (Ex. 9) - Let $r^{k}=A^{1 / 2}\left(w^{k}-w^{*}\right)$ and note that

$$
\left(I-\Pi_{i}^{\top}\right) A\left(I-\Pi_{i}\right)=A-2 A \Pi_{i}+\Pi_{i}^{\top} A \Pi_{i}=A-\frac{A e_{i} e_{i}^{\top} A}{A_{i i}}
$$

Using this we have from (24) that

$$
\begin{align*}
\left\|r^{k+1}\right\|_{2}^{2} & =\left\langle\left(A-\frac{A e_{i} e_{i}^{\top} A}{A_{i i}}\right)\left(w^{k}-w^{*}\right), w^{k}-w^{*}\right\rangle \\
& =\left\|r^{k}\right\|_{2}^{2}-\left\langle\frac{A e_{i} e_{i}^{\top} A}{A_{i i}}\left(w^{k}-w^{*}\right), w^{k}-w^{*}\right\rangle \\
& =\left\|r^{k}\right\|_{2}^{2}-\left\langle\frac{A^{1 / 2} e_{i} e_{i}^{\top} A^{1 / 2}}{A_{i i}} r^{k}, r^{k}\right\rangle . \tag{27}
\end{align*}
$$

Ex. 10 - Finally, prove the convergence of the iterates of CD (23) converge according to

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{k+1}-w^{*}\right\|_{A}^{2}\right] \leq\left(1-\frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\right) \mathbb{E}\left[\left\|w^{k}-w^{*}\right\|_{A}^{2}\right] \tag{28}
\end{equation*}
$$

thus (23) converges to the solution.
Hint: Since A is symmetric positive definite you can use that

$$
\lambda_{\min }(A)=\inf _{x \in \mathbb{R}^{d}, x \neq 0} \frac{x^{\top} A x}{\|x\|_{2}^{2}} .
$$

You will need to use that $x^{\top} A x \geq \lambda_{\min }(A)\|x\|_{2}^{2}$ at some point.

Answer (Ex. 10) - Taking expectation conditioned on r^{k} over the second term in (27) gives

$$
\begin{aligned}
\mathbb{E}\left[\left.\left\langle\frac{A^{1 / 2} e_{i} e_{i}^{\top} A^{1 / 2}}{A_{i i}} r^{k}, r^{k}\right\rangle \right\rvert\, r^{k}\right] & =\sum_{j=1}^{n} \frac{A_{j j}}{\operatorname{Tr}(A)}\left\langle\frac{A^{1 / 2} e_{j} e_{j}^{\top} A^{1 / 2}}{A_{j j}} r^{k}, r^{k}\right\rangle \\
& =\frac{1}{\operatorname{Tr}(A)}\left\langle A^{1 / 2} \sum_{j=1}^{n} e_{j} e_{j}^{\top} A^{1 / 2} r^{k}, r^{k}\right\rangle \\
& =\frac{1}{\operatorname{Tr}(A)}\left\langle A r^{k}, r^{k}\right\rangle \\
& \geq \frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\left\|r^{k}\right\|_{2}^{2} .
\end{aligned}
$$

Consequently taking expectation conditioned on r^{k} in (26) gives

$$
\begin{equation*}
\mathbb{E}\left[\left\|r^{k+1}\right\|_{2}^{2} \mid r^{k}\right] \leq\left(1-\frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\right)\left\|r^{k}\right\|_{2}^{2} \tag{29}
\end{equation*}
$$

It now remains to take expectation and re-write $\left\|r^{k}\right\|_{2}^{2}=\left\|w^{k}-w^{*}\right\|_{A}^{2}$.

Ex. 11 - Question 2.6: When is this stochastic coordinate descent method faster than the stochastic gradient method (14) or gradient descent? Note that each iteration of SGD and CD costs $O(d)$ floating point operations while an iteration of the GD method costs $O\left(d^{2}\right)$ floating point operations (assuming that A has been previously calculated and stored). What happens if d is very big? What if $\operatorname{Tr}(A)$ is very large? Discuss this.

Answer (Ex. 11) - Let

$$
\kappa_{S G D} \quad \stackrel{\text { def }}{=} \frac{\|A\|_{F}^{2}}{\sigma_{\min }^{2}(A)}=\frac{\operatorname{Tr}\left(A^{\top} A\right)}{\sigma_{\min }^{2}(A)}=\sum_{i=1}^{d} \frac{\sigma_{i}^{2}(A)}{\sigma_{\min }^{2}(A)}
$$

be the complexity constant of SGD and let

$$
\kappa_{C D} \quad \stackrel{\text { def }}{=} \quad \frac{\operatorname{Tr}(A)}{\lambda_{\min }(A)}=\sum_{i=1}^{d} \frac{\sigma_{i}(A)}{\sigma_{\min }(A)},
$$

be the complexity constant of CD, where we used that A is positive semi-definite so that $\lambda_{i}(A)=\sigma_{i}(A)$.
Consider the extreme case where $\sigma_{i}(A)=\sigma_{j}(A)$ for every $i, j \in\{1, \ldots, d\}$. In this case $\kappa_{S G D}=d=\kappa_{C D}$.
Now consider the case that the singular values are evenly spread out with $\sigma_{i}(A)=i \times \tau$ where $\tau>0$. In this case

$$
k a p p a_{S G D}=\sum_{i=1}^{d} \frac{i^{2} \times \tau^{2}}{\tau^{2}}=O\left(d^{3}\right)
$$

and

$$
k \text { kappa }_{C D}=\sum_{i=1}^{d} \frac{i \times \tau}{\tau}=O\left(d^{2}\right)
$$

Essentially, the complexity of coordinated descent $\kappa_{C D}$ is far less sensitive to ill-conditioned data, that is, data where the smallest and the largest singular values are far apart.

References

[1] R. M. Gower and P. Richtárik. "Stochastic Dual Ascent for Solving Linear Systems". In: arXiv:1512.06890 (2015).
[2] T. Strohmer and R. Vershynin. "A Randomized Kaczmarz Algorithm with Exponential Convergence". In: Journal of Fourier Analysis and Applications 15.2 (2009), pp. 262278.

[^0]: ${ }^{1}$ We need only consider a linear mapping as opposed to the more general affine mapping $x_{i} \mapsto w^{\top} x_{i}+\beta$, because the zero order term $\beta \in \mathbb{R}$ can be incorporated by defining a new feature vectors $\hat{x}_{i}=\left[x_{1}, 1\right]$ and new variable $\hat{w}=[w, \beta]$ so that $\hat{x}_{i}^{\top} \hat{w}=x_{i}^{\top} w+\beta$
 ${ }^{2}$ Excluding the issue of selection λ using something like crossvalidation https://en.wikipedia.org/ wiki/Cross-validation_(statistics)

