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Robert M. Gower and Francis Bach.

February 7, 2019

Time to get familiarized with convexity, smoothness and a bit of strong convexity.

Notation: For every x, y,∈ Rd let 〈x, y〉 def= x>y and let ‖x‖2 =
√
〈x, x〉.

Let σmin(A) and σmax(A) be the smallest and largest singular values of A defined by

σmin(A)
def
= min

x∈Rd
‖Ax‖2
‖x‖2

and σmax(A)
def
= max

x∈Rd
‖Ax‖2
‖x‖2

. (1)

Thus clearly
‖Ax‖22
‖x‖22

≤ σmax(A)2, ∀x ∈ Rd. (2)

Let ‖A‖2F
def
= Tr

(
A>A

)
denote the Frobenius norm of A. Finally, a result you will need,

for every symmetric matrix G the L2 induced matrix norm can be equivalently defined by

||G||2 = σmax(G) = sup
x∈Rd, x 6=0

| 〈Gx, x〉 |
‖x‖22

= max
x∈Rd, x 6=0

‖Gx‖2
‖x‖2

. (3)

1 Convexity

We say that a twice differentiable function f : Rd → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ Rd, λ ∈ [0, 1]. (4)

or equivalently
v>∇2f(x)v ≥ 0, ∀x, v ∈ Rd. (5)

We say that f is µ–strongly convex if

v>∇2f(x)v ≥ µ‖v‖22, ∀x, v ∈ Rd. (6)
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Ex. 1 — We say that ‖·‖ → R+ is a norm over Rd if it satisfies the following three
properties

1. Point separating: ‖x‖ = 0⇔ x = 0,∀x ∈ Rd.
2. Subadditive: ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rd

3. Homogeneous: ‖ax‖ = |a|‖x‖,∀x ∈ Rd, a ∈ R.

Part I

Prove that x 7→ ‖x‖ is a convex function.

Part II

For every convex function f : y ∈ Rm 7→ f(y), prove that g : x ∈ Rd 7→ f(Ax − b) is a
convex function, where A ∈ Rn×d and b ∈ Rn.

Part III

Let fi : Rd → R be convex for i = 1, . . . , n. Prove that
∑n

i=1 fi is convex.

Part IV

For given scalars yi ∈ R and vectors ai ∈ Rd for i = 1, . . . ,m prove that the logistic
regression function f(x) = 1

n

∑n
i=1 ln(1 + e−yi〈x,ai〉) is convex.

Part V

Let A ∈ Rn×d have full column rank. Prove that f(x) = 1
2‖Ax − b‖

2
2 is σ2min(A)–strongly

convex.

Part VI

Now suppose that the function f(x) is µ–strongly convex, that is, it satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22, ∀x, y ∈ Rd. (7)

Prove that f(x) satisfies the Polyak–Lojasiewicz condition, that is

‖∇f(x)‖22 ≥ 2µ(f(x)− f(x∗), ∀x. (8)

Answer (Ex. I) — Let x, y ∈ Rd and λ ∈ [0, 1]. It follows that

‖λx+ (1− λ)y‖
item 2
≤ ‖λx‖+ ‖(1− λ)y‖

item 3
≤ λ‖x‖+ (1− λ)‖y‖.
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Answer (Ex. II) — Let x, y ∈ Rd and λ ∈ [0, 1]. It follows that

g(λx+ (1− λ)y) = f(A(λx+ (1− λ))y − b)
= f(λ(Ax− b) + (1− λ)(Ay − b)) (9)

f is conv.
= λf(Ax− b) + (1− λ)f(Ay − b).

Answer (Ex. III) — Immediate through either definition.

Answer (Ex. IV) — From exercise V we need only prove that f(x) = ln(1 + e−y〈x,w〉)
is convex for a given y ∈ R and w ∈ Rd. From exercise II we need only prove that
φ(α) = ln(1 + eα) is convex, since x 7→ −y 〈x,w〉 is a linear function. The convexity of
f(α) now follows by differentiating once

φ′(α) =
eα

1 + eα
,

then differentiating again

φ′′(α) =
eα

1 + eα
− e2α

(1 + eα)2
=

eα

(1 + eα)2
≥ 0, ∀α. (10)

We can now call upon the definition (5), but since α ∈ R is a scalar, the above already
proves that φ(α) is convex.

Answer (Ex. V) — Differentiating twice we have that

∇2f(x) = A>A.

Consequently
v>∇2f(x)v = v>A>Av = ‖Av‖22 ≥ σmin(A)2‖v‖22.

Answer (Ex. VI) — Multiplying (7) by minus and substituting y = x∗ we have that

f(x)− f(x∗) ≤ 〈∇f(x), x− x∗〉 − µ

2
‖x∗ − x‖22

= −1

2
‖√µ(x− x∗)− 1

√
µ
∇f(x)‖22 +

1

2µ
‖∇f(x)‖22

≤ 1

2µ
‖∇f(x)‖22.
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2 Smoothness

We say that a function f : Rd → R is L–smooth if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ (11)

or equivalently if f is twice differentiable then

v>∇2f(x)v ≤ L‖v‖22, ∀x, v ∈ Rd. (12)

Ex. 2 — Part I

Prove that x 7→ 1
2‖x‖

2 is 1–smooth.

Part II

Let f : Rd → R be twice differentiable and L–smooth. Show that

σmax(∇2f(x)) = ‖∇2f(x)‖2 ≤ L.

Part III

For every twice differentiable L–smooth function f : y ∈ Rn 7→ f(y), prove that g : x ∈
Rd 7→ f(Ax− b) is a smooth function, where A ∈ Rn×d and b ∈ Rn. Find the smoothness
constant of g.

Part IV

Let fi : Rd → R be a twice differentiable and Li–smooth for i = 1, . . . , n. Prove that
1
n

∑
i=1 fi is

∑
i=1

Li
n –smooth.

Part V

For given scalars yi ∈ R and vectors ai ∈ Rd for i = 1, . . . , n prove that the logistic regression
function f(x) = 1

n

∑n
i=1 ln(1 + e−yi〈x,ai〉) is smooth. Find the smoothness constant!

Part VI

Let A ∈ Rn×d be any matrix. Prove that ‖Ax− b‖22 is σ2max(A)–smooth.

Part VII

Let M > 0 be a positive constant. Let f(x) = 1
n

∑n
i=1 φi(a

>
i x) where φi : R → R is a

scalar function such that φ′′i (t) ≤ M for all t ∈ R. Prove that f(x) is M
n σ

2
max(A)–smooth.
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With this result, can you find a better estimate of the smoothness constant of the logistic
regression loss?
Hint 1: ...

Part VIII

Co-coercivity. Let f be L-smooth, show that

〈∇f(y)−∇f(x), y − x〉 ≥ 1

L
‖∇f(x)−∇f(y)‖22

Hint: Start by showing that f(y)− f(x) ≤ 〈∇f(y), y − x〉 − 1
2L‖∇f(x)−∇f(y)‖22.

Answer (Ex. I) — Clearly ∇2 1
2‖x‖

2 = I and thus follows from definition (11).

Answer (Ex. II) — Using that the induced norm for symmetric matrices is given by

‖∇2f(x)‖2 = sup
v 6=0

|v>∇2f(x)v|
‖v‖22

(12)

≤ sup
v 6=0

L‖v‖22
‖v‖22

= L.

Answer (Ex. III) — Differentiating g(x) once gives

∇g(x) = A>∇f(Ax− b).

First we prove the claim using the definition (11). Indeed note that

‖∇g(x)−∇g(y)‖2 = ‖A> (∇f(Ax− b)−∇f(Ay − b))‖2
≤ ‖A>‖2‖∇f(Ax− b)−∇f(Ay − b)‖2

smooth. of f
≤ L‖A>‖2‖Ax− b− (Ay − b)‖2
≤ L‖A>‖2‖A‖2‖x− y‖2.

This the smoothness parameter is given by L‖A‖22 where we used that ‖A>‖2 = ‖A‖2. This
completes the proof.
We can also prove the claim using (12). Differentiating again we have that

∇2g(x) = A>∇2f(Ax− b)A.

Consequently
‖∇2g(x)‖22 ≤ ‖A‖22‖∇2f(Ax− b)‖22 ≤ L‖A‖22.

We could further tighten this by considering the smoothness constant of f restricted to the
set {x |Ax− b} which might be smaller then Rd.
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Answer (Ex. IV) — Clearly

∇2( 1
n

n∑
i=1

fi(x)) = 1
n

n∑
i=1

∇2fi(x) � 1
n

n∑
i=1

LiI.

You can also prove this using the definition (11) and applying repeatedly the subadditivity
of the norm.

Answer (Ex. V) — First note that from (10) we can see that the function φ(α) = ln(1+
eα) is at least 1–smooth. Consequently from exercise II the function fi(x) = ln(1+e−yi〈x,ai〉)

is y2i ‖ai‖22–smooth. Finally from exercise III the logistic regression function is
∑n

i=1
y2i ‖ai‖22

n –
smooth.
But this is not the tightest smoothness constant, as we will see in the next two exercises!

Answer (Ex. VI) — Differentiating twice we have that

∇2f(x) = A>A.

Consequently
v>∇2f(x)v = v>A>Av ≤ ‖Av‖22 ≤ σmax(A)2‖v‖22.

Answer (Ex. VII) — By analysing directly the Hessian of f(x) = 1
n

∑n
i=1 fi(x) we see

that
∇2f(x) = A>Φ(x)A,

where Φ(x) = diag(φ′′1(a>1 x), . . . , φ′′n(a>n x)), Consequently

‖∇2f(x)‖2 =
1

n
‖A>Φ(x)A‖2 ≤

1

n
‖A‖22‖Φ(x)‖2 ≤M‖A‖22

(1)
=
M

n
σmax(A)2.

For the logistic function, note that φ′′(a>i x) = eα

(1+eα)2
, where α = −yi 〈ai, x〉 . Furthermore

φ′′(α) =
eα

(1 + eα)2
≤ 1

4
, ∀α. (13)

Consequently a better estimate of the smoothness constant is given by

L ≤ σmax(A)2

4n
.

This is a much tighter smoothness constant and the one that is used in practice.
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