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Abstract

Lecture notes on variance reduction techniques.
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1 Introduction

Consider the following optimziation problem

w∗ = arg min
w∈Rd

1

n

n∑
i=1

fi(w) =: f(w), (1)

where f is L–smooth, λ–strongly convex and fi is convex and Li–smooth for i = 1, . . . , n. In other

words

f(y) + 〈∇f(y), w − y〉+
λ

2
||w − y||22 ≤ f(w) ≤ f(y) + 〈∇f(y), w − y〉+

L

2
||w − y||22, (2)

and

fi(w) ≤ fi(y) + 〈∇fi(y), w − y〉+
Li
2
||w − y||22, for i = 1, . . . , n. (3)

In last weeks lecture we saw that using Stochastic gradient descent (SGD) to solve (1) can converge

much faster in the early iterations as compared to the gradient descent algorithm. But in later

iterations the SGD algorithm slows down and thus struggles to reach an accurate solution. Can

we get the best of both the fast initial convergence of SGD and the steady linear convergence of

gradient descent? Yes we can! The trick is to solve SGD’s issues with variance.
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What are SGD’s issues with variance? Though the stochastic gradient is an unbiased estimator

of the gradient, it may have high variance. Indeed, to analyse SGD we had to start by imposing

the rather awkward following assumption: That there exits B > 0 such that

Ej [||∇fj(wt)||22] ≤ B2, for all iterates wt of SGD.

Even with the above assumption, we required decreasing stepsizes to gradually kill off the variance.

Yet another glaring issue with SGD is that even if we start the SGD algorithm on the solution

w∗ = w0, the method will not stop. This is because the stochastic gradients are not necessarily

zero on the solution, that is ∇fi(w∗) 6= 0 is entirly possible. While ∇f(w∗) = 0, thus gradient

descent will stop once it has reached the solution.

In these notes we set out to describe methods that fix the above issues. Our aim is to have an

iterative algorithm of the form

wt+1 = wt − αgt, (4)

where α > 0 is a stepsize and gt is an estimate of the gradient that satisfies

Unbiased: E
[
gt
]

= ∇f(wt) (5)

Reducing Variance: E
[
‖gt‖22

]
→wt→w∗ 0. (6)

Note that the

VAR
[
gt
]

= E
[
‖gt‖

]
− ‖∇f(wt)‖22.

Consequently if (6) holds, then the variance of gt also tends to zero as wt tends to w∗.

Our main tool for building an estimate of the gradient that satisfies the above will be covariates.

2 Covariates

Let x be a random variable. We say that a random variable z is a covariate of x if cov [x, z] > 0.

We can use the covariate z to build an unbiased estimator of x that has a small variance. Indeed

let

xz = x− z + E [z] ,

and note that E [xz] = E [x] . Furthermore

VAR [xz] = VAR [x] + VAR [z]− 2 cov [x, z] .

Consequently if cov [x, z] is sufficiently large, then VAR [xz] is small. We can build an estimate of

the gradient with reduced variance by finding covariates for the stochastic gradient.

3 The Original Stochastic Variance Reduced (SVRG) method and

proof

Let wk ∈ Rd be our current iterate and let w̃t ∈ Rd be a reference point. If wk is sufficiently close

to w̃t it is reasonable to expect that ∇fi(wk) and ∇fi(w̃t) are close (and are thus covariates) for
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every i = 1, . . . n. Consequently, if i ∈ {1, . . . , n} is sampled uniformly then

gk = ∇fi(wk)−∇fi(w̃t) +∇f(w̃t), (7)

is an unbiased estimate of the gradient with reduced variance.

Before convergence, we need the following three Lemmas.

Lemma 1 If f is an L–smooth function then

f(y − 1

L
∇f(y))− f(y) ≤ − 1

2L
∇f(y). (8)

Proof: Setting w = y − 1
L∇f(y) in the right hand of (2) gives

f(y − 1

L
∇f(y))− f(y) ≤ 〈∇f(y),− 1

L
∇f(y)〉+

L

2
|| − 1

L
∇f(y)||22 = − 1

2L
∇f(y).

Lemma 2 If each fi is Li–smooth then

E
[
‖∇fi(w)−∇fi(w∗)‖22

]
≤ 2Lmax(f(w)− f(w∗)). (9)

Proof: Let gi(w) = fi(w) − fi(w∗) − 〈∇fi(w∗), w − w∗〉 which is Li–smooth. By the convexity

of fi we have that gi(w) ≥ 0 for all w. From (8) we have that

−gi(w)
gi(w− 1

Li
∇gi(w))≥0
≤ gi(w −

1

Li
∇gi(w))− gi(w) ≤ − 1

2Li
‖∇gi(w)‖22 ≤ −

1

2Lmax
‖∇gi(w)‖22.

By substituting gi(w) = fi(w)− fi(w∗)− 〈∇fi(w∗), w − w∗〉 the above can be re-written as

1

2Lmax
‖∇fi(w)−∇fi(w∗)‖22 ≤ fi(w)− fi(w∗)− 〈∇fi(w∗), w − w∗〉 .

Taking expectation with respect to i and using that 1
n

∑n
i=1∇fi(w∗) = ∇f(w∗) = 0 gives the

result.

Lemma 3 The second moment of the SVRG gradient estimate is bounded

E
[
‖gt‖22

]
≤ 4Lmax(f(wk)− f(w∗)) + 4Lmax(f(w̃t)− f(w∗)). (10)

Proof:

E
[
‖gk‖22

]
≤ E

[
‖∇fi(wk)−∇fi(w∗) +∇fi(w∗)−∇fi(w̃t) +∇f(w̃t)‖22

]
= 2E

[
‖∇fi(wk)−∇fi(w∗)‖22

]
+ 2‖∇fi(w∗)−∇fi(w̃t) +∇f(w̃t)‖22

≤ 2E
[
‖∇fi(wk)−∇fi(w∗)‖22

]
+ 2‖∇fi(w∗)−∇fi(w̃t)‖22

(9)

≤ 4Lmax(f(wk)− f(w∗)) + 4Lmax(f(w̃t)− f(w∗)).

Where we used in the first inequality that E
[
‖X −E [X]‖22

]
≤ E

[
‖X‖22

]
with X = ∇fi(w∗) −

∇fi(w̃t) +∇f(w̃).

Next we prove the convergence of the original SVRG method in the following theorem.
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Algorithm 1 Original SVRG

1: Parameters number of inner iterations m and learning rate α.

2: Choose w̃0.

3: for t = 1, 2, . . . do

4: w̃ = w̃t−1.

5: Compute the full gradient ∇f(w̃).

6: Set w0 = w̃.

7: for k = 0, . . . ,m− 1 do

8: Sample ik from {1, . . . , n}.
9: gk(w

k) = ∇fik(wk)−∇fik(w̃) +∇f(w̃).

10: Update wk+1 = wk − αgk(wk).

11: Choose the following reference point w̃s, according to the options below.

12: Option Last: w̃t = wm.

13: Option Average: Choose w̃t such that w̃t = 1
m

∑m−1
i=0 wi

Theorem 4 Consider the iterates of Algorithm 1. If we choose the stepsize α = 1/10Lmax and

the number of inner iterations as m = λ/Lmax then the SVRG method (7) converges according to

E[f(w̃t)]− f(w∗) ≤ 0.9t(f(w̃0)− f(w∗)). (11)

Proof: First note that

Ej

[
‖wk+1 − w∗‖22

]
= ‖wk − w∗‖22 − 2α

〈
∇f(wk), wk − w∗

〉
+ Ej

[
‖gk‖22

]
≤ ‖wk − w∗‖22 − 2α(f(wk)− f(w∗)) + Ej

[
‖gk‖22

]
(10)

≤ ‖wk − w∗‖22 − 2α(1− 2αLmax)(f(wk)− f(w∗)) + 4αLmax(f(w̃t)− f(w∗)).

Taking total expectation, summing up over k = 0 . . .m − 1 and using telescopic cancellation we

have that

E
[
||wm − w∗||22

]
≤ E

[
||w0 − w∗||22

]
− 2α(1− 2αLmax)E[

∑m−1
k=0 (f(wk)− f(w∗))]

+4mα2LmaxE
[
f(w̃t)− f(w∗)

]
.

Using that w0 = w̃t, strong convexity f(w̃t)−f(w∗) ≥ λ
2 ||w̃

t−w∗||22 and re-arranging we have that

2α(1− 2αLmax)E[
∑m−1

k=0 (f(wk)− f(w∗))] ≤ E
[
||w̃t − w∗||22

]
− E

[
||wm − w∗||22

]
+4mα2LmaxE

[
f(w̃t)− f(w∗)

]
≤ (4mα2Lmax + 2

λ)E
[
f(w̃t)− f(w∗)

]
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Re-arranging again and using Jensen’s inequality we have

E[f(
∑m−1

k=0
wk

m )]− f(w∗) ≤ 1
mE[

∑m−1
k=0 f(wk)]− f(w∗)

≤ 4mα2Lmax+2λ−1

2α(1−2αLmax)m
E
[
f(w̃t)− f(w∗)

]
=

(
2αLmax

1−2αLmax
+ 1

λα(1−2αLmax)m

)
E
[
f(w̃t)− f(w∗)

]
It now remains to substitute α = 1/10Lmax and m = 20Lmax/µ to see that

2αLmax

1− 2αLmax
+

1

λα(1− 2αLmax)m
=

2/10

1− 2/10
+

1

2(1− 2/10)
=

2

8
+

5

8
=

7

8
.

4 Modern version and proof: Free-SVRG

The original SVRG method in Algorithm 1 tends not to work well because the inner iterates are

always being reset to the reference point (line 6) and because the number of inner iterates tends

to be too big (m = L/µ � 1). Rather, in practice it seems that not resetting the inner iterates

and using m = n tends to work better. Here we present a version of SVRG that does just that,

see Algorithm 2.

To declutter the notation, we define for a given step size γ > 0:

Sm
def
=

m−1∑
i=0

(1− γµ)m−1−i and αt
def
=

(1− γµ)m−1−t

Sm
, for t = 0, . . . ,m− 1. (12)

Algorithm 2 Free-SVRG

Parameters inner-loop length m, step size γ, and αt defined in (12)

Initialization w0 = xm0 ∈ Rd

for s = 1, 2, . . . do

x0s = xms−1
for t = 0, 1, . . . ,m− 1 do

Sample i ∼ 1
n

gts = ∇fi(xts)−∇fi(ws−1) +∇f(ws−1)

xt+1
s = xts − γgts

ws =
∑m−1

t=0 αtx
t
s

Theorem 5 Consider the setting of Algorithm 2 and the following Lyapunov function

φs
def
= ‖xms − x∗‖22 + C(f(ws)− f(x∗)) where C

def
= 8γ2LmaxSm. (13)
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Let fi be Li–smooth and f be µ–strongly convex with

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖22. (14)

If γ ≤ 1
6Lmax

, then

E [φs] ≤ βsφ0, where β = max
{

(1− γµ)m, 12
}
. (15)

Proof:

Et
[
‖xt+1

s − x∗‖22
]

= Et
[
‖xts − x∗ − γgts‖22

]
= ‖xts − x∗‖22 − 2γEt

[
gts
]>

(xts − x∗) + γ2Et
[
‖gts‖22

]
(10)

≤ ‖xts − x∗‖22 − 2γ∇f(xts)
>(xts − x∗)

+2γ2
[
2Lmax(f(xts)− f(x∗)) + 2Lmax(f(ws−1)− f(x∗))

]
(14)

≤ (1− γµ) ‖xts − x∗‖22 − 2γ(1− 2γLmax)
(
f(xts)− f(x∗)

)
+4γ2Lmax(f(ws−1)− f(x∗)). (16)

Note that since γ ≤ 1
6Lmax

and Lmax ≥ 0, we have that γ ≤ 1
2µ , and consequently (1 − γµ) > 0.

Thus by iterating (16) over t = 0, . . . ,m−1 and taking the expectation, since x0s = xms−1, we obtain

E
[
‖xms − x∗‖22

]
≤ (1− γµ)mE

[
‖xms−1 − x∗‖22

]
−2γ(1− 2γLmax)

m−1∑
t=0

(1− γµ)m−1−tE
[
f(xts)− f(x∗)

]
+4γ2LmaxE [f(ws−1)− f(x∗)]

m−1∑
t=0

(1− γµ)m−1−t

(12)+(13)
= (1− γµ)mE

[
‖xms−1 − x∗‖22

]
−2γ(1− 2γLmax)Sm

m−1∑
t=0

αtE
[
f(xts)− f(x∗)

]
+
C

2
E [f(ws−1)− f(x∗)] . (17)

Since f is convex, we have by Jensen’s inequality that

f(ws)− f(x∗) = f(

m−1∑
t=0

αtx
t
s)− f(x∗) ≤

m−1∑
t=0

αt(f(xts)− f(x∗)). (18)

Consequently,

E [f(ws)− f(x∗)]
(13)+(18)

≤
m−1∑
t=0

αtE
[
(f(xts)− f(x∗))

]
. (19)
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As a result,

E [φs]
(17)+(19)

≤ (1− γµ)mE
[
‖xms−1 − x∗‖22

]
+
C

2
E [f(ws−1)− f(x∗)]

−2γ(1− 6γLmax)Sm

m−1∑
t=0

αtE
[
(f(xts)− f(x∗))

]
.

Since γ ≤ 1
6Lmax

, the above implies

E [φs] ≤ (1− γµ)mE
[
‖xms−1 − x∗‖22

]
+
C

2
E [f(ws−1)− f(x∗)]

≤ βE [φs−1] ,

where β = max{(1− γµ)m, 12}.
Moreover, if we set ws = xts with probability αt, for t = 0, . . . ,m − 1, the result would still

hold. Indeed (18) would hold with equality and the rest of the proof would follow verbatim.
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