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1 Introduction and definitions

Consider the problem
1 n
w' €arg min ~ 3 fi(w) = f(w), 1)
i=1

weRL N

where f(w) is convex and differentiable.
We define a sampling vector

Definition 1.1. We say that a random vector v € R™ drawn from some distribution D is a
sampling vector if its mean is the vector of all ones:

Eplv] =1, Vie [n]. 2)

With this definition we can re-write our original problem as as follows

n

min Ep | fu(w) d:ef%Zw filw)] . (3)

d
z€R im1

Before we give examples of v, let us first establish some random set terminology. Let C' C [n]

and let ec def > icc €i, where {e1,...,e,} are the standard basis vectors in R". These subsets will
be selected using a random set valued map S which is known as a sampling. A sampling is uniquely
characterized by choosing subset probabilities pc > 0 for all subsets C' of [n]:

P[S=Cl=pc, VCC|n, (4)
where 3 oy pe = 1.
2 Sampling
In the following exercises let S C {1,...,n} be a random set and let 1,c5 be the indicator function,
that is
1ee 1 ifi1 €8,
s 0 otherwise.



Ex. 1 — Let v be a sampling vector. Show that by sampling v ~ D the stochastic gradient
V fu(w) is an unbiased estimate of the full gradient with

B[V fo(w Zfz = Vf(w).

Ex. 2 — Let P[S = {j}] =1 for j=1,...,n. Show that the random vector v € R"

n 1€58,
v; =
0 i¢S,
is a sampling vector. We refer to this as the Single Element Sampling. Furthermmore, show that
Vfo(w) =V fj(w)
with probability % forj=1,...,n
Ex. 3 — Let b € N elements and let |S| = b, such that every subset has equal chance of being
selected. That is, given B C {1,...,n} with |B| = b we have that
1 1
P[S=B] = — = ——

b e

Show that P[i € S| = % for i = 1,...,n. Furthermore, show that the random vector v € R"

3 1€S,
v; =
0 i¢S,

is a sampling vector. We refer to this as the b—nice Sampling.

Ex. 4 — Let p=P[ie S| >0fori=1,...,n. That is, all elements have a non-zero probability
of being sampled. Let P = Diag(p1, ..., pn) € R™*™. Show that the random vector v given by

~ €;
b= Pleg = 3O (7)
ics Pi
is a sampling vector. We refer to this as an arbitrary sampling. Show that all the previous samplings
are specials cases of this one.

3 Expected Smoothness

For the next exercises we need the following expected smoothness assumption and the definition of
gradient noise introduced in [2, 3, 1]

Assumption 3.1 (Expected Smoothness). We say that f is £L—smooth in expectation with re-
spect to a distribution D if there exists £ = L(f, D) > 0 such that

E, [V fo(w) = Vfu(w)|P] < 2L(f(w) — f(w")), (8)



for all z € R%. For simplicity, we will write (f, D) ~ ES(L) to say that (8) holds. When D is
clear from the context, we will often ignore mentioning it, and simply state that the expected
smoothness constant is L.

Definition 3.2 (Finite Gradient Noise). The gradient noise o = o(f, D), defined as follows

02 EE, [V fo(w*)|] . (9)

Ex. 5 — If (f,D) ~ ES(L), show that

Ep [|IV fo(w)|?] < 4L(f(w) — f(w)) + 20°. (10)
Consider the gradient noise and the samplings defined i in the exercises in Section 2.
Ex. 6 — For single element sampling with P[v = ne;] = = for 1 =1,...,n, show that
Z IV fi(w*)||2. (11)
ze[n

3] =p; for i =1,...,n, show that

Ex. 7 — For single element sampling with P [v =5

Z Hsz ol (12)

i€ [n]

Ex. 8 — Given that (1) is a convex unconstrained optimization problem we have that V f(w*) =
0. Show that

ZZ (V fi(w*), V fj(w*)) = 0.

i,7=1

Ex. 9 — Level hard: For b-nice sampling S with P [vi = %12-63] = % show that

o? = w)?. (14)

ze[n

[Expected Smoothness] Suppose that f; is L;—smooth and convex and consequently f is
L-smooth and convex. It follows from equation (2.1.7) in Theorem 2.1.5 in [4] that

IV fi(w) = VF(u)|? < 2Li(fi(w) = fily) = (Vfily), = —y)). (15)
Since f is L-smooth, we have
IVF(w) = V)lI? < 2L(f(w) = f(y) = (VF(y), = —y)). (16)

For the next exercises, we will assume that (15) and (16) hold.
Ex. 10 — Show that if P[v = ne;] = L then Assumption 3.1 holds with £ = Lyax.



Ex. 11 — Level hard: For b-nice sampling S with P [vi = %1165] = % show that Assumption 3.1
holds with b-1) ) b
n(b — n—
L = —FL+ -———Lpyax- 17
b(n—1) + bn—1 (17)

This formula was only recently introduced in [3] and has enabled the calculation of better mini-
batch sizes in stochastic gradient methods. Note that this expected smoothness constant (17)
interpolates perfectly between L and L.y in the sense that £ = Lz when b = 1 and £ = L when
b=n.

4 The Heavy ball/Momentum method
Ex. 12 — Level hard: Let m® = 0 = w® € R?% Consider the Heavy Ball method give by
Wt = w' =y Vf(w') + Bw' —w'h), fort=1,...,T.
Let f be L-smooth and p—convex and thus
pl = V%f(w) =<LI, YweR? (18)

1 andﬁfiﬁ_\/ﬁ
2 - VI+ i

(VL + /h)

Let k % L Let v =

m . Finally let

1
A% (14 BT — / V2 f(w + s(w* — w))ds,
s=0

and let ||A|| = max;—1__4|\i(A4)| denote the induced norm. Show that

Il - %

-----

Conclude that the Heavy ball method converges at a rate of ﬁ:&
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