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Introduction

Consider the task of learning a rule that maps the feature vector x € R? to outputs y € R.
Furthermore you are given a set of labelled observations (z;, y;) for i = 1,...,n. We
restrict ourselves to linear mappings. That is, we need to find w € R? such that

zlwry, fori=1,...,n. (1)
That is the hypothesis function is parametrized by w and is given by hy :  — w'z.} To
choose a w such that each ] w is close to y;, we use the squared loss /(y) = y?/2 and the
squared regularizor. That is, we minimize

n

. 11 A
w Zargngnn;z( iTw_yi)2+§||wH%7 (2)

where A > 0 is the regularization parameter. We now have a complete training prob-
lem (2)2.
Using the matrix notation

x & [X1,...,2,] € R>™  and y= [Y1,...,yn] € R, (3)

we can re-write the objective function in (2) as

det 1 A
Flw) & X Tw -yl + w3 @

First we introduce some necessary notation.

1We need only consider a linear mapping as opposed to the more general affine mapping x; — w ' z; + 3,
because the zero order term 8 € R can be incorporated by defining a new feature vectors &; = [z1, 1] and
new variable & = [w, 8] so that & ¥ = =] w+

2Excluding the issue of selection A\ using something like crossvalidation https://en.wikipedia.org/
wiki/Cross-validation_(statistics)



€

Notation: For every z,w, € R? let (x,w) &t r'y and let ||z]]2 = /(7). Let A € R9*d
be a matrix and let opyin(A) and opax(A) be the smallest and largest singular values of A
defined by

A A
Omin(4) ' min | Azl and  opax(A) df H $H2
zeRd,z£0 ||z2 veRe 220 |72

()

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the
largest singular value of A can be defined instead as

A A
Jmax(A) = max % — H .THQ (6)
zeRd, z£0 ||lz[|3 veR, o0 ||zl
Therefore y
b
and P
ol S oms(4), Yo € B\ (0) ®)
2

We will now solve the following ridge regression problem

* . 1 def ¢
u =arg i, (51X w0 =yl + S 10l3 ¥ 1w ) )

using stochastic gradient descent and stochastic coordinate descent.

Exercise 1 : Stochastic Gradient Descent (SGD)
Some more notation: Let ||A|% 7y (ATA) denote the Frobenius norm of A. Let
AL XT L AT e R and » % Lxy, (10)
n n
We can exploit the separability of the objective function (2) to design a stochastic

gradient method. For this, first we re-write the problem Aw = b as a linear least squares
problem

d
ok . ) def :
Wt = argrlgn%HAw—b||§ = argngnz; s(Asw—b)* = arg%nzgpifi(w)» (11)
— —
where f;(w) = (A w — b;)?, A;. denotes the ith row of A, b; denotes the ith element of
b and p; = ‘|‘|A HH% fori=1,...,d. Note that Zle p; = 1 thus the p;’s are probabilities.



From a given w® € R?, consider the iterates

Wt = wh — aV fi(w'), (12)
where 1
a=—-7, (13)
IA[%
and j is a random index chosen from {1,. .., d} sampled with probability p;. In other words,

P(j =1i) =p; = ‘mf“f for all 4 € {1,...,d}.

Ex. 1 — Show that the solution @w* to (11) and the solution to w* to (9) are equal.

Answer (Ex. 1) — On the one hand, taking the gradient with respect to w in (9) and
setting to zero gives

(10)

1 1 1
X(XTw—y)—i-)\w:(XXT—i-/\I)w—Xy Aw—-b=0 .
n n n

On the other hand, differentiating (11) and setting to zero gives A" (Aw—b) = A(Aw—b) =
0. Since A is symmetric positive definite it is also invertible, thus

A(Aw —b) =0 < (Aw —b) = 0.

Ex. 2 — Show that .
Vfi(w) = ;A}:Aj;(w —w") (14)
j

and that

d
Ejp [VF(w0)] €3 piV fiw) = ATA(w — w*) |
i=1

thus V f;(w) is an unbiased estimator of the full gradient of the objective function in (11).
This justifies applying the stochastic gradient method.

Answer (Ex. 2) — First note that

1 1 .
Vfi(w) = ;AI(Aj;w —bj) = ]?A;—:Aj;(w —w*) .

1

Taking expectation we have that

E[Vfj(w)] = i %AI(Aj;w —bj) = AT(Aw —b) = ATA(w —w*) . B
i=1 4"



AT A
Ex. 3 — Let II, def Hiﬂ\%’ show that

11 =115 (15)

and
(I —I0)(I - 1Ly) = I —1I;. (16)

In other words, II; is a projection operator which projects orthogonally onto Range (A4;.) .
Furthermore, if j ~ p; verify that

ATA
E[] =Y pdl = T (17)
i=1

Answer (Ex. 3) — We can see that II; is an orthogonal projector by verifying that

T AGIBIAE  AIBIANE AR

and

(15)

(I —T)(I —T0y) = I — 200; + T,;T1; = [ —1I; .

Finally, we have

m m
. 14112 AL A AT A;. AT A
E H frg ]P — H,L el LB — 2 — .
) Z U=9 Z IANZ 114: 13 Z IAIE  11AN1Z .
=1 F 2 =1 F F

Ex. 4 — Show that the distance to the solution satisfies the following recurrence
Al A;.
™ —w = ot — w3 - ( S (w - wt) et —wt ) (18)
14;:112

Answer (Ex. 4) — Using (14) and subtracting w* from both sides of (12) we have

Qs
wt—H —w* — wt —w* — —]A;A](wt _ w*)
by

-

(13) Aj A\

= I—- (w* —w").
( HAj:|§>




Taking norm squared in the above we have that

T

AT A;. .
lo™* = w3 = |- P | @ = w3
14515

-

(15) A A3\ )t —

= I—- (w* —w*),w" —w
<< |Aj;||%>

AT A, . .
= ”wt_w*H%_<”/71'4.’]2(wt_w ),U}t—w >

Ex. 5 — Using the solutions to the previous equations show that the iterates (12) con-
verge according to

Tmin (A)?
Bl -wl) < (1- TR Bl -] (19
F
Answer (Ex. 5) — Taking expectation conditioned on w! in the above gives
AT A;
E (o' - w3 lof] = fu’ - w3 - <E g | (@ W - w*>
g 112

17 1
(:) ||wt - ’LU*H% - HA||2 <ATA(wt - w*)a wt - w*>
F
g Oumin(A)?
< Wﬁ*wwgfiﬁﬁrﬂwtﬂf@
F
Tmin(A)°
- (")
It remains to take expectation in the above. |

Remark: This is an amazing and recent result [2], since it shows that SGD converges

exponentially fast despite the fact that the iterates (14) only require access to a single row

of A at a time! This result can be extended to solving any linear system Aw = b, including

the case where A rank deficient. Indeed, so long as there exists a solution to Aw = b, the
+ 2

iterates (14) converge to the solution of least norm and at rate of (1 - Ufﬁjﬁf) ) where

F

ot. (A) is the smallest nonzero singular value of A [1]. Thus this method can solve any

linear system.




BONUS
Exercise 2: Stochastic Coordinate Descent (CD)

Consider the minimization problem

ef 1
w* = arg min (f(w) et 2T Aw — wa> , (20)
rER 2

where A € R4*? is a symmetric positive definite matrix, and w,b € R%.

Ex. 6 — First show that, using the notation (10), solving (20) is equivalent to solving (9).

Answer (Ex. 6) — Differentiating (20) or (9) in w gives
Vf(z)=Ax —b.

Consequently the unique solution w* to both of these problems is given by w* = A~'b.
q y q

Ex. 7 — Show that

af (w
gi(uz) = Ai;w — bi s (21)
where A;. is the ith row of A. Furthermore note that w* = A~'b, thus
0
9/ (w) =e] (Aw—b) =e] A(w —w*) . (22)
8’LU1'
Answer (Ex. 7) — Follows immediately from V f(z) = Az — b and w* = A~'b. |
Ex. 8 — Question 2.3: Consider a step of the stochastic coordinate descent method
o f (w*
whFt = wkF — @ fa(x@ )ei, (23)
1
where e; € R? is the ith unit coordinate vector, a; = 1 and ¢ € {1,...,d} is sampled
i
A
i.i.d at each step according to i ~ p; where p; = ——. Let ||z[/} f 2T Az
Tr (A)
ol
First, let II; = % and prove that
oot — w3 = (1= AU = T (wF = w'),wh —w') (24)



Answer (Ex. 8) — Subtracting w* from both sides of (23) gives

(22)+(23)
kL _ ¢ ) ( W — wt — aieiTA(wk —w)e;

w

Taking the squared norm ||-|| 4 on both sides of (25) gives

Jot*t —w = (AU =T (w0 — ), (T L) (w* — )

= (T =T A(T - ) —w), uk — ).

|
Ex. 9 — Question 2.4: Let r* & AY2(w* — w*). Deduce from (24) that
Al/2 ; T A1/2
s R T < Sk k) (26)
A
Answer (Ex. 9) — Let r* = AY2(w* — w*) and note that
Aeiel A
(I —T)A(I —TI;) = A — 2ATL; + II] ATL; = A — ejf .
Using this we have from (24) that
Aeje] A
e = (4= 250 k- ut) k-
Ai;
Aeje] A
= 41— (ARt - )k )
Ai;
Al/2 ; T AL/2
= I3 - <M 1 (27)
Aij
Ex. 10 — Finally, prove the convergence of the iterates of CD (23) converge according
to
* )\mln(A) *
Bt - o] < (1o 2 [t - wjp) (28)



thus (23) converges to the solution.
Hint: Since A is symmetric positive definite you can use that

! Ax

Amin(A) =  in R
win(d) = Il T2

You will need to use that " Az > Apin(A) |72 at some point.

Answer (Ex. 10) — Taking expectation conditioned on r*

gives

over the second term in (27)

n 1/2 T 2
Al/Qez‘e;rAl/Qrk Tk |7“k _ Z A]j A / ejej Al/ ,r-k Tk
Ay ’ pm Tr (A) Ajj 7

_ 1 1/2 T A1/2.k
= TrA)<A ZeeA r r

Jj=1

>

Consequently taking expectation conditioned on 7 in (26) gives

Amin (4)

k k k

Bl < (1- Sl i (20)
It now remains to take expectation and re-write ||7*(|3 = ||w® — w*|/%. |

Ex. 11 — Question 2.6: When is this stochastic coordinate descent method faster
than the stochastic gradient method (14) or gradient descent? Note that each iteration of
SGD and CD costs O(d) floating point operations while an iteration of the GD method
costs O(d?) floating point operations (assuming that A has been previously calculated and
stored). What happens if d is very big? What if Tr (A) is very large? Discuss this.

Answer (Ex. 11) — Let

at A% Tr ATA 2(

SGD_J2(A)_0' o

2
min mm i=1 mln




be the complexity constant of SGD and let

wf Tr(4) K ooi(A)
neb N Amin(A) N zz; O'min(A)’

be the complexity constant of CD, where we used that A is positive semi-definite so that
Ai(A) = 0i(A).

Consider the extreme case where 0;(A) = o;(A) for every i,j € {1,...,d}. In this case
ksGD = d = KCD-

Now consider the case that the singular values are evenly spread out with o;(A) =i x 7
where 7 > 0. In this case

i2 x 12
kappasap = Y 5= O(d’)
i=1
and
T X T
kappacp =) | —— = O(d?).
i=1

Essentially, the complexity of coordinated descent ko p is far less sensitive to ill-conditioned
data, that is, data where the smallest and the largest singular values are far apart.
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