Optimization for Data Science

Introduction into supervised learning

Lecturer: Robert M. Gower & Alexandre Gramfort

Tutorials: Quentin Bertrand, Nidham Gazagnadou

Master 2 Data Science, Institut Polytechnique de Paris (IPP)

Core Info

- Where : Telecom ParisTech
- Location : Telecom Paris, Amphi Estaunie (until 21/10/19), Amphi OD
01 (18/11/19) then Amphi OB
01 (25/11/19 -- 27/01/20) in Telecom Palaiseau
- **ECTS** : 5 ECTS
- Volume : 40h totally 13 weeks of classes (including exam)
- When : 16/09 -- 21/10 and 18/11/19 -- 27/01/20
- Online: All teaching materials on moodle: https://moodle.polytechnique.fr/
- Students upload their projects / reports via moodle too.
- All students **must** be registered on moodle.

Evaluation

Evaluation

- Labs: 2 to 3 Labs with Jupyter graded (30% of the final grade).
- **Project**. Evaluate 'jupyter' notebooks. 30% of final grade.
- Exam. 3h Exam (40% of the final grade).

Course Outline

Part 1: Robert Gower

- 16/09/19 Foundations and the empirical risk problem, GD
- 23/09/19 Proximal gradient desent methods
- 30/09/19 Lab 1st order method. Bring laptops!
- 07/10/19 Stochastic gradient descent
- 14/10/19 Stochastic variance reduction method
- 21/10/19 Online methods and scale invariant methods
- 18/11/19 Lab 1st stochastic methods. Bring laptops!

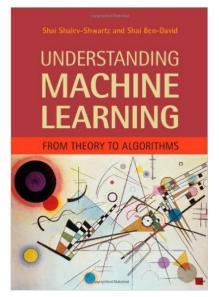
An Introduction to Supervised Learning

References classes today

Chapter 2

Pages 67 to 79

Understanding Machine Learning: From Theory to Algorithms

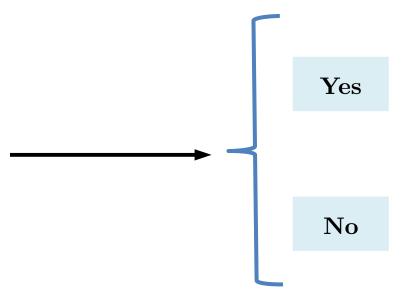


Convex Optimization, Stephen Boyd

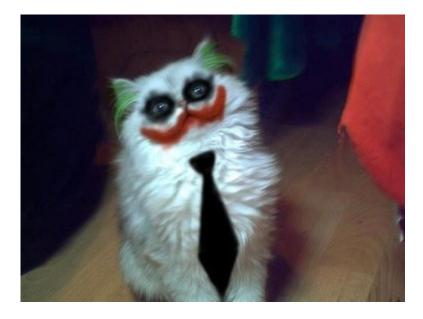
> Stephen Boyd and Lieven Vandenberghe

Convex Optimization

CAMBRIDGE



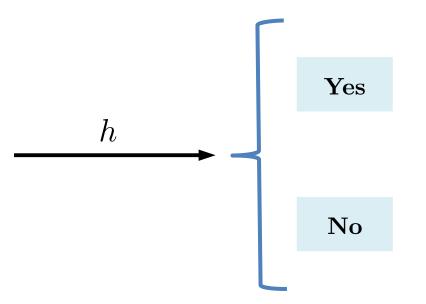
Yes



Yes

 \mathbf{No}

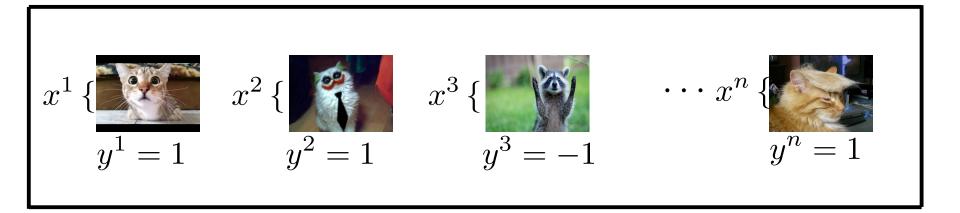
Yes

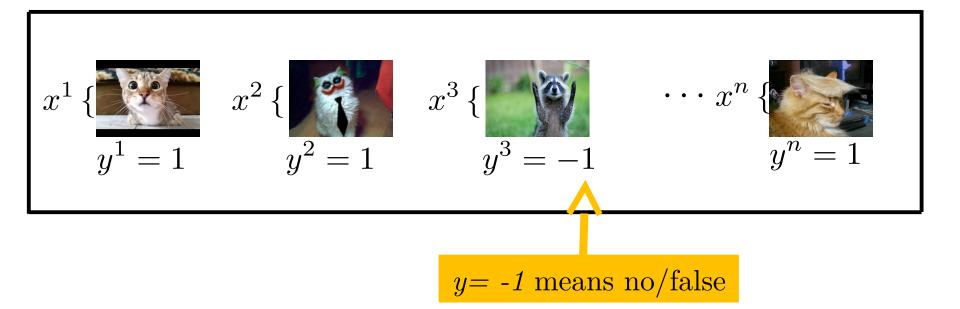


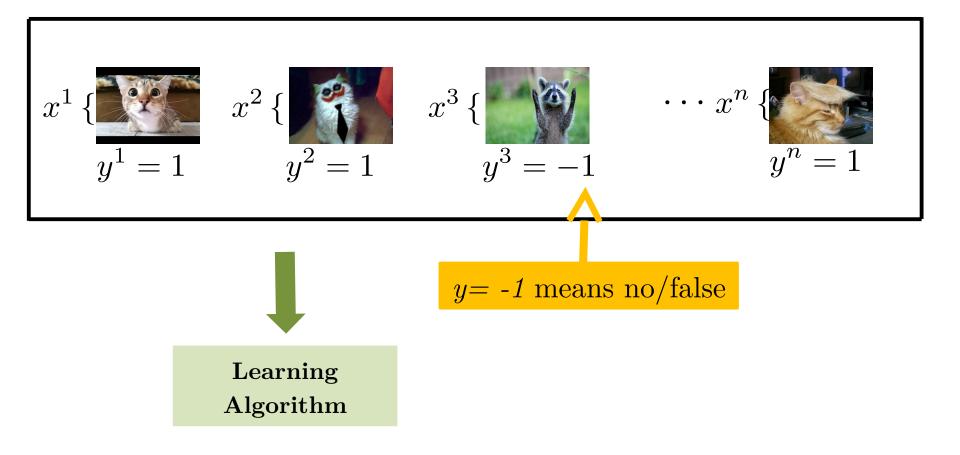
x: Input/Feature

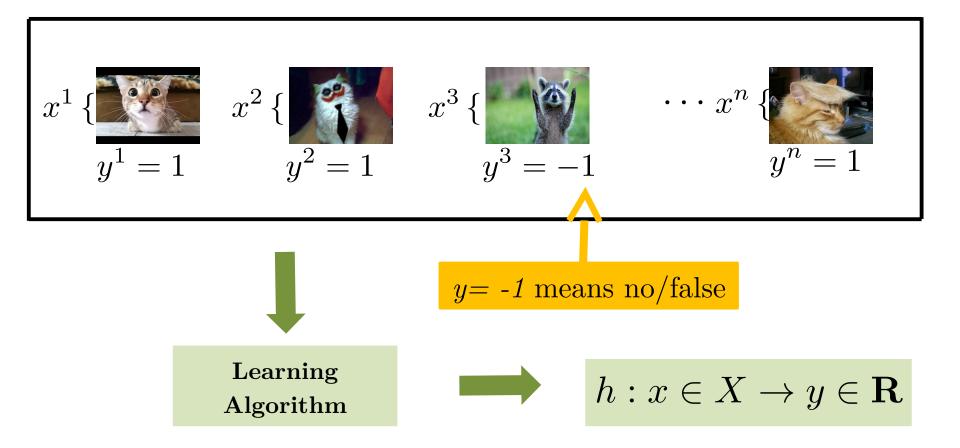
y: Output/Target

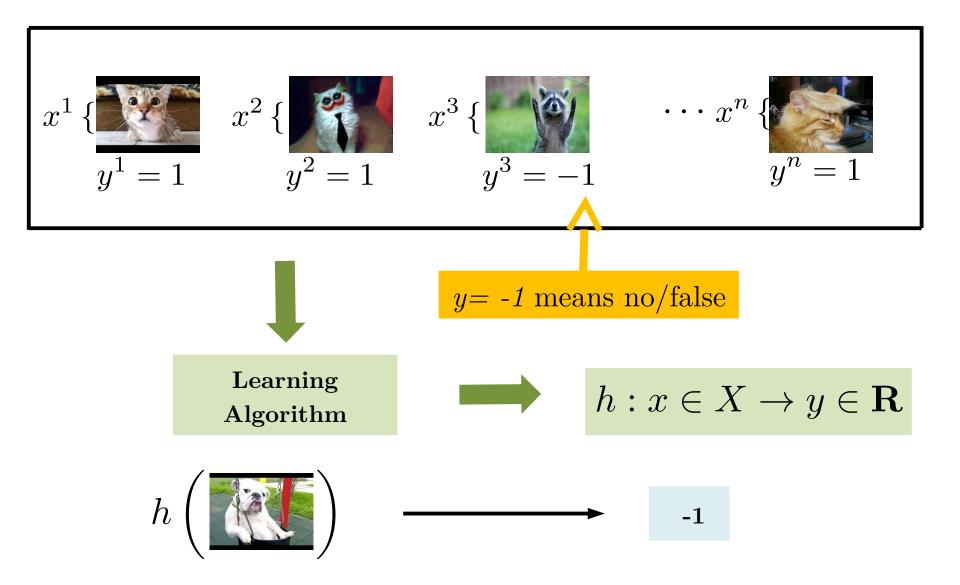
Find mapping h that assigns the "correct" target to each input $h: x \in \mathbf{R}^d \longrightarrow y \in \mathbf{R}$

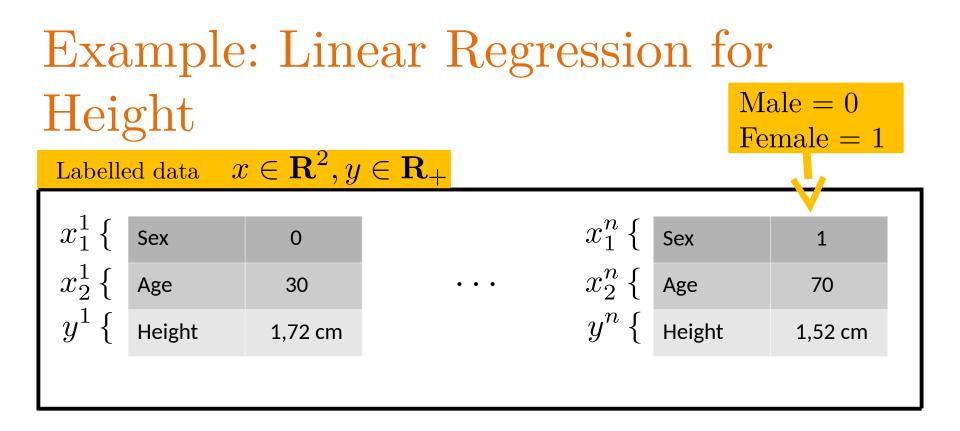


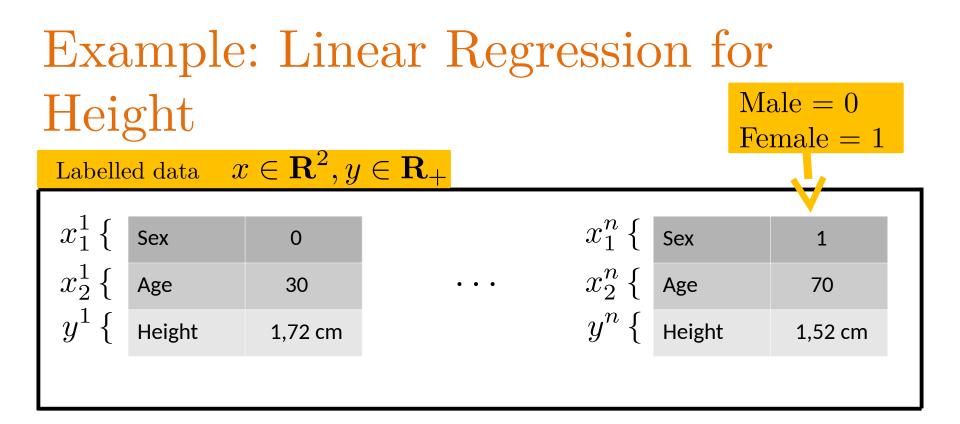




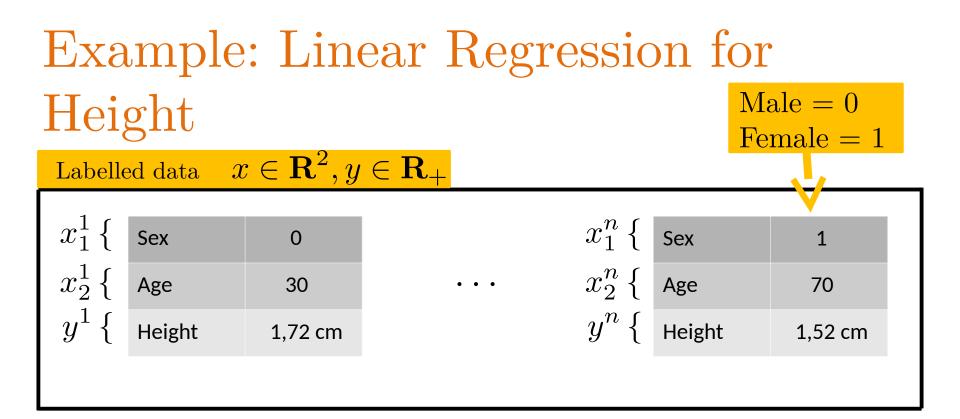






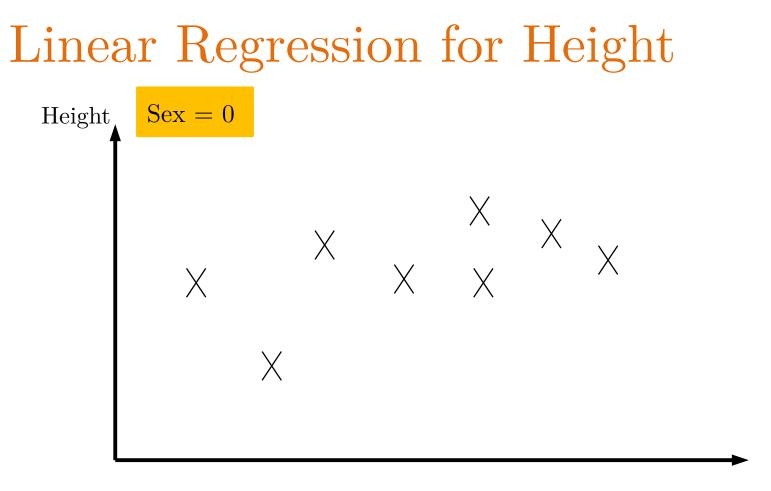


Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

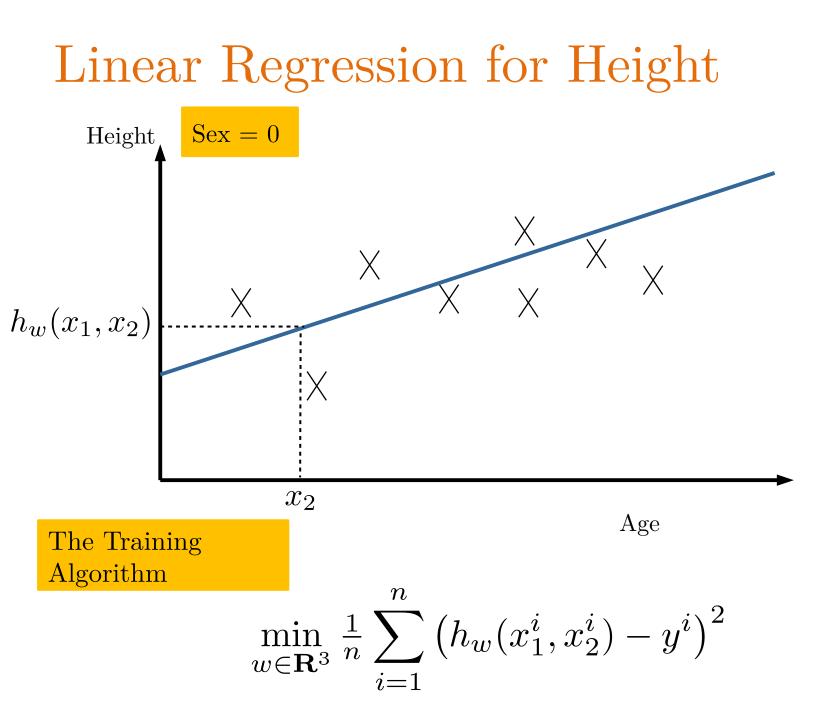


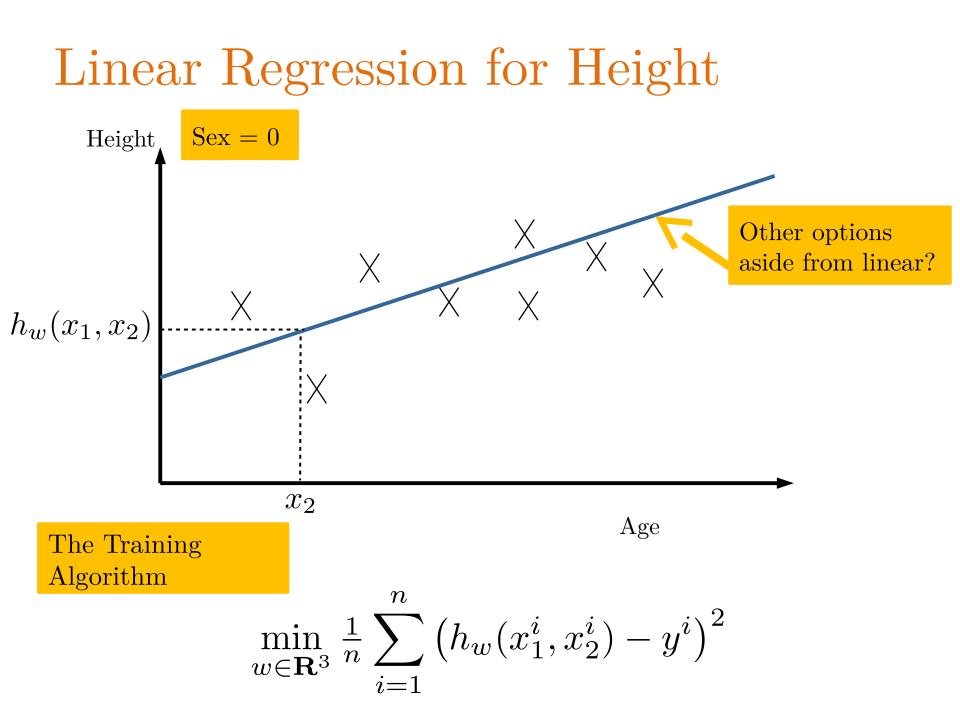
Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

Example Training Problem: $\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^n \left(h_w(x_1^i, x_2^i) - y^i \right)^2$

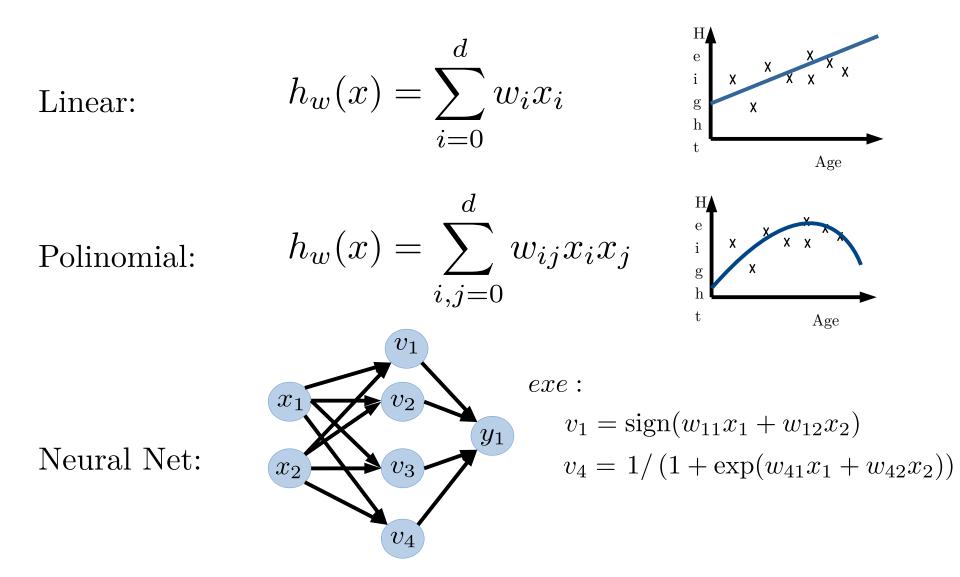


Age





Parametrizing the Hypothesis



$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \text{Why a Squared} \\ \text{Loss?}$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \qquad \text{Why a Squared} \\ \underset{\text{Loss?}}{\text{Loss?}}$$

Let
$$y_h := h_w(x)$$

Loss Functions

$$\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$$

 $(y_h, y) \to \ell(y_h, y)$

The Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$$

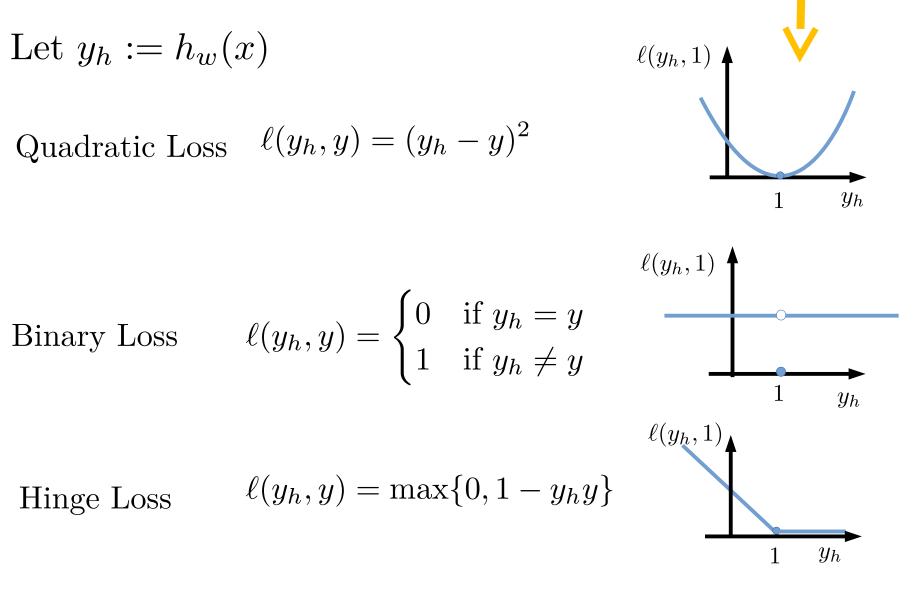
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \qquad \text{Why a Squared} \\ \underset{\text{Loss?}}{\text{Loss?}}$$

Let
$$y_h := h_w(x)$$

Loss Functions $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ $(y_h, y) \to \ell(y_h, y)$ Typically a convex function

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

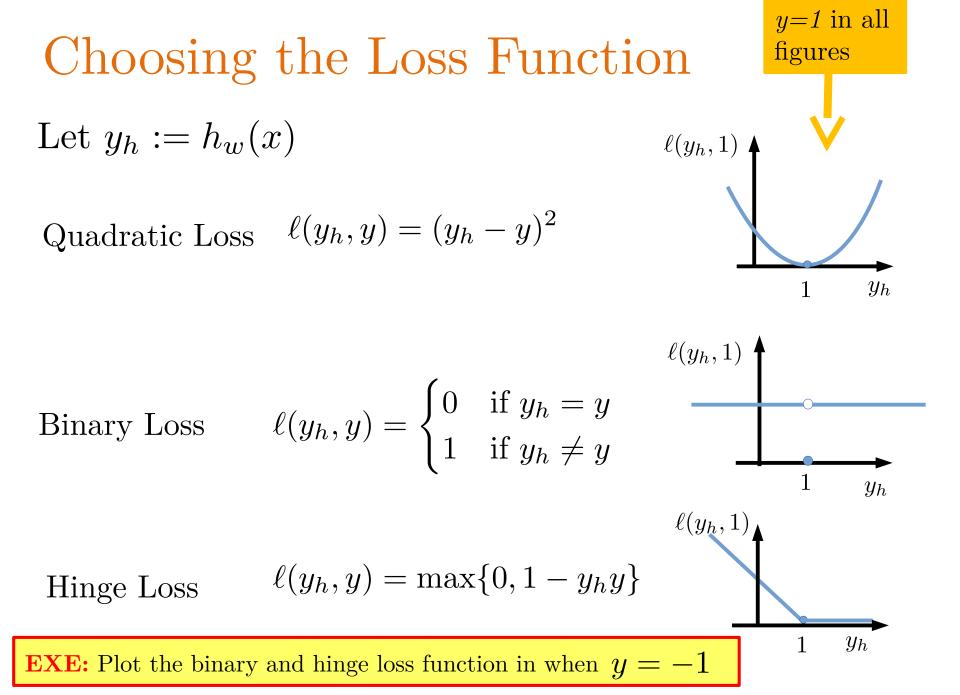
Choosing the Loss Function Let $y_h := h_w(x)$ $\ell(y_h, 1)$ Quadratic Loss $\ell(y_h, y) = (y_h - y)^2$ y_h 1 $\ell(y_h, 1)$ $\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$ Binary Loss 1 y_h $\ell(y_h, 1)$ $\ell(y_h, y) = \max\{0, 1 - y_h y\}$ Hinge Loss y_h 1



y=1 in all

figures

Choosing the Loss Function



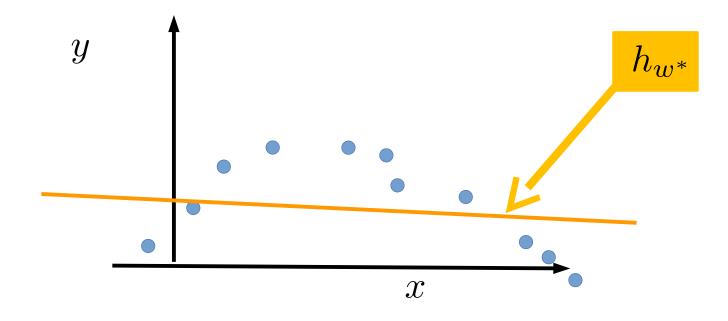
Is a notion of Loss enough?

What happens when we do not have enough data?

The Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$$

Is a notion of Loss enough?

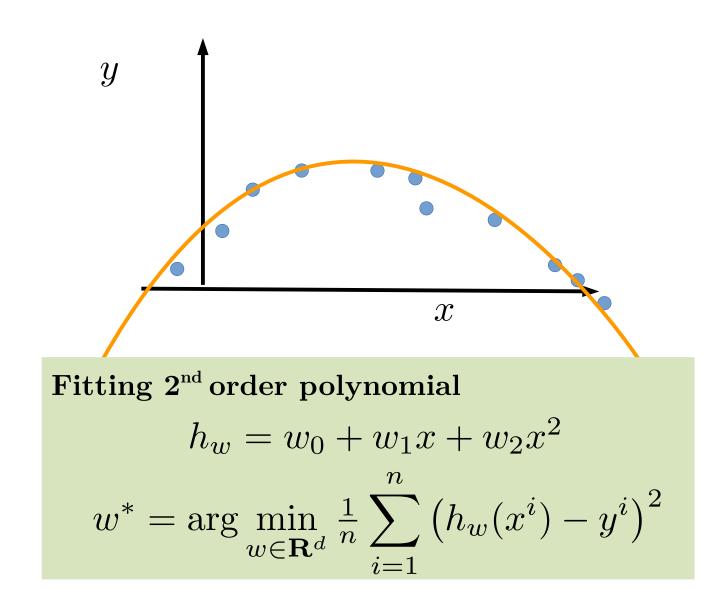
What happens when we do not have enough data?

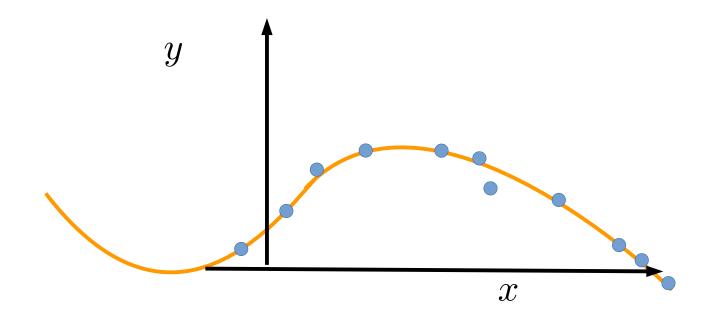


Fitting 1st order polynomial

$$h_w = \langle w, x \rangle$$

 $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

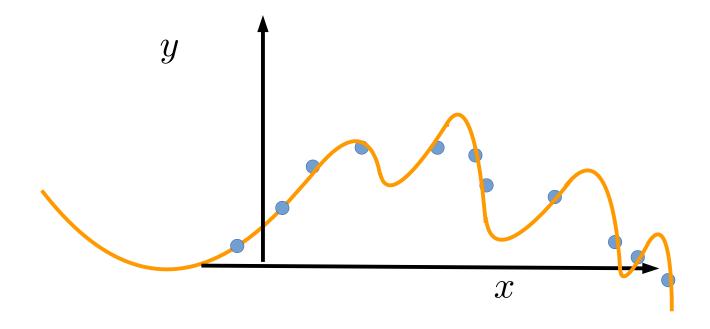




Fitting 3rd order polynomial

$$h_w = \sum_{i=0}^3 w_i x^i$$

 $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

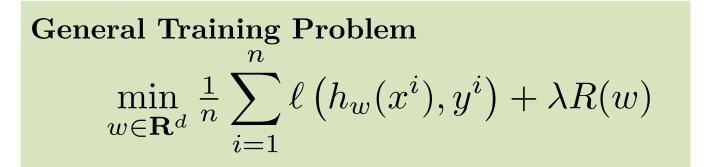


Fitting 9th order polynomial

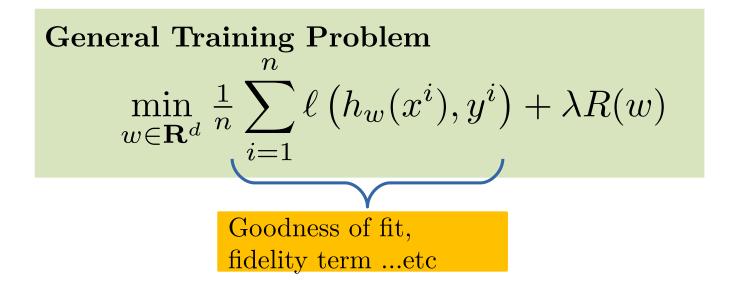
$$h_w = \sum_{i=0}^9 w_i x^i$$

$$w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$

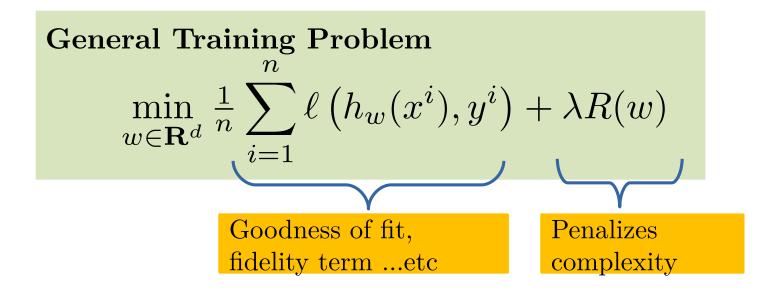
Regularizor Functions $R: \mathbf{R}^d \to \mathbf{R}_+$ $w \to R(w)$

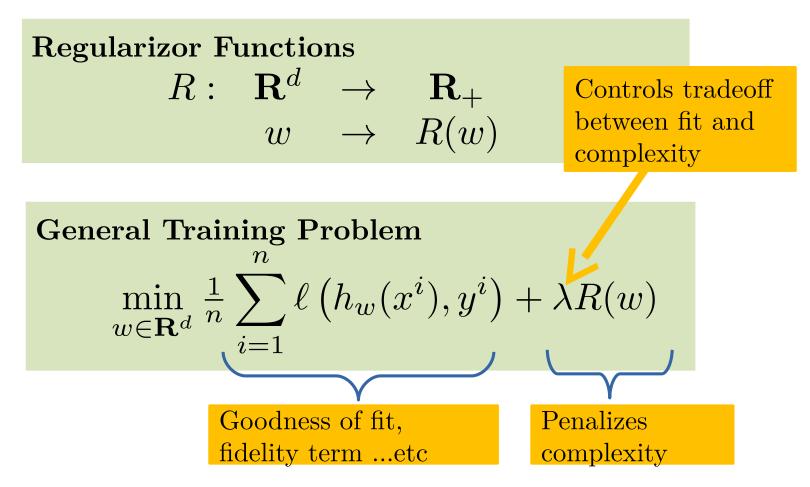


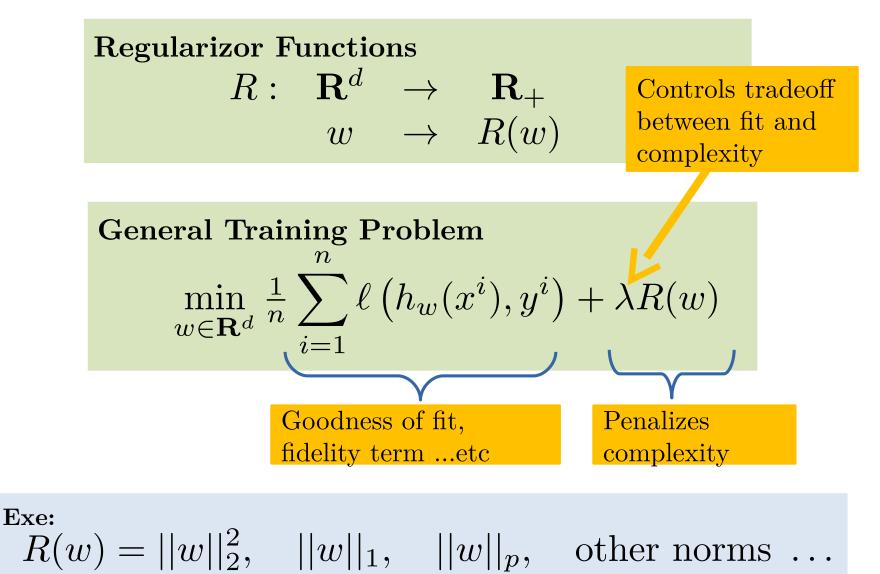
Regularizor Functions $R: \mathbf{R}^d \to \mathbf{R}_+$ $w \to R(w)$



Regularizor Functions $R: \mathbf{R}^d \to \mathbf{R}_+$ $w \to R(w)$

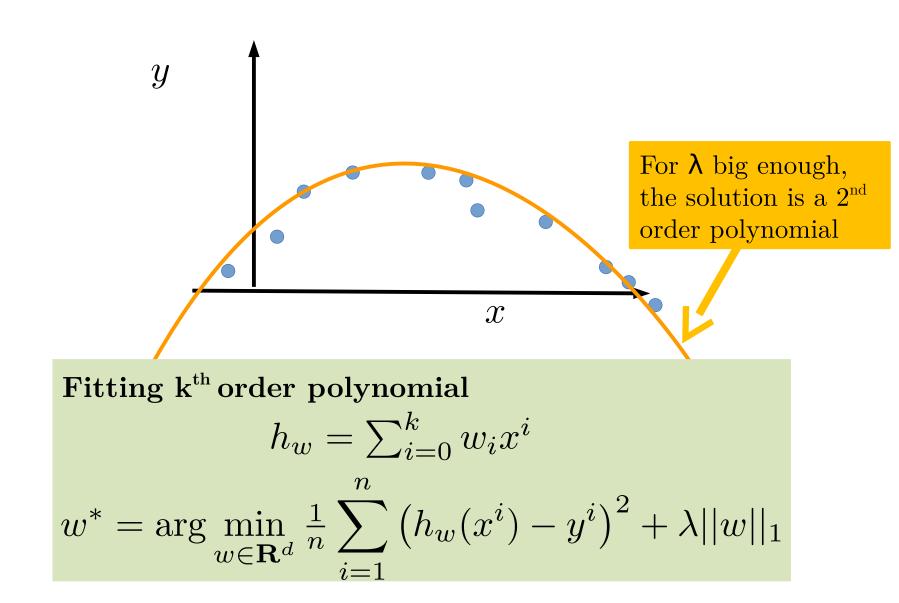






Overfitting and Model Complexity \boldsymbol{y} \mathcal{X} Fitting kth order polynomial $h_w = \sum_{i=0}^k w_i x^i$ n $w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} (h_w(x^i) - y^i)^2 + \lambda ||w||_1$ i-1

Overfitting and Model Complexity



Exe: Ridge Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

L2 regularizor $R(w) = ||w||_2^2$

L2 loss
$$\ell(y_h, y) = (y_h - y)^2$$

Ridge Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle w, x^i \rangle)^2 + \lambda ||w||_2^2$$

Exe: Support Vector Machines

Linear hypothesis $h_w(x) = \langle w, x \rangle$

$$L^{2}$$
 regularizor
 $R(w) = ||w||_{2}^{2}$

Hinge loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

SVM with soft margin
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle w, x^i \rangle\} + \lambda ||w||_2^2$$

Exe: Logistic Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

L2 regularizor

$$R(w) = ||w||_2^2$$

Logistic loss $\ell(y_h, y) = \ln(1 + e^{-yy_h})$

Logistic Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(2) Choose a parametrization for hypothesis: $h_w(x)$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

(4) Solve the training problem: $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$

(5) Test and cross-validate. If fail, go back a few steps

The Statistical Learning Problem: The hard truth

Do we really care if the loss $\ell(h_w(x^i), y^i)$ is small on the **known** labelled data parts (x^i, y^i) ? Nope

We really want to have a small loss on new unlabelled Observations!

Assume data sampled $(x, y) \sim \mathcal{D}$ where \mathcal{D} is an unknown distribution

The Statistical Learning Problem: The hard truth

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

Variance of sample mean:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell\left(h_w(x),y\right)\right] - \frac{1}{n}\sum_{i=1}^n \ell\left(h_w(x_i),y_i\right)\right|^2 = O\left(\frac{1}{n}\right)$$

Optimization for Datascience

Convexity, Smoothness and the Gradient Method

Robert M. Gower

Today we will

- Lecture: Basic theory and exercises on convexity, smoothness, strong convexity and convergence proofs
- Exercises lists:

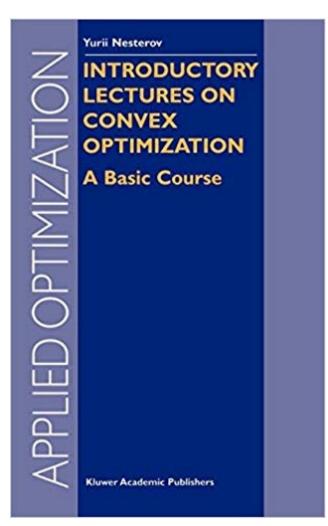
complexity_rates_exe exe_convexity_smoothness ridge_reg_exe

References for todays class

Yurii Nestorov (2004) Introductory Lectures on Convex Programming

Chapter 1 and Section 2.1

Free pdf online !



Solving the Finite Sum Training Problem

Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

How to solve unconstrained optimization?

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

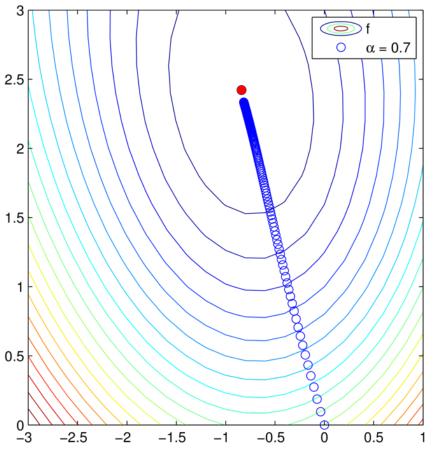
Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$
Output w^{T+1}

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d) = (862, 2)

 $\begin{array}{l} \mathbf{Logistic} \ \mathbf{Regression} \\ \min_{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y^{i} \langle w, x^{i} \rangle}) + \lambda ||w||_{2}^{2} \end{array}$



Can we prove that this always works?

Gradient Descent Example 0 $\alpha = 0.7$ 0 **Optimal** point 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862, 2)1 $\operatorname{Logistic}_{n} \operatorname{Regression}$ $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 0 -2.5 -2 -1.5 -0.5 0.5 -1 Õ

Can we prove that this always works?

Gradient Descent Example 0 0 $\alpha = 0.7$ **Optimal** point 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862, 2)1 Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 0

-2.5

Can we prove that this always works?

No! There is no universal optimization method. The "no free lunch" of Optimization

-2

-1.5

-1

-0.5

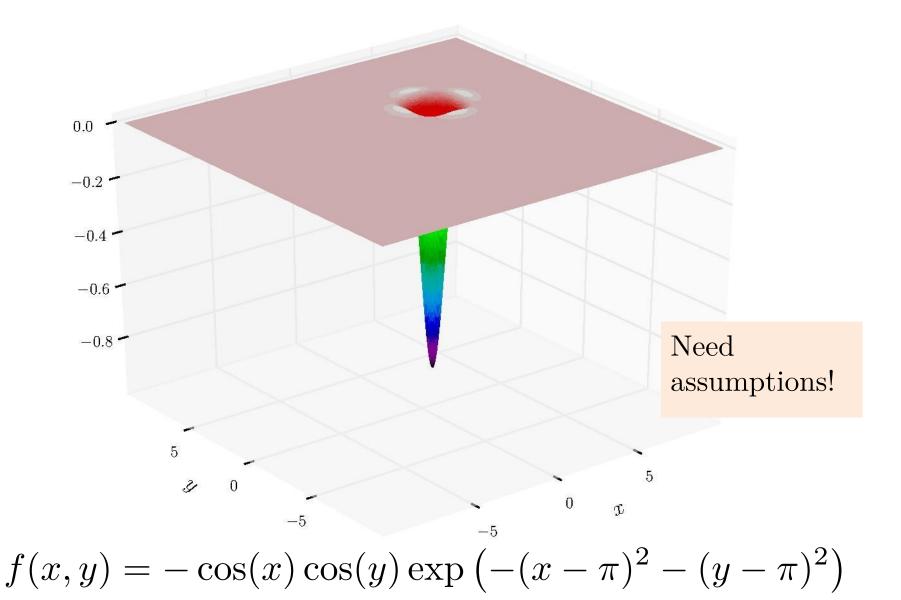
0.5

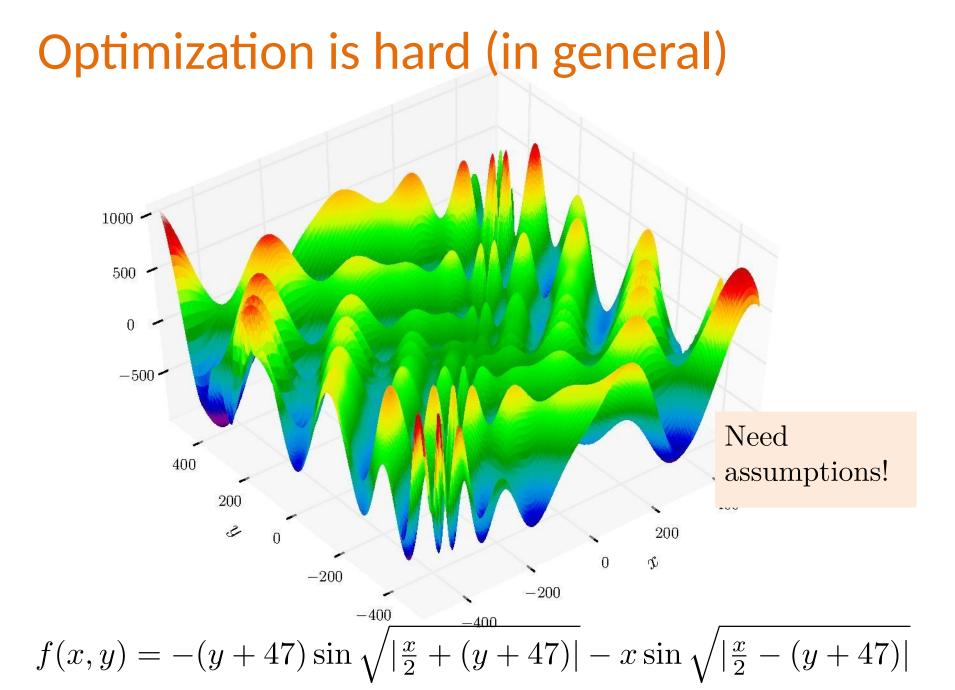
Õ

Gradient Descent Example 0 0 $\alpha = 0.7$ **Optimal** point 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862, 2) $Logistic_n Regression$ $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 0 L -3 -2.5 -2 -1.5 -0.5 0.5 -1 Õ Can we prove Specialize **No!** There is no that this always universal optimization method. The "no free works? lunch" of Optimization

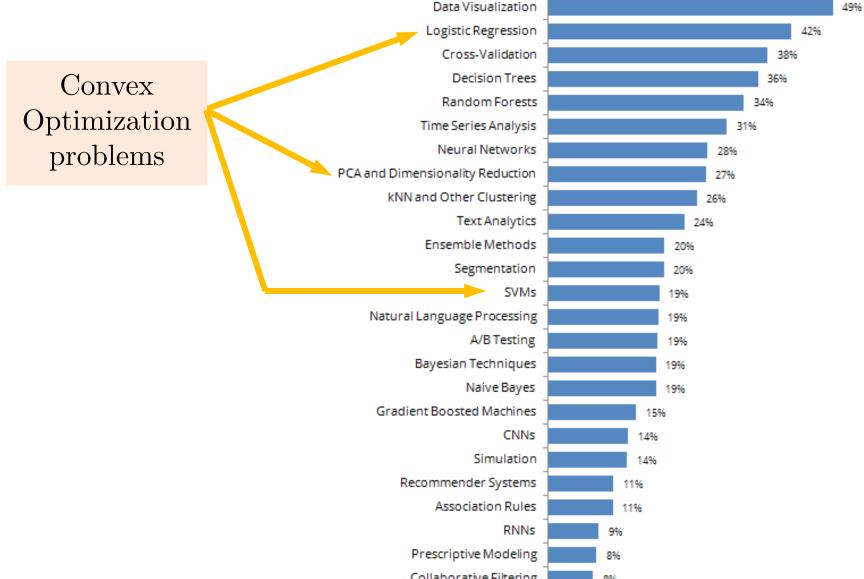
Convex and smooth training problems

Optimization is hard (in general)





Data science methods most used (Kaggle 2017 survey)



Main assumption

Nice property

If $\nabla f(w^*) = 0$ then $f(w^*) \le f(w), \quad \forall w \in \mathbb{R}^d$

All stationary points are global minima

Lemma: Convexity => Nice property If $f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$, $\forall w, y \in \mathbb{R}^d$ then nice property holds

PROOF: Choose $y = w^*$

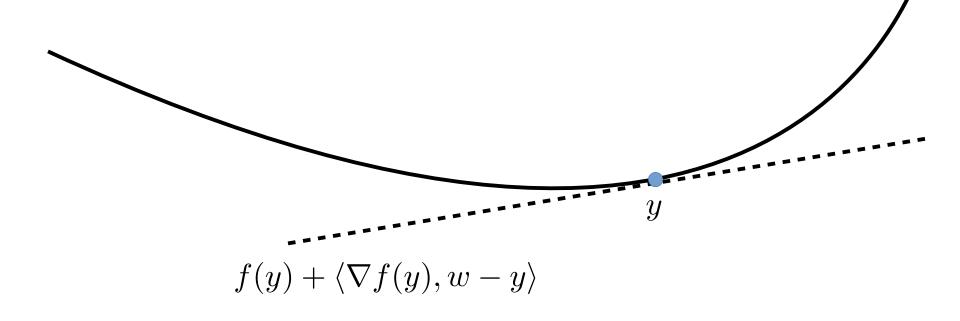
Convexity

We say $f : \operatorname{dom}(f) \subset \mathbb{R}^n \to \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is convex and $f(\lambda w + (1 - \lambda)y) \le \lambda f(w) + (1 - \lambda)f(y), \quad \forall w, y \in C, \lambda \in [0, 1]$ $f(\lambda w + (1 - \lambda)y)$ f(w)Global minimizer =Stationary point = \boldsymbol{y} Local minimizer W

Convexity: First derivative

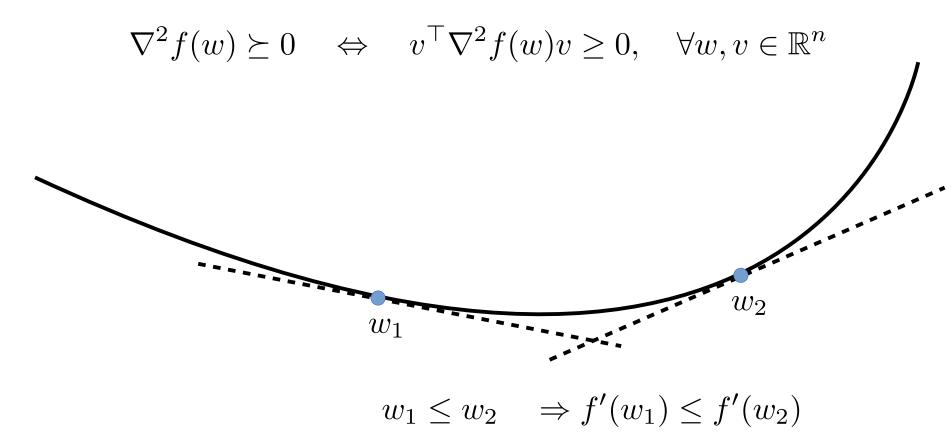
A differential function $f : \operatorname{dom}(f) \subset \mathbb{R}^n \to \mathbb{R}$ is convex iff

 $f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$



Convexity: Second derivative

A twice differential function $f : \operatorname{dom}(f) \subset \mathbb{R}^n \to \mathbb{R}$ is convex iff



Convexity: Examples

Extended-value extension:

Norms and squared norms:

Negative log and logistic:

 $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ $f(x) = \infty, \quad \forall x \notin \operatorname{dom}(f)$ $x \mapsto ||x||$ Proof is an $x \mapsto ||x||^2$ exercise! $x \mapsto -\log(x)$ $x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$ $x \mapsto \max\{0, 1 - yx\}$

Hinge loss

Negatives log determinant, exponentiation ... etc

Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

 $||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$

Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$$

Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is *L*-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$$

EXE: Using that $\sigma_{\max}(X)^2 ||d||_2^2 \ge ||X^{\top}d||_2^2$

Show that $\frac{1}{2}||X^{\top}w - b||_2^2$ is $\sigma_{\max}(X)^2$ -smooth

Smoothness: Examples

Convex quadratics:

Logistic:

Trigonometric:

 $x \mapsto x^{\top}Ax + b^{\top}x + c$

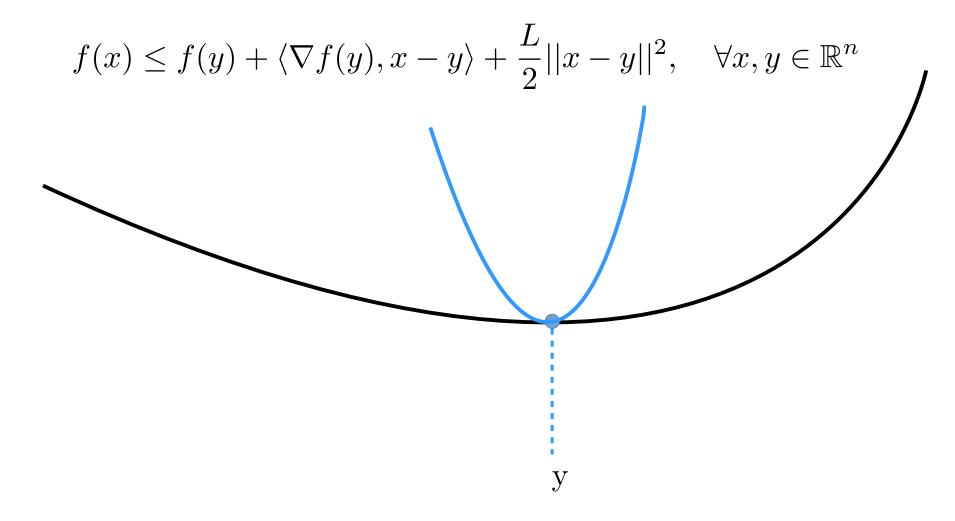
 $x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$

 $x \mapsto \cos(x), \sin(x)$

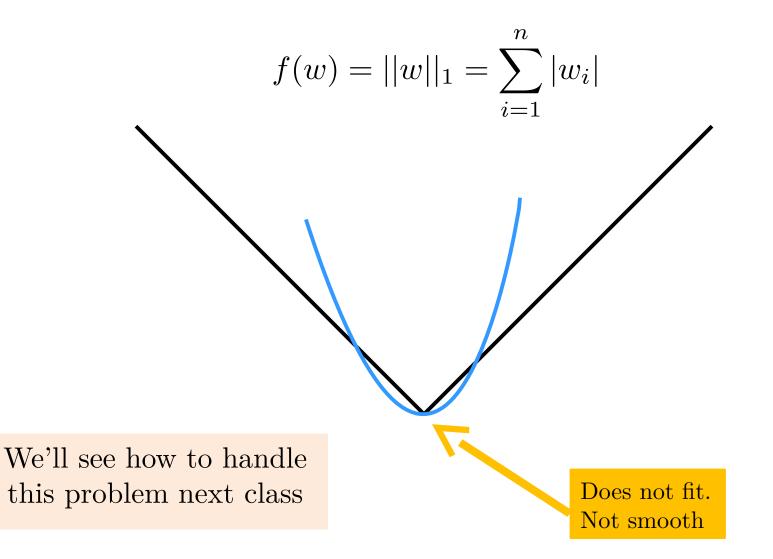
Proof is an exercise!

Important consequences of Smoothness

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is *L*-smooth then



Smoothness: Convex counter-example



$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

$$\nabla_{w} \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^{2} \right) = \nabla f(y) + L(w - y) = 0$$

$$w = y - \frac{1}{L} \nabla f(y)$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

$$\nabla_{w} \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^{2} \right) = \nabla f(y) + L(w - y) = 0$$

$$A \text{ gradient} \\ \text{descent step !}$$

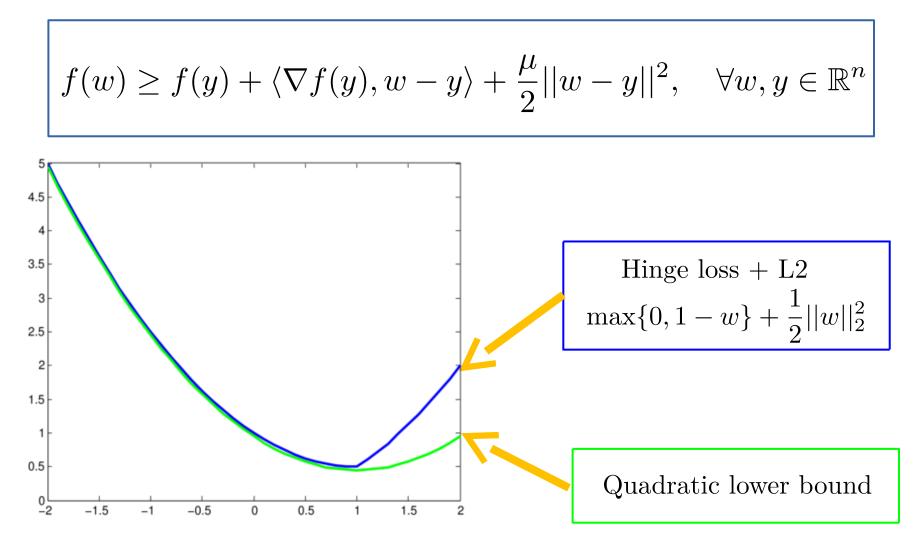
$$w = y - \frac{1}{L} \nabla f(y)$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

$$\begin{split} \nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) &= \nabla f(y) + L(w - y) = 0 \\ \\ \textbf{EXE:} \quad \textbf{If } f \textbf{ is } L\textbf{-smooth, show that} \\ f(y - \frac{1}{L} \nabla f(y)) - f(y) &\leq -\frac{1}{2L} ||\nabla f(y)||_2^2, \forall y \\ f(w^*) - f(w) &\leq -\frac{1}{2L} ||\nabla f(w)||_2^2, \quad \forall w \in \mathbb{R}^n \\ \text{where } f(w^*) &\leq f(w), \quad \forall w \in \mathbb{R}^n \end{split}$$

Strong convexity

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if



Strong convexity

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\mu}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

$$d^{\top} \nabla^2 f(w) d \ge \mu ||d||^2, \quad \forall d \in \mathbb{R}^n$$

EXE: Using that

$$\sigma_{\min}(X)^2 ||d||_2^2 \le ||X^{\top}d||_2^2$$

Show that

$$\frac{1}{2}||X^{\top}w - b||_2^2$$
 is $\sigma_{\min}(X)^2$ -strongly convex

Convergence GD strongly convex

Theorem

Let f be μ -strongly convex and L-smooth.

$$||w^{t} - w^{*}||_{2}^{2} \le \left(1 - \frac{\mu}{L}\right)^{t} ||w^{1} - w^{*}||_{2}^{2}$$

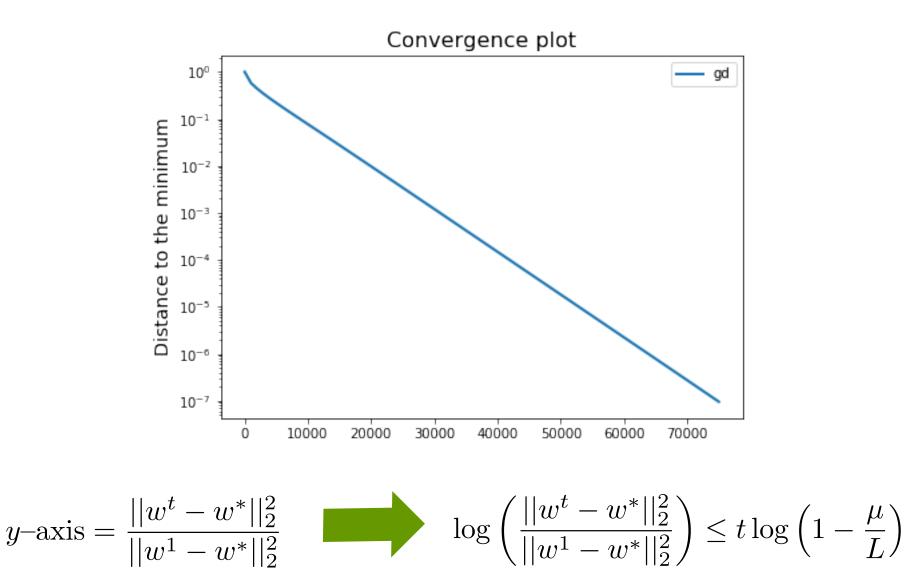
Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

$$\Rightarrow \text{ for } \frac{||w^T - w^*||_2^2}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

EXE: Solve the questions in complexity_rates_exe.pdf

Gradient Descent Example: logistic



Proof Convergence GD strongly convex + smooth Proof on board

$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$ $= ||w^{t} - w^{*}||_{2}^{2} + \frac{2}{L} \langle \nabla f(w^{t}), w^{*} - w^{t} \rangle + \frac{1}{L^{2}} ||\nabla f(w^{t})||_{2}^{2}$ $f(w^*) - f(w) \le -\frac{1}{2L} ||\nabla f(w)||_2^2$ Now smoothness gives $||\nabla f(w)||_{2}^{2} < 2L(f(w) - f(w^{*}))$ $f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w - w^*||^2$ And strong convexity gives $\langle \nabla f(w), w^* - w \rangle \le -(f(w) - f(w^*)) - \frac{\mu}{2} ||w - w^*||^2$

Convergence GD for smooth + convex

Theorem

Let f be convex and L-smooth.

$$f(w^t) - f(w^*) \le \frac{2L||w^1 - w^*||_2^2}{t - 1} = O\left(\frac{1}{t}\right)$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$\Rightarrow \text{for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and *L*-smooth then

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Proof

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and *L*-smooth then

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity
$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Proof f(y) - f(x) = f(y) - f(z) + f(z) - f(x)

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and *L*-smooth then

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity
$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Proof

$$f(y) - f(x) = \overbrace{f(y) - f(z)}^{\text{Use convexity}} + \overbrace{f(z) - f(x)}^{\text{Use smoothness}}$$

$$\leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and *L*-smooth then

$$f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity
$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Proof

$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x)$$

$$\leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$

Then minimize in z and insert back in minima.

Proof of GD smooth + convex theorem

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2 \qquad \text{Use co-coercivity}$$
$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

Co-coercivity $\langle \nabla f(y) - \nabla f(w), y - w \rangle \geq \frac{1}{L} ||\nabla f(w) - \nabla f(y)||_2$ With $y = w^*$ gives $\langle \nabla f(w), w^* - w \rangle \leq -\frac{1}{I} ||\nabla f(w)||_2$ $||w^{t+1} - w^*||_2^2 \le ||w^t - w^*||_2^2 - \frac{1}{L^2}||\nabla f(w^t)||_2^2$ Inserting above show decreasing $f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} ||\nabla f(w^t)||_2^2$ smoothness gives $f(w^t) - f(w^*) \le \langle \nabla f(w^t), w^t - w^* \rangle$ Combine with $< ||\nabla f(w^t)||_2 ||w^t - w^*||_2$ convexity

Acceleration and lower bouds

The Accelerated gradient method

$$\min_{w \in \mathbb{R}^d} f(w)$$

Accelerated gradient
Set
$$w^1 = 0 = y^1, \kappa = L/\mu$$

for $t = 1, 2, 3, \dots, T$
 $y^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$
 $w^{t+1} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)y^{t+1} - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}w^t$
Output w^{T+1}

The Accelerated gradient method

$$\min_{w \in \mathbb{R}^d} f(w)$$

Accelerated gradientWeird
extrapolation,
but it worksSet
$$w^1 = 0 = y^1, \kappa = L/\mu$$
Weird
extrapolation,
but it worksfor $t = 1, 2, 3, \dots, T$ $y^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$ $w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$ $\sqrt{\kappa} - 1$ $w^{t+1} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)y^{t+1} - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}w^t$ Output w^{T+1}

Convergence lower bounds strongly convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is *L*-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$
$$= O\left(\left(\left(1 - \frac{1}{\sqrt{\kappa}} \right)^{2T} \right).$$
Accelerated gradient has this rate

Convergence lower bounds strongly convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is *L*-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$
$$= O\left(\left(\left(1 - \frac{1}{\sqrt{\kappa}} \right)^{2T} \right).$$
Accelerated gradient has this rate

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L–smooth and convex such that

$$\min_{i=1,\dots,T} f(w^i) - f(w^*) \ge \frac{3L||w^1 - w^*||_2^2}{32(T+1)^2} = O\left(\frac{1}{T^2}\right)$$

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L–smooth and convex such that

$$\min_{i=1,\dots,T} f(w^i) - f(w^*) \ge \frac{3L||w^1 - w^*||_2^2}{32(T+1)^2} = O\left(\frac{1}{T^2}\right)$$

Exercises !

Solve ridge_reg_exe.pdf

Exercises !

Solve ridge_reg_exe.pdf