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1 Introduction and definitions

Consider the problem

w∗ ∈ arg min
w∈Rd

1

n

n∑
i=1

fi(w) =: f(w), (1)

where f(w) is convex and differentiable.
We define a sampling vector

Definition 1.1. We say that a random vector v ∈ Rn drawn from some distribution D is a
sampling vector if its mean is the vector of all ones:

ED [vi] = 1, ∀i ∈ [n]. (2)

With this definition we can re-write our original problem as as follows

min
x∈Rd

ED

[
fv(w)

def
=

1

n

n∑
i=1

vifi(w)

]
. (3)

Before we give examples of v, let us first establish some random set terminology. Let C ⊆ [n]

and let eC
def
=
∑

i∈C ei, where {e1, . . . , en} are the standard basis vectors in Rn. These subsets will
be selected using a random set valued map S which is known as a sampling. A sampling is uniquely
characterized by choosing subset probabilities pC ≥ 0 for all subsets C of [n]:

P [S = C] = pC , ∀C ⊂ [n], (4)

where
∑

C⊆[n] pC = 1.

2 Sampling

In the following exercises let S ⊂ {1, . . . , n} be a random set and let 1i∈S be the indicator function,
that is

1i∈S =

{
1 if i ∈ S,
0 otherwise.
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Ex. 1 — Let v be a sampling vector. Show that by sampling v ∼ D the stochastic gradient
∇fv(w) is an unbiased estimate of the full gradient with

E [∇fv(w)] =
1

n

n∑
i=1

fi(w) = ∇f(w).

Ex. 2 — Let P [S = {j}] = 1
n for j = 1, . . . , n. Show that the random vector v ∈ Rn

vi =

{
n i ∈ S,
0 i 6∈ S,

is a sampling vector. We refer to this as the Single Element Sampling. Furthermmore, show that

∇fv(w) = ∇fj(w)

with probability 1
n for j = 1, . . . , n.

Ex. 3 — Let b ∈ N elements and let |S| = b, such that every subset has equal chance of being
selected. That is, given B ⊂ {1, . . . , n} with |B| = b we have that

P [S = B] =
1(
n
b

) =:
1
n!

b!(n−b)!
.

Show that P [i ∈ S] = b
n for i = 1, . . . , n. Furthermore, show that the random vector v ∈ Rn

vi =

{
n
b i ∈ S,
0 i 6∈ S,

is a sampling vector. We refer to this as the b–nice Sampling.

Ex. 4 — Let pi = P [i ∈ S] > 0 for i = 1, . . . , n. That is, all elements have a non-zero probability
of being sampled. Let P̂ = Diag(p1, ..., pn) ∈ Rn×n. Show that the random vector v given by

v = P̂−1eS =
∑
i∈S

ei
pi
. (7)

is a sampling vector. We refer to this as an arbitrary sampling. Show that all the previous samplings
are specials cases of this one.

3 Expected Smoothness

For the next exercises we need the following expected smoothness assumption and the definition of
gradient noise introduced in [2, 3, 1]

Assumption 3.1 (Expected Smoothness). We say that f is L–smooth in expectation with re-
spect to a distribution D if there exists L = L(f,D) > 0 such that

Ev
[
‖∇fv(w)−∇fv(w∗)‖2

]
≤ 2L(f(w)− f(w∗)), (8)
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for all x ∈ Rd. For simplicity, we will write (f,D) ∼ ES(L) to say that (8) holds. When D is
clear from the context, we will often ignore mentioning it, and simply state that the expected
smoothness constant is L.

Definition 3.2 (Finite Gradient Noise). The gradient noise σ = σ(f,D), defined as follows

σ2
def
= Ev

[
‖∇fv(w∗)‖2

]
. (9)

Ex. 5 — If (f,D) ∼ ES(L), show that

ED
[
‖∇fv(w)‖2

]
≤ 4L(f(w)− f(w∗)) + 2σ2. (10)

Consider the gradient noise and the samplings defined in the exercises in Section 2.
Ex. 6 — For single element sampling with P [v = nei] = 1

n for i = 1, . . . , n, show that

σ2 =
1

n

∑
i∈[n]

‖∇fi(w∗)‖2. (11)

Ex. 7 — For single element sampling with P
[
v =

ej
pj

]
= pi for i = 1, . . . , n, show that

σ2 =
1

n2

∑
i∈[n]

1

pi
‖∇fi(w∗)‖2. (12)

Ex. 8 — Given that (1) is a convex unconstrained optimization problem we have that ∇f(w∗) =
0. Show that

1

n2

n∑
i,j=1

〈∇fi(w∗),∇fj(w∗)〉 = 0.

Ex. 9 — Level hard: For b-nice sampling S with P
[
vi = n

b 1i∈S
]

= b
n show that

σ2 =
1

nb
· n− b
n− 1

∑
i∈[n]

‖∇fi(w∗)‖2. (14)

[Expected Smoothness] Suppose that fi is Li–smooth and convex and consequently f is
L–smooth and convex. It follows from equation (2.1.7) in Theorem 2.1.5 in [4] that

‖∇fi(w)−∇fi(y)‖2 ≤ 2Li(fi(w)− fi(y)− 〈∇fi(y), x− y〉). (15)

Since f is L-smooth, we have

‖∇f(w)−∇f(y)‖2 ≤ 2L(f(w)− f(y)− 〈∇f(y), x− y〉). (16)

For the next exercises, we will assume that (15) and (16) hold.
Ex. 10 — Show that if P [v = nei] = 1

n then Assumption 3.1 holds with L = Lmax.
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Ex. 11 — Level hard: For b-nice sampling S with P
[
vi = n

b 1i∈S
]

= b
n show that Assumption 3.1

holds with

L =
n(b− 1)

b(n− 1)
L+

1

b

n− b
n− 1

Lmax. (17)

This formula was only recently introduced in [3] and has enabled the calculation of better mini-
batch sizes in stochastic gradient methods. Note that this expected smoothness constant (17)
interpolates perfectly between L and Lmax in the sense that L = Lmax when b = 1 and L = L when
b = n.

4 The Heavy ball/Momentum method

Ex. 12 — Level hard: Let m0 = 0 = w0 ∈ Rd. Consider the Heavy Ball method give by

wt+1 = wt − γ∇f(wt) + β(wt − wt−1), for t = 1, . . . , T.

Let f be L–smooth and µ–convex and thus

µ I � ∇2f(w) � LI, ∀w ∈ Rd. (18)

Let κ
def
= L

µ . Let γ =
4

(
√
L+
√
µ)2

and β =

√
L−√µ
√
L+
√
µ
. Finally let

A
def
= (1 + β)I − γ

∫ 1

s=0
∇2f(w + s(w∗ − w))ds,

and let ‖A‖ = maxi=1,...,d |λi(A)| denote the induced norm. Show that∥∥∥∥[A −Iβ
I 0

]∥∥∥∥ =

√
κ− 1√
κ+ 1

.

Conclude that the Heavy ball method converges at a rate of
√
κ−1√
κ+1

.
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