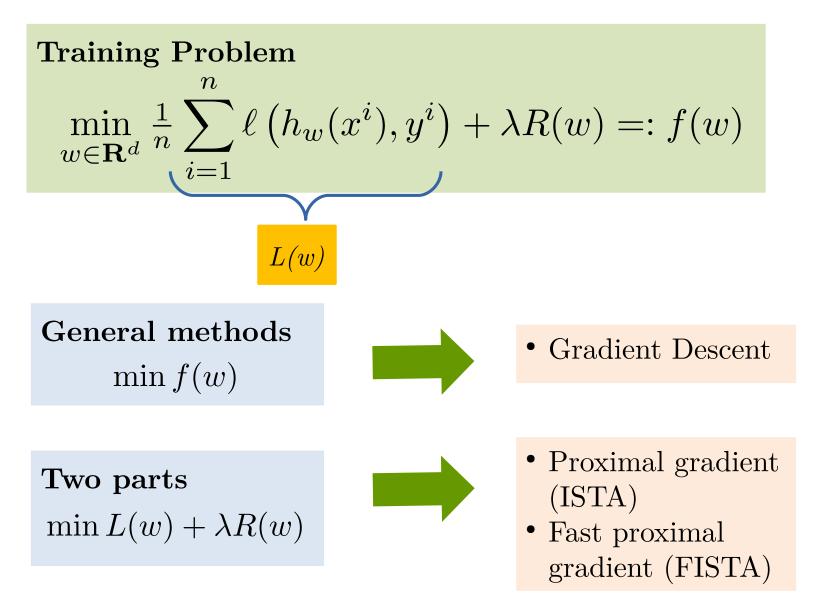
Optimization for Data Science Stochastic Gradient Methods

Lecturer: Robert M. Gower & Alexandre Gramfort

Tutorials: Quentin Bertrand, Nidham Gazagnadou

Master 2 Data Science, Institut Polytechnique de Paris (IPP)

Solving the Finite Sum Training Problem Recap



Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$
Can we use this sum structure?

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T - 1 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

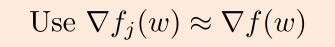
Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then $\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1} \nabla f_{i}(w) = \nabla f(w)$$



Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

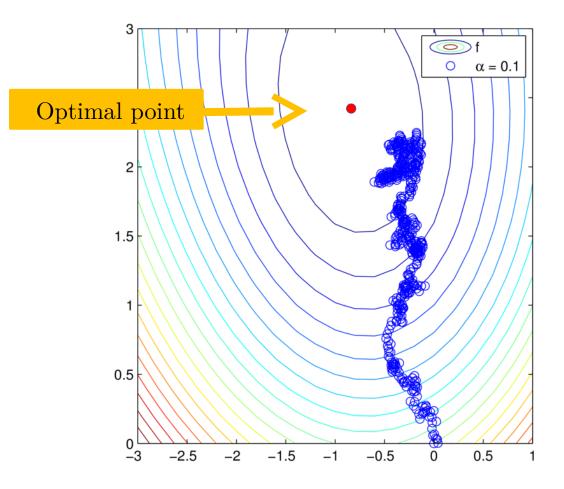
Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then $1 - \frac{n}{1}$

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^{\infty} \nabla f_i(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

EXE: Let $\sum_{i=1}^{n} p_i = 1$ and $j \sim p_j$. Show $\mathbb{E}[\nabla f_j(w)/(np_j)] = \nabla f(w)$

SGD 0.0 Constant stepsize
Set
$$w^0 = 0$$
, choose $\alpha > 0$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^T



Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

17

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \le (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{\alpha}{\lambda}B^{2}$$

EXE: Do exercises on convergence of random sequences.

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{\alpha}{\lambda}B^{2}$$

Shows that $\alpha \approx \frac{1}{\lambda}$

EXE: Do exercises on convergence of random sequences.

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{\alpha}{\lambda}B^{2}$$

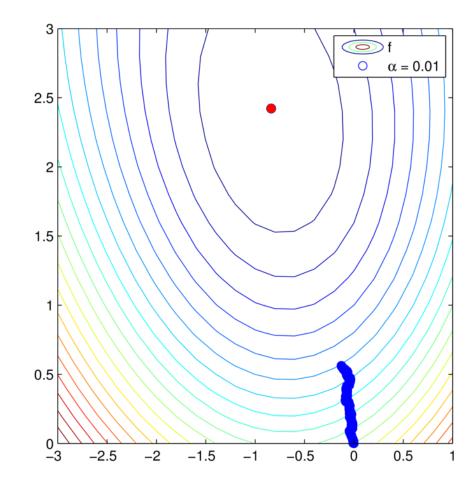
Shows that $\alpha \approx \frac{1}{\lambda}$ Shows that $\alpha \approx 0$

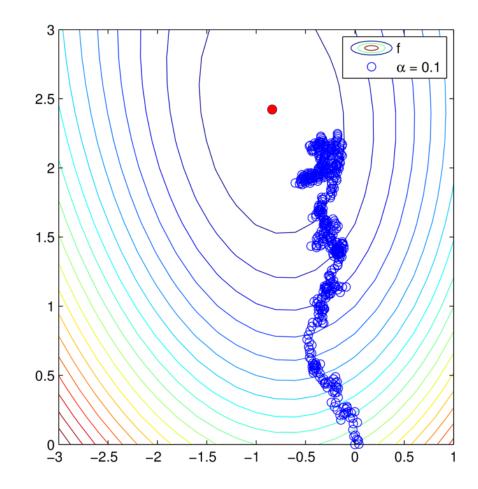
EXE: Do exercises on convergence of random sequences.

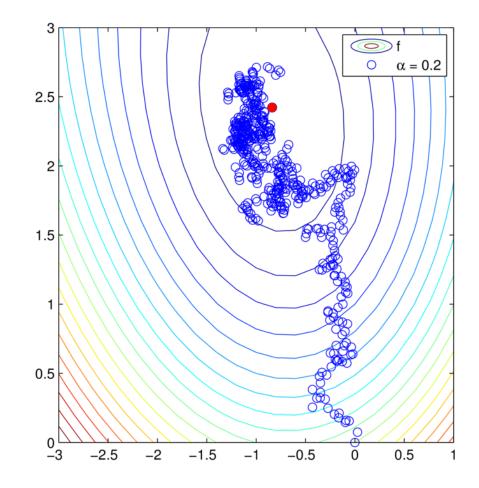
Proof:

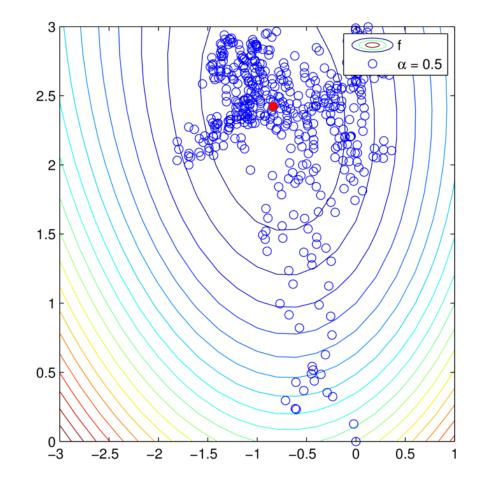
$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2. \end{split}$$
Taking expectation with respect to j

$$\begin{split} & \text{Unbiased estimator} \\ \mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \right] \\ &\leq ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 B^2 \\ \end{aligned}$$
Strong conv. $\swarrow \leq (1 - \alpha\lambda) ||w^t - w^*||_2^2 + \alpha^2 B^2 \\ \text{Taking total expectation} \\ & \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] \leq (1 - \alpha\lambda) \mathbb{E} \left[||w^t - w^*||_2^2 + \alpha^2 B^2 \\ &= (1 - \alpha\lambda)^{t+1} ||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha\lambda)^i \alpha^2 B^2 \\ \text{Using the geometric series sum} \quad \sum_{i=0}^t (1 - \alpha\lambda)^i = \frac{1 - (1 - \alpha\lambda)^{t+1}}{\alpha\lambda} \leq \frac{1}{\alpha\lambda} \\ & \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] \leq (1 - \alpha\lambda)^{t+1} ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda} B^2 \end{split}$









Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

 $\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

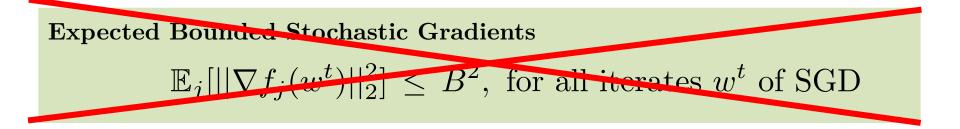
 $\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$, for all iterates w^{t} of SGD

Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

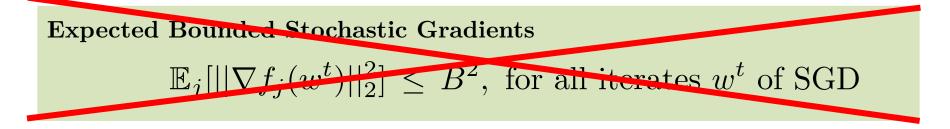


Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$



EXE: Let $A \in \mathbb{R}^{n \times d}$, $f_j(w) = (A_{j:}w - b_j)^2$. $\max_w \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = ?$

28

EXE: Let $A \in \mathbb{R}^{n \times d}$, $f_j(w) = (A_{j:}w - b_j)^2$. $\max_w \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = ?$

Proof: $\max_{w} \mathbb{E}_{j \sim \frac{1}{n}} [\|\nabla f_j(w)\|^2] = \infty$, indeed since

$$\begin{aligned} \|\nabla f_j(w)\|^2 &= 4 \|A_{j:}^\top (A_{j:}w - b_j)\|^2 \\ &= 4 \|A_{j:}\|^2 (A_{j:}w - b_j)^2 \\ &= 4 (\hat{A}_{j:}w - \hat{b}_j)^2 \qquad \text{where } \hat{A}_{j:} := A_{j:} \|A_{j:}\|, \quad \hat{b}_j := b_j \|A_{j:}\| \end{aligned}$$

Taking expectation

$$\mathbb{E}_{j \sim \frac{1}{n}} \|\nabla f_j(w)\|^2 = \frac{1}{n} \sum_{j=1}^n 4(\hat{A}_{j:w} - \hat{b}_j)^2 = \frac{1}{n} \|\hat{A}w - \hat{b}\|^2$$

 $\lim_{w\to\infty} \|\hat{A}w - b\|^2 = \infty$

Realistic assumptions for Convergence

Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2, \quad \forall w$$

30

Each
$$f_i$$
 is convex and L_i smooth
 $f_i(y) \leq f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$
 $L_{\max} := \max_{i=1,...,n} L_i$

Definition: Gradient Noise 2 π

$$\sigma^2 \quad := \quad \mathbb{E}_j[||\nabla f_j(w^*)||_2^2]$$

1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_i^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$ 1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = A_{i:} A_{i:}^\top + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I \quad = \quad L_i \ I$

33

1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{n} \sum_{i=1}^n (\frac{1}{2} (A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2} ||w||_2^2)$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = A_{i:} A_{i:}^\top + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I = L_i I$ $L_{\max} = \max_{i=1,\dots,n} (||A_{i:}||_2^2 + \lambda) = \max_{i=1,\dots,n} ||A_{i:}||_2^2 + \lambda$

EXE: Calculate the L_i 's and L_{\max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

EXE: Calculate the
$$L_i$$
's and L_{\max} for
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2,$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{\max} for

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f_{i}(w) = \ln(1 + e^{-y_{i}\langle w, a_{i}\rangle}) + \frac{\lambda}{2} ||w||_{2}^{2},$$

$$\nabla f_{i}(w) = \frac{-y_{i}a_{i}e^{-y_{i}\langle w, a_{i}\rangle}}{1 + e^{-y_{i}\langle w, a_{i}\rangle}} + \lambda w$$

$$\nabla^{2}f_{i}(w) = a_{i}a_{i}^{\top} \left(\frac{(1 + e^{-y_{i}\langle w, a_{i}\rangle})e^{-y_{i}\langle w, a_{i}\rangle}}{(1 + e^{-y_{i}\langle w, a_{i}\rangle})^{2}} - \frac{e^{-2y_{i}\langle w, a_{i}\rangle}}{(1 + e^{-y_{i}\langle w, a_{i}\rangle})^{2}}\right) + \lambda I$$

$$= a_{i}a_{i}^{\top} \frac{e^{-y_{i}\langle w, a_{i}\rangle}}{(1 + e^{-y_{i}\langle w, a_{i}\rangle})^{2}} + \lambda I \quad \preceq \quad \left(\frac{||a_{i}||_{2}^{2}}{4} + \lambda\right)I = L_{i} I$$

Relationship between smoothness ³⁸ constants

EXE: Let f be differentiable and convex. Show that f(w) is L-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))$$

Thus $f_i(w)$ is L_i -smooth with $L_i = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f_i(w))$ show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Т

Relationship between smoothness ³⁹ constants

EXE: Let f be differentiable and convex. Show that f(w) is L-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))$$

Thus $f_i(w)$ is L_i -smooth with $L_i = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f_i(w))$ show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Proof: From the Hessian definition of smoothness

$$\nabla^2 f(w) \preceq \lambda_{\max}(\nabla^2 f(w))I \preceq \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))I$$

Furthermore

$$\lambda_{\max}(\nabla^2 f(w)) = \lambda_{\max}\left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(w)\right) \le \frac{1}{n}\sum_{i=1}^n \lambda_{\max}(\nabla^2 f_i(w)) \le \frac{1}{n}\sum_{i=1}^n L_i$$

The final result now follows by taking the max over w, then max over i

Theorem.

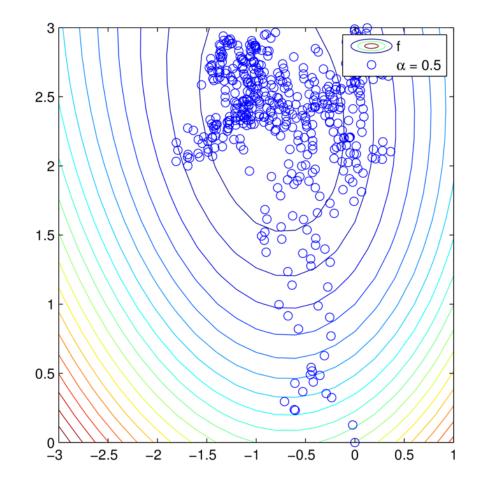
Let f be μ -strongly quasi-convex and f_i be L_i -smooth. If $0 < \alpha \leq \frac{1}{2L_{\max}}$ then the iterates of the SGD 0.0 satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\mu)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{2\alpha}{\mu}\sigma^{2}$$

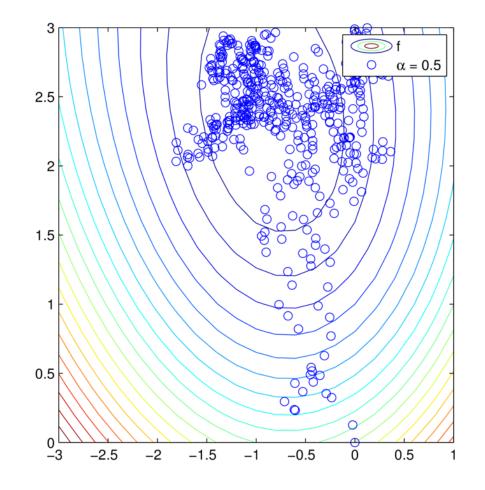
EXE: The steps of the proof are given in the SGD_proof exercise list for homework!

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik (2019) ICML 2019 SGD: General Analysis and Improved Rates.

Stochastic Gradient Descent α =0.5

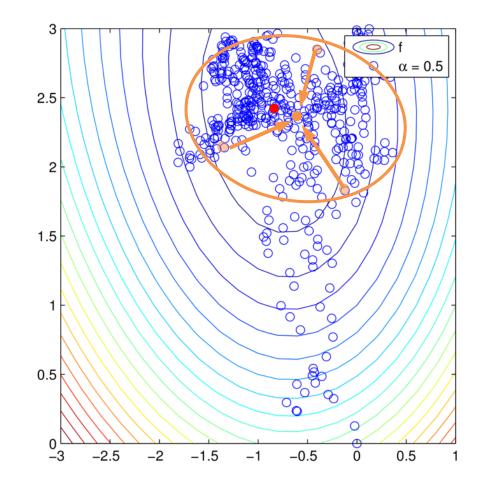


Stochastic Gradient Descent α =0.5



1) Start with big steps and end with smaller steps

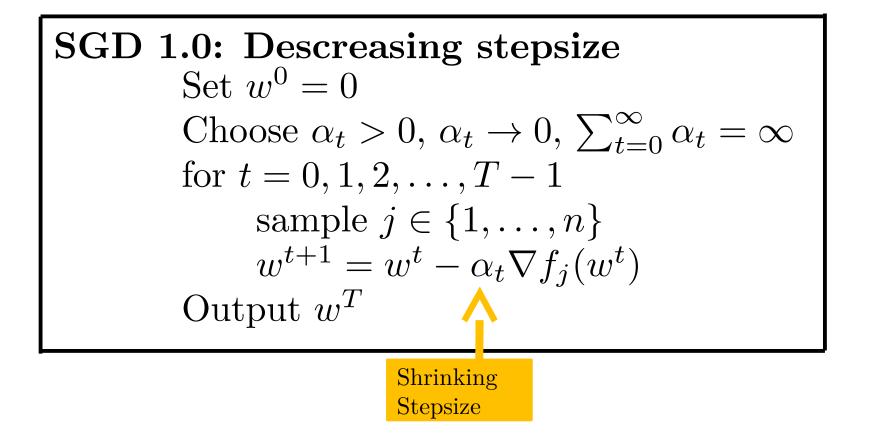
Stochastic Gradient Descent α =0.5



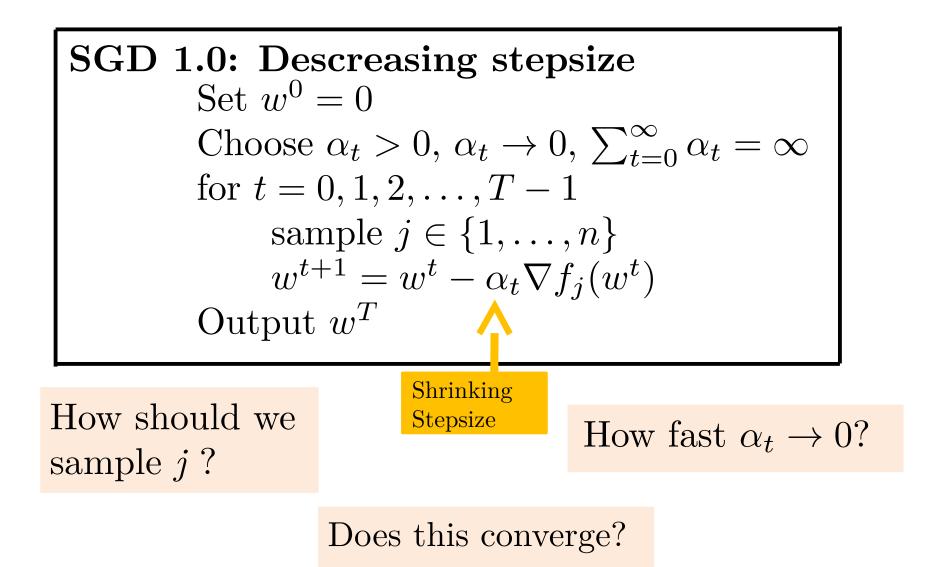
1) Start with big steps and end with smaller steps

2) Try averaging the points

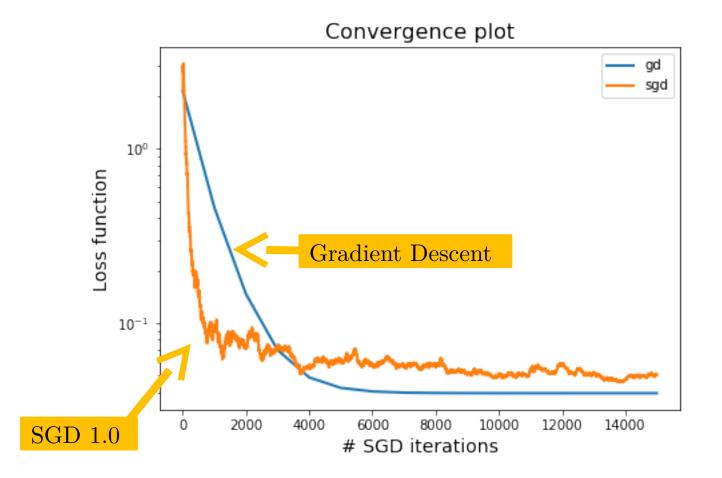
SGD shrinking stepsize



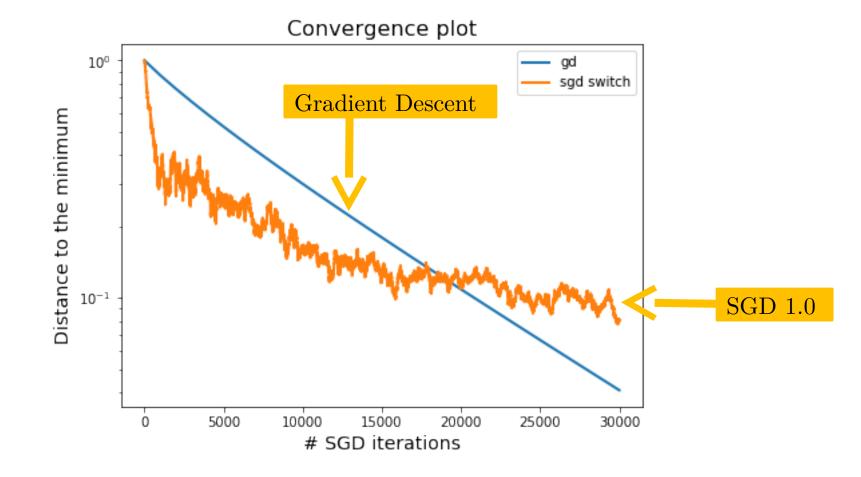
SGD shrinking stepsize



SGD with shrinking stepsize Compared with Gradient Descent



SGD with shrinking stepsize Compared with Gradient Descent



Theorem for shrinking stepsizes

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil \end{cases}$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then SGD 1.0 satifies

49

 $L_{\max} := \max_{i=1,\dots,n} L_i$

Theorem for shrinking stepsizes

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then SGD 1.0 satifies

$$\alpha^{t} = O(1/(t+1))$$

 $L_{\max} := \max_{i=1,\dots,n} L_i$

$$\mathbb{E}\|w^{t} - w^{*}\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t} + \frac{16}{e^{2}} \frac{[\mathcal{K}]^{2}}{t^{2}} \|w^{0} - w^{*}\|^{2}$$

$$O\left(\frac{1}{e^{2}}\right)$$
Iteration complexity $O\left(\frac{1}{e^{2}}\right)$

Theorem for shrinking stepsizes

Let f be μ -strongly quasi-convex and f_i be L_i -smooth. Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then SGD 1.0 satifies

$$\alpha^{t} = O(1/(t+1))$$

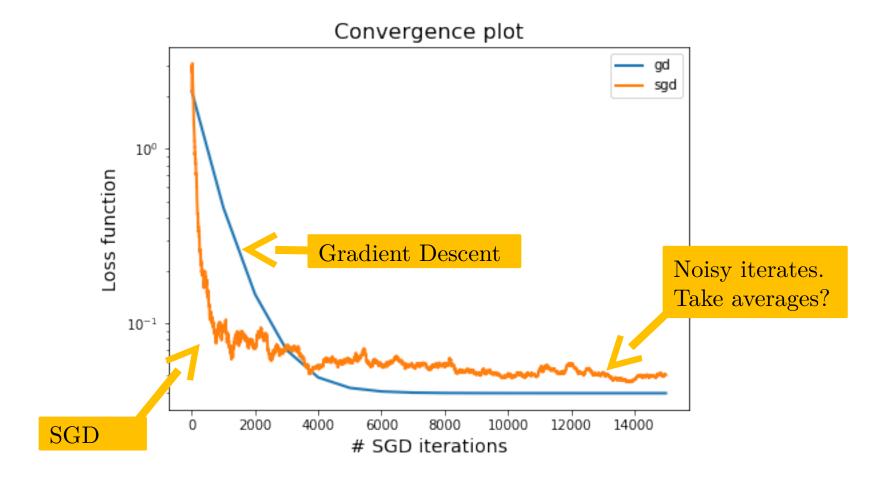
 $L_{\max} := \max_{i=1,\dots,n} L_i$

$$\mathbb{E}\|w^{t} - w^{*}\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t} + \frac{16}{e^{2}} \frac{|\mathcal{K}|^{2}}{t^{2}} \|w^{0} - w^{*}\|^{2}$$

$$O\left(\frac{1}{t}\right)$$
Iteration complexity $O\left(\frac{1}{t}\right)$

In practice often $\alpha^{t} = C/(t+1)$ where C is tuned

Stochastic Gradient Descent Compared with Gradient Descent



SGD with (late start) averaging

SGDA 1.1
Set
$$w^0 = 0$$

Choose $\alpha_t > 0, \ \alpha_t \to 0, \ \sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)Acceleration of stochastic approximation by averaging

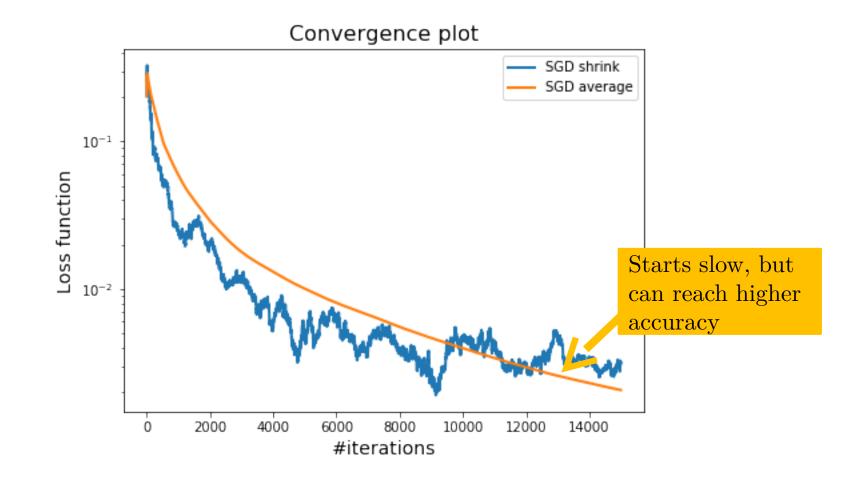
SGD with (late start) averaging

SGDA 1.1
Set
$$w^0 = 0$$

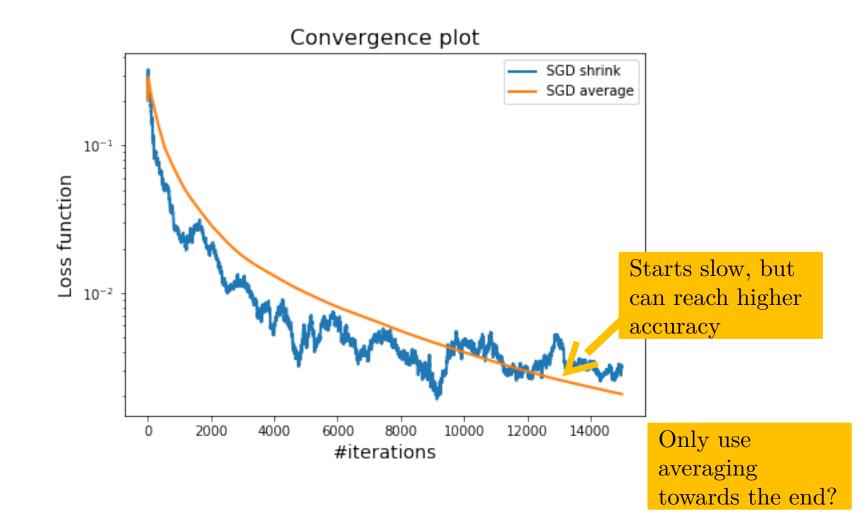
Choose $\alpha_t > 0$, $\alpha_t \to 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)
Acceleration of stochastic approximation by averaging

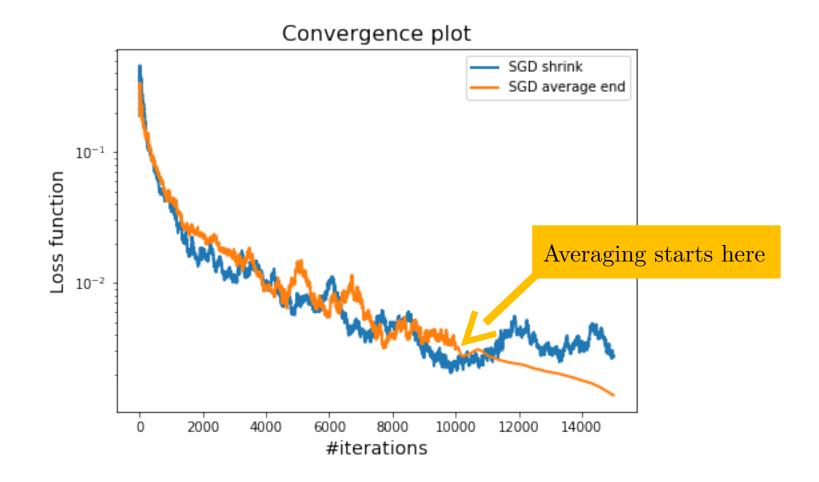
Stochastic Gradient Descent With and without averaging

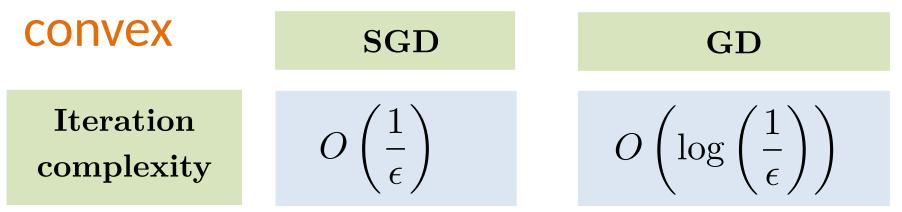


Stochastic Gradient Descent With and without averaging



Stochastic Gradient Descent Averaging the last few iterates

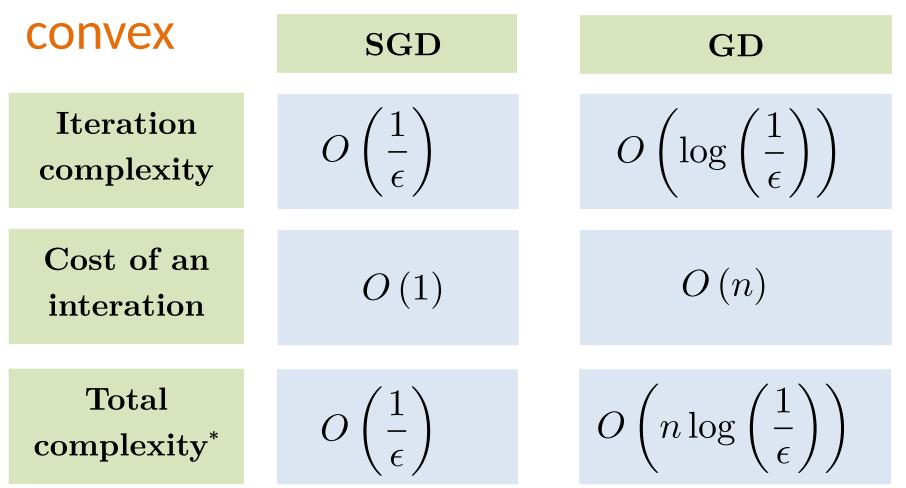




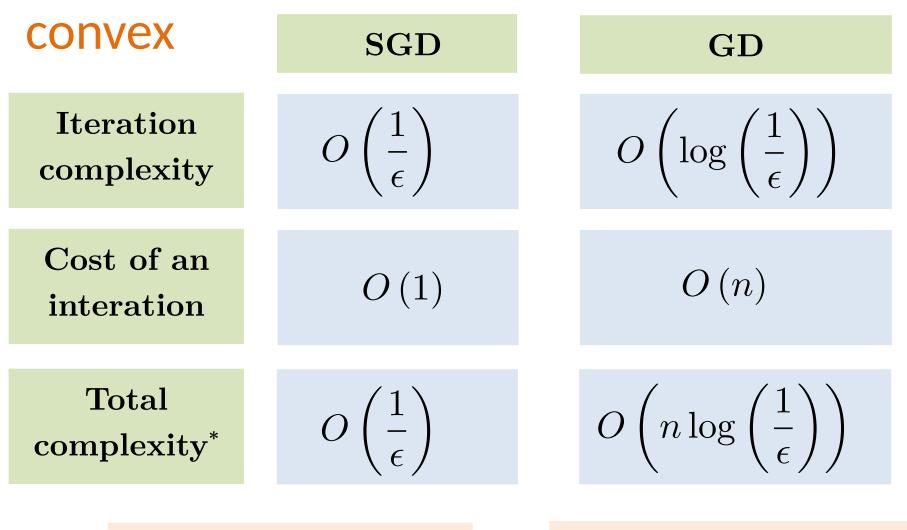
convex	SGD	GD
Iteration complexity	$O\left(\frac{1}{\epsilon}\right)$	$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$
Cost of an interation	$O\left(1 ight)$	$O\left(n ight)$

convex	SGD	\mathbf{GD}
Iteration complexity	$O\left(\frac{1}{\epsilon}\right)$	$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$
Cost of an interation	$O\left(1 ight)$	$O\left(n ight)$
Total complexity [*]	$O\left(\frac{1}{\epsilon}\right)$	$O\left(n\log\left(\frac{1}{\epsilon}\right)\right)$

61



*Total complexity = (Iteration complexity) \times (Cost of an iteration)

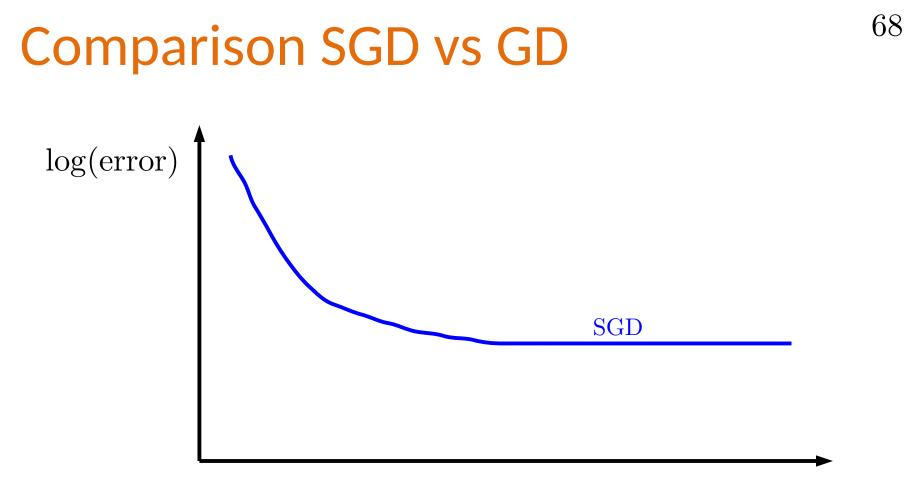


What happens if ϵ is small?

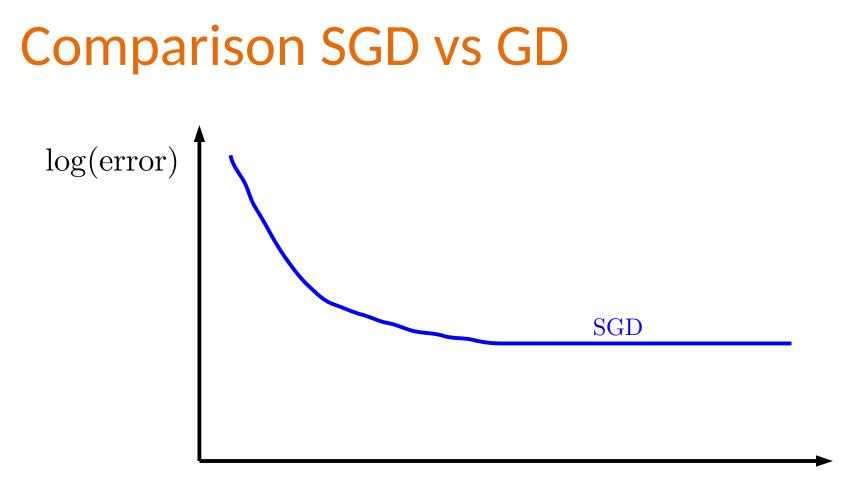
What happens if n is big?

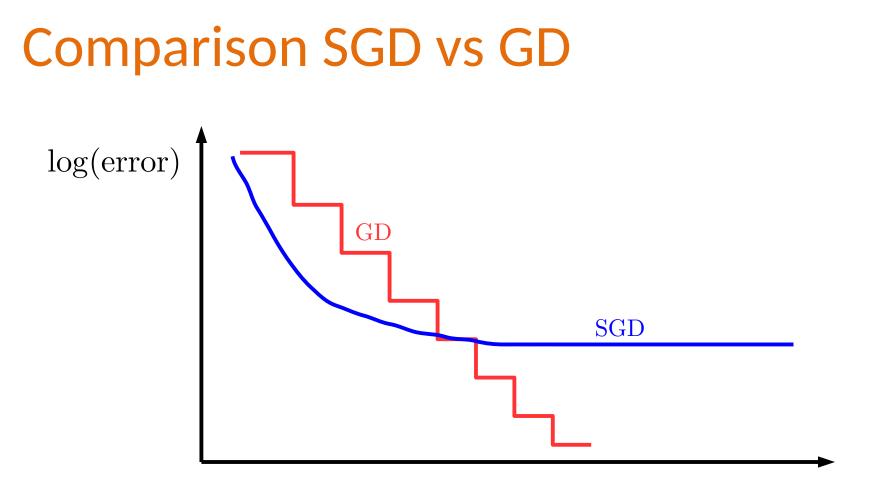
62

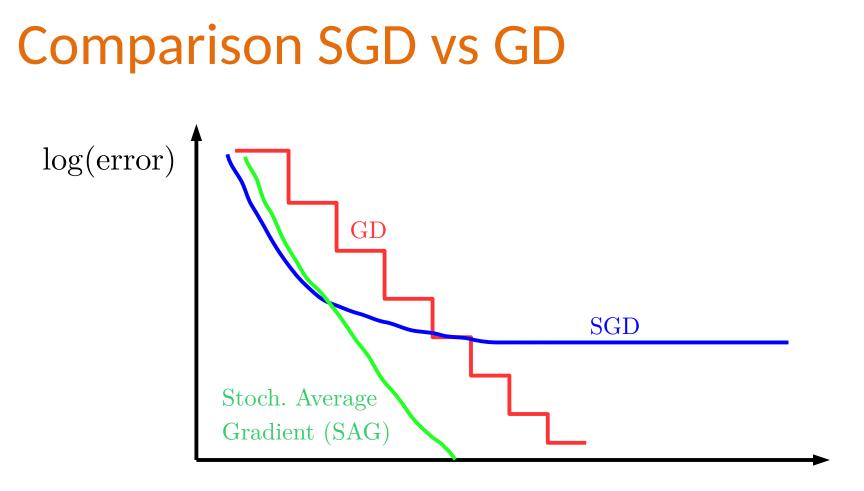
*Total complexity = (Iteration complexity) \times (Cost of an iteration)



time







time

Practical SGD for Sparse Data

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^t - \alpha_t \left(\ell'(\langle w^t, x^i \rangle, y^i) x^i + \lambda w^t \right)$$

= $(1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} + \lambda w^{t} \right)$$

= $(1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$
Rescaling
 $O(d)$ + Addition sparse
vector $O(s)$ = $O(d$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, \ z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$ $= (1 - \lambda \alpha_t) \beta_t \left(z^t - \frac{\alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t) \beta_t} x^i \right)$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$ 78

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= \underbrace{(1 - \lambda\alpha_t)\beta_t}_{\beta_{t+1}} \underbrace{\left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i\right)}_{z^{t+1}}$$

$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$

$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

Why Machine Learners Like SGD

Why Machine Learners like SGD

Though we solve:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want to solve:

The statistical learning problem: Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD can solve the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

$$\begin{aligned} \mathbf{SGD} & \infty.0 \text{ for learning} \\ & \text{Set } w^0 = 0, \ \alpha > 0 \\ & \text{for } t = 0, 1, 2, \dots, T-1 \\ & \text{sample } (x, y) \sim \mathcal{D} \\ & \text{calculate } v_t \in \partial \ell(h_{w^t}(x), y) \\ & w^{t+1} = w^t - \alpha v_t \\ & \text{Output } \overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t \end{aligned}$$

Exercise List time! Please solve:

stoch_ridge_reg_exe
 SGD_proof_exe

Appendix