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1 Introduction

This is an exercise in deducing closed form expressions for proximal operators. In the
first part we will show how to deduce that the proximal operator of the L1 norm is the
soft-thresholding operator. In the second part we will show the equivalence between the
proximal operator of the matrix nuclear norm and the singular value soft-thresholding
operator.

First some necessary notation.

Notation: For every x, y,∈ Rn let 〈x, y〉 def
= x>y and let ‖x‖2 =

√
〈x, x〉. Let σ(A) =

[σ1(A), . . . , σn(A)] be the singular values of A.

Let ‖A‖2F
def
= Tr

(
A>A

)
=
∑

ij A
2
ij denote the Frobenius norm of A and let ‖A‖∗ =∑

i σi(A) be the nuclear norm.

2 Soft Thresholding

Let f : x ∈ Rd → f(x) be a convex function. Consider the proximal operator

proxf (v)
def
= arg min

x

1

2
‖x− v‖22 + f(x). (1)

Ex. 1 — In this exercise we will show step-by-step that the proximal operator of the L1
norm is the soft thresholding operator, that is

proxλ‖w‖1(v) = (Sλ(v1), . . . , Sλ(vn)) , (2)

where

Sλ(v) =


v − λ if λ < v

0 if − λ ≤ v ≤ λ
v + λ if v < −λ.

(3)
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Part I

Show that if f(x) is separable, that is, if f(x) =
∑d

i=1 fi(xi) then

proxf (v) = (proxf1(v1), . . . ,proxfd(vd)). (4)

Consequently
proxλ‖w‖1(v) = (proxλ|w1|(v1), . . . ,proxλ|wd|(vd)).

Part II

Show that if

α∗ = arg min
α

1

2
(α− v)2 + λ|α| (5)

then
α∗ ∈ v − λ∂|α∗|. (6)

Note that by definition α∗ = proxλ|α|(v).

Part III

If λ < v show that the solution to the inclusion (6) is given by

α∗ = v − λ.

Part IV

If −λ < v < λ show that the solution to the inclusion (6) is given by

α∗ = 0.

Part V

Using the previous items, prove that

proxλ|α|(v) = Sλ(v)

and that the equality (11) holds.

Part VI

Show that the soft-threshold operator can be written in a more compact way as

Sλ(v) = sign(v)(|v| − λ)+, (7)

where (α)+
def
= max{ 0, α} and sign(v) is the sign function given by sign(v) = 1v≥0− 1v<0.

This can be implemented efficiently in python using numpy and

2



prox_L1(v,lmbda) = np.sign(v) * np.maximum(np.abs(v) - lmbda, 0.)

The above code also works when v is a vector!

Answer (Ex. I) — The trick lies in noticing that

min
x

1

2
‖x− v‖22 +

d∑
i=1

fi(xi) = min
x

1

2

d∑
i=1

(xi − vi)2 +

d∑
i=1

fi(xi)

=
d∑
i=1

min
xi

1

2
(xi − vi)2 + fi(xi).

Consequently

arg min
x

1

2
‖x− v‖22 + f(x) =

(
arg min

x1

{
1

2
(x1 − v1)2 + f1(x1)

}
, . . . , arg min

xd

{
1

2
(xd − vd)2 + fd(xd)

})
=

(
proxf1(v1), . . . ,proxfd(vd)

)
.

Answer (Ex. II) — The solution to (5) must be such that

0 ∈ ∂
(

1

2
(α∗ − v)2 + λ|α∗|

)
= α∗ − v + λ∂|α∗|.

Rearranging the above gives α∗ ∈ v − λ∂|α∗|.

Answer (Ex. III) — First note that

v − λ∂|α∗| ⊂ [v − λ, v + λ]. (8)

If λ < v then the above together with inclusion (6) shows that

α∗ ∈ ]0, ∞[ ⇒ ∂|α∗| = 1.

Consequently (6) shows that

α∗ ∈ v − λ∂|α∗| = {v − λ}.

Answer (Ex. IV) — If −λ ≤ v ≤ λ then due to (8) the solution to the inclusion (6) is
bounded by

α∗ ∈ v − λ∂|α∗| ⊂


{v + λ} if α∗ < 0

[v − λ, v + λ] if α∗ = 0.

{v − λ} if α∗ > 0

(9)
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Now suppose that α∗ < 0. The above shows that

α∗ ∈ [0, 2λ] ,

a contradiction. If α∗ > 0, then (9) shows that

α∗ ∈ [−2λ, 0] ,

another contraction. Finally if α∗ = 0 then (9) offers no contradiction since it is equivalent
to

α∗ ∈ [−2λ, 2λ] .

Consequently −λ < v < λ⇒ α∗ = 0.

Answer (Ex. V) — Using analogous arguments to Ex III we can show that v < −λ ⇒
α∗ = v + λ. By combing this observation together the solutions of Ex III and IV we have
that

α∗ =


v − λ if λ < v

0 if − λ ≤ v ≤ λ
v + λ if v < −λ.

Thus

proxλ|α|(v) = α∗
(3)
= Sλ(v).

Answer (Ex. VI) — It suffices to do a case by case analysis, that is, for 0 ≤ λ < v we
have that

sign(v)(|v| − λ)+ = (v − λ)+ = v − λ,

while for −λ ≤ v ≤ λ we have that

sign(v)(|v| − λ)+ = sign(v)0 = 0.

Finally for v < −λ ≤ 0 we have that

sign(v)(|v| − λ)+ = −(−v − λ)+ = v + λ.

3 Singular Value Soft Thresholding

Consider the extension of proximal operators to matrices

proxF (A)
def
= arg min

X∈Rd×d

1

2
‖X −A‖2F + F (X). (10)

We will now prove step by step that

proxλ‖X‖∗(A) = USλ(diag(σ(A)))V >, (11)
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where ‖X‖∗ =
∑d

i=1 σi(X) and A = Udiag(σi(A))V > is the singular value decomposition
of A.

This proximal operator forms the basis of the celebrated algorithm for solving the
matrix completion problem [CaiCandes:2010].

Ex. 2 — Part I

Show that the nuclear and the Frobenius norm are invariant under rotations. That is, for
any matrix A and orthogonal matrices O and Q we have that

‖A‖2F = ‖OA‖2F = ‖AQ‖2F

and
‖A‖∗ = ‖OA‖∗ = ‖AQ‖∗.

Part II

(Level HARD): Prove that (11) holds. You may use the following Theorem by Von
Neumann
Theorem 3.1 (Von Neumann 1937) For any matrices X and A of the same dimen-
sions and orthogonal matrices U and V , we have that〈

UXV >, A
〉
≤ 〈diag(σi(X)), diag(σi(A))〉 , (12)

where diag(σi(A)) is a diagonal matrix with the singulars values of A on the diagonal.

Answer (Ex. I) — By the definition of Frobenius norm we have that

‖OA‖2F = Tr
(
A>(O>O)A

)
= Tr

(
A>A

)
= ‖A‖2F .

For the nuclear norm, note that for any orthogonal matrices O and U we have that OU is
an orthogonal matrix since

(OU)>OU = U>(O>O)U = U>U = I.

Thus is the SVD decomposition is given byA = Udiag(σi(A))V > thenOA = OUdiag(σi(A))V >

is the SVD decomposition of OA, that is, the matrix OA has the same singular values of
A. Consequently we have that

‖OA‖∗ = ‖(OU)diag(σi(A))V >‖ =
d∑
i=1

σi(A) = ‖A‖∗,

by definition of nuclear norm.
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Answer (Ex. II) — Substituting A = Udiag(σi(A))V > gives

proxλ‖X‖∗(A) = arg min
X∈Rd×d

1

2
‖U(U>XV − diag(σi(A)))V >‖2F + λ‖X‖∗.

Changing variable name
X̄ = U>XV, (13)

and noting that the Frobenius norm and the nuclear norm are invariant to orthogonal
transforms we have that

min
X∈Rd×d

1

2
‖U(X̄ − diag(σi(A)))V >‖2F + λ‖UX̄V >‖∗ = min

X∈Rd×d

1

2
‖X̄ − diag(σi(A))‖2F + λ‖X̄‖∗.(14)

I now claim that the solution X̄ to the above must be a diagonal matrix. This is where
Von Neumann’s theorem comes into play. To see this let Uxdiag(σi(X))V >x be the SVD
decomposition of X. Thus

‖X̄ − diag(σi(A))‖2F = ‖Uxdiag(σi(X))V >x − diag(σi(A))‖2F
= ‖diag(σi(X))‖2F + ‖diag(σi(A))‖2F − 2

〈
Uxdiag(σi(X))V >x ,diag(σi(A))

〉
Theorem 3.1

≥ ‖diag(σi(X))‖2F + ‖diag(σi(A))‖2F − 2 〈diag(σi(X)), diag(σi(A))〉
= ‖diag(σi(X))− diag(σi(A))‖2F .

Consequently

min
X̄

1

2
‖X̄ − diag(σi(A))‖2F + λ‖X̄‖∗ ≥ min

X̄

1

2
‖diag(σi(X̄))− diag(σi(A))‖2F + λ‖diag(σi(X̄))‖∗,

where we used the invariance of the nuclear norm under orthogonal transformations. This
proves that the solution X̄ = diag(X̄11, . . . , X̄dd) will be a diagonal matrix. From now
on we assume that X̄ = diag(X̄ii) is a diagonal matrix. Let x̄ = (X̄11, . . . , X̄dd) be the
vectorization of X̄. Thus ‖X̄‖∗ = ‖x̄‖1 and ‖X̄‖2F = ‖X̄‖22. Let σ(A) = [σ1(A), . . . , σd(A)] ∈
Rd. Finally we have that (14) becomes

min
X∈Rd×d

1

2
‖X̄ − diag(σi(A))‖2F + λ‖X̄‖∗ = min

x̄∈Rd

1

2
‖x̄− σ(A)‖22 + λ‖x̄‖1.

Consequently, taking the minimum argument we have that

Sλ(diag(σ(A))) = arg min
X̄ is diag

1

2
‖X̄ − diag(σi(A))‖2F + ‖X̄‖∗,

where Sλ(diag(σ(A))) := diag(Sλ(σi(A))). To conclude, note that our original argument is
UXV > = X̄ due to (13). Thus finally

proxλ‖X‖∗(A) = arg min
X
‖X −A‖2F + λ‖X‖∗ = USλ(diag(σ(A)))V >.
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