Exercise List: Convergence rates and complexity

Francis Bach and Robert M. Gower

February 10, 2019

1 Rate of convergence and complexity

All the algorithm we discuss in the course generate a sequence of random vectors x^{t} that converge to a desired x^{*} in some sense. Because the x^{t} 's are random we always prove convergence in expectation. In particular, we focus on two forms of convergence, either showing that the difference of function values converges

$$
\mathbb{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right] \longrightarrow 0,
$$

or the expected norm difference of the iterates converges

$$
\mathbb{E}\left[\left\|x^{t}-x^{*}\right\|^{2}\right] \longrightarrow 0
$$

Two important questions: 1) How fast is this convergence and 2) given an ϵ how many iterations t are needed before $\mathbb{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right]<\epsilon$ or $\mathbb{E}\left[\left\|x^{t}-x^{*}\right\|^{2}\right]<\epsilon$.
Ex. 1 - Consider a sequence $\left(\alpha_{t}\right)_{t} \in \mathbb{R}_{+}$that converge to zero according to

$$
\alpha_{t} \leq \frac{C}{t}
$$

where $C>0$. Given an $\epsilon>0$, show that

$$
t \geq \frac{C}{\epsilon} \quad \Rightarrow \alpha_{t}<\epsilon
$$

We refer to this result as a $O(1 / \epsilon)$ iteration complexity.
Ex. 2 - Using that

$$
\begin{equation*}
\frac{1}{1-\rho} \log \left(\frac{1}{\rho}\right) \geq 1 \tag{1}
\end{equation*}
$$

prove the following lemma.

Lemma 1.1. Consider the sequence $\left(\alpha_{k}\right)_{k} \in \mathbb{R}_{+}$of positive scalars that converges to zero according to

$$
\begin{equation*}
\alpha_{k} \leq \rho^{k} \alpha_{0} \tag{2}
\end{equation*}
$$

where $\rho \in[0,1)$. For a given $1>\epsilon>0$ we have that

$$
\begin{equation*}
k \geq \frac{1}{1-\rho} \log \left(\frac{1}{\epsilon}\right) \quad \Rightarrow \quad \alpha_{k} \leq \epsilon \alpha_{0} . \tag{3}
\end{equation*}
$$

We refer to this as a $O(\log (1 / \epsilon))$ iteration complexity.
Following the introduction, we can write $\alpha^{t} \stackrel{\text { def }}{=} \mathbb{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right]$ or $\alpha^{t} \stackrel{\text { def }}{=} \mathbb{E}\left[\left\|x^{t}-x^{*}\right\|^{2}\right]$. The type of convergence (2) is known as linear convergence at a rate of ρ^{k}.

Answer (Ex. 2) - Proof. First note that if $\rho=0$ the result follows trivially. Assuming $\rho \in(0,1)$, rearranging (2) and applying the logarithm to both sides gives

$$
\begin{equation*}
\log \left(\frac{\alpha_{0}}{\alpha_{k}}\right) \geq k \log \left(\frac{1}{\rho}\right) . \tag{4}
\end{equation*}
$$

Now using (1) and assuming that

$$
\begin{equation*}
k \geq \frac{1}{1-\rho} \log \left(\frac{1}{\epsilon}\right) \tag{5}
\end{equation*}
$$

we have that

$$
\begin{aligned}
\log \left(\frac{\alpha_{0}}{\alpha_{k}}\right) & \stackrel{(4)}{\geq} k \log \left(\frac{1}{\rho}\right) \\
& \stackrel{(5)}{\geq} \frac{1}{1-\rho} \log \left(\frac{1}{\rho}\right) \log \left(\frac{1}{\epsilon}\right) \\
& \stackrel{(1)}{\geq} \log \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

Applying exponentials to the above inequality gives (3).

