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1 Rate of convergence and complexity

All the algorithm we discuss in the course generate a sequence of random vectors xt that
converge to a desired x∗ in some sense. Because the xt’s are random we always prove
convergence in expectation. In particular, we focus on two forms of convergence, either
showing that the difference of function values converges

E
[
f(xt)− f(x∗)

]
−→ 0,

or the expected norm difference of the iterates converges

E
[
‖xt − x∗‖2

]
−→ 0.

Two important questions: 1) How fast is this convergence and 2) given an ε how many
iterations t are needed before E

[
f(xt)− f(x∗)

]
< ε or E

[
‖xt − x∗‖2

]
< ε.

Ex. 1 — Consider a sequence (αt)t ∈ R+ that converge to zero according to

αt ≤
C

t
,

where C > 0. Given an ε > 0, show that

t ≥ C

ε
⇒ αt < ε.

We refer to this result as a O(1/ε) iteration complexity.

Ex. 2 — Using that
1

1− ρ
log

(
1

ρ

)
≥ 1, (1)

prove the following lemma.

1



Lemma 1.1. Consider the sequence (αk)k ∈ R+ of positive scalars that converges to
zero according to

αk ≤ ρk α0, (2)

where ρ ∈ [0, 1). For a given 1 > ε > 0 we have that

k ≥ 1

1− ρ
log

(
1

ε

)
⇒ αk ≤ ε α0. (3)

We refer to this as a O(log(1/ε)) iteration complexity.

Following the introduction, we can write αt def
= E

[
f(xt)− f(x∗)

]
or αt def

= E
[
‖xt − x∗‖2

]
.

The type of convergence (2) is known as linear convergence at a rate of ρk.

Answer (Ex. 2) — Proof. First note that if ρ = 0 the result follows trivially. Assuming
ρ ∈ (0, 1), rearranging (2) and applying the logarithm to both sides gives

log

(
α0

αk

)
≥ k log

(
1

ρ

)
. (4)

Now using (1) and assuming that

k ≥ 1

1− ρ
log

(
1

ε

)
, (5)

we have that

log

(
α0

αk

)
(4)

≥ k log

(
1

ρ

)
(5)

≥ 1

1− ρ
log

(
1

ρ

)
log

(
1

ε

)
(1)

≥ log

(
1

ε

)
Applying exponentials to the above inequality gives (3).

2


