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Tutorials: Quentin Bertrand, Nidham Gazagnadou
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Core Info
● Where : Telecom ParisTech
● Location :  Telecom Paris, Amphi Estaunie (until 21/10/19), 

Amphi OD01 (18/11/19) then Amphi OB01 (25/11/19 -- 
27/01/20) in Telecom Palaiseau

● ECTS : 5 ECTS
● Volume : 40h totally 13 weeks of classes (including exam)
● When : 16/09 -- 21/10 and 18/11/19 -- 27/01/20
● Online: All teaching materials on moodle:    

https://moodle.polytechnique.fr/
● Students upload their projects / reports via moodle too.
● All students **must** be registered on moodle.



Evaluation

Evaluation
● Labs: 2 to 3 Labs with Jupyter graded (30% of the final 

grade).
● Project. Evaluate 'jupyter' notebooks. 30% of final 

grade.
● Exam. 3h Exam (40% of the final grade).



Course Outline

Part 1: Robert Gower

● 16/09/19  Foundations and the empirical risk problem, GD
● 23/09/19  Proximal gradient desent methods
● 30/09/19  Lab 1st order method. Bring laptops!
● 07/10/19  Stochastic gradient descent
● 14/10/19  Stochastic variance reduction method
● 21/10/19  Online methods and scale invariant methods
● 18/11/19  Lab 1st stochastic methods.  Bring laptops!



An Introduction to 
Supervised Learning



References classes today

Convex Optimization, 
Stephen Boyd

Pages 67 to 79

Understanding Machine 
Learning: From Theory to 
Algorithms

Chapter 2
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Find mapping  h that assigns the “correct” target to each input 

Is There a Cat in the Photo?

Yes

No

x: Input/Feature y: Output/Target
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Labeled Data: The training set

Learning 
Algorithm

 -1

y= -1 means no/false



Example: Linear Regression for 
Height

Sex        0

Age       30

Height    1,72 cm

Sex        1

Age       70

Height    1,52 cm

 Labelled data

Male = 0
Female = 1



Example Hypothesis: Linear Model

Example: Linear Regression for 
Height

Sex        0

Age       30

Height    1,72 cm

Sex        1

Age       70

Height    1,52 cm

 Labelled data

Male = 0
Female = 1



Example Training Problem:

Example Hypothesis: Linear Model

Example: Linear Regression for 
Height

Sex        0

Age       30

Height    1,72 cm

Sex        1

Age       70

Height    1,52 cm

 Labelled data

Male = 0
Female = 1



Linear Regression for Height

Age

Height Sex = 0



Linear Regression for Height

The Training 
Algorithm

Age

Height Sex = 0



Linear Regression for Height

The Training 
Algorithm

Age

Height

Other options 
aside from linear?

Sex = 0



Parametrizing the Hypothesis
H
e
i
g
h
t

Age

Linear:

Polinomial:

Age

H
e
i
g
h
t

Neural Net:
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Loss Functions

Why a Squared
Loss?

Loss Functions

The Training Problem

Typically a 
convex function
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Choosing the Loss Function

Quadratic Loss

Binary Loss

Hinge Loss

EXE: Plot the binary and hinge loss function in when           

y=1 in all 
figures



Loss Functions

Is a notion of Loss enough? 

What happens when we do not have enough data?



Loss Functions
The Training Problem

Is a notion of Loss enough? 

What happens when we do not have enough data?
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Fitting 1st order polynomial 
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Overfitting and Model Complexity 

Fitting 9th order polynomial 
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Regularizor Functions

General Training Problem

Regularization

Exe:

Goodness of fit, 
fidelity term ...etc

Penalizes 
complexity

Controls tradeoff 
between fit and 
complexity



Overfitting and Model Complexity

Fitting kth order polynomial 



Overfitting and Model Complexity

Fitting kth order polynomial 

For  big enough, λ
the solution is a 2nd 
order polynomial



Linear hypothesis

Exe: Ridge Regression

Ridge Regression 

L2 loss

L2 regularizor



Linear hypothesis

Exe: Support Vector Machines

SVM with soft margin

Hinge loss

L2 regularizor



Linear hypothesis

Exe: Logistic Regression

Logistic Regression

Logistic loss

L2 regularizor



The Machine Learners Job
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The Statistical Learning Problem:
The hard truth

Do we really care if the loss 
is small on the known labelled data paris (xi,yi) ? Nope 

We really want to have a small loss on new unlabelled 
Observations!
 
Assume data sampled                 where     is an unknown 
distribution



The statistical learning problem:
Minimize the expected loss over an unknown expectation 

The Statistical Learning Problem:
The hard truth

Variance of sample mean:

2



Optimization for Datascience 

Convexity, Smoothness and the Gradient 
Method

Robert M. Gower



Today we will 

● Lecture: Basic theory and exercises on convexity, 
smoothness, strong convexity and convergence proofs

● Exercises lists:
complexity_rates_exe
exe_convexity_smoothness
ridge_reg_exe



References for todays class

Yurii Nestorov (2004)
Introductory Lectures on 
Convex Programming

Chapter 1 and Section 2.1

Free  pdf online !



Solving the Finite Sum Training 
Problem



A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms



A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms

How to solve 
unconstrained 
optimization?



The Training Problem



Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Logistic Regression
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A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?
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universal optimization 
method. The “no free 
lunch” of Optimization 
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  Optimal point

Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Convex and 
smooth training 
problems

No! There is no 
universal optimization 
method. The “no free 
lunch” of Optimization 

Specialize

Logistic Regression



Optimization is hard (in general)

Need 
assumptions!
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Data science methods most used 
(Kaggle 2017 survey)

Convex 
Optimization 

problems



Main assumption
Nice property

All stationary points are 
global minima

Lemma: Convexity => Nice property 

PROOF: 



Convexity

Global minimizer = 
Stationary point = 
Local minimizerw



Convexity: First derivative



Convexity: Second derivative



Convexity: Examples

Norms and squared norms:

Negative log and logistic:

Proof is an 
exercise!

Hinge loss

Negatives log determinant, exponentiation … etc



Smoothness



Smoothness



Smoothness

EXE: Using that

Show that



Smoothness: Examples

Convex quadratics:

Logistic:

Proof is an 
exercise!

Trigonometric:



Important consequences of 
Smoothness

y



Smoothness: Convex 
counter-example

Does not fit. 
Not smooth

We’ll see how to handle 
this problem next class



Insight into Gradient Descent

Minimizing the upper bound in w we get:
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Insight into Gradient Descent

Minimizing the upper bound in w we get:

A gradient 
descent step !

EXE:    If f is L-smooth, show that 



Strong convexity

Hinge loss + L2

Quadratic lower bound



Strong convexity

EXE: Using that

Show that



Convergence GD strongly convex 

Theorem

Let f be m-strongly convex and L-smooth. 

Where

EXE: Solve the questions in complexity_rates_exe.pdf           



Gradient Descent Example: logistic 



Proof Convergence GD strongly 
convex + smooth Proof on board

Now use that

Now smoothness 
gives

And strong 
convexity gives



Convergence GD for smooth + convex

Theorem

Let f be convex and L-smooth. 

Where



Co-coercivity

Convex and Smooth Properties

Proof 



Co-coercivity

Convex and Smooth Properties
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Use convexity Use smoothness
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Use convexity Use smoothness



Co-coercivity

Convex and Smooth Properties

Proof 
Use convexity Use smoothness

Then minimize in z and insert back in minima. 



Co-coercivity

Proof of GD smooth + convex theorem

Combine with 
convexity

Inserting above 
show decreasing

Use co-coercivity

smoothness gives



Acceleration and lower bouds



The Accelerated gradient method



The Accelerated gradient method

Weird 
extrapolation, 
but it works



Convergence lower bounds 
strongly convex

Theorem (Nesterov)

such that

Yuri Nesterov (1998), Springer Publishing,  Introductory Lectures on Convex 
Optimization: A Basic Course 

For any optimization algorithm where

Accelerated 
gradient has 
this rate
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