(BONUS) Exercise List: Proving convergence of the Stochastic Gradient Descent for smooth and convex functions.

Robert M. Gower

February 10, 2019

1 Introduction

Consider the problem

$$
\begin{equation*}
w^{*} \in \arg \min _{w}\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}(w) \stackrel{\text { def }}{=} f(w)\right) \tag{1}
\end{equation*}
$$

where we assume that $f(w)$ is μ-strongly quasi-convex

$$
\begin{equation*}
f\left(w^{*}\right) \geq f(w)+\left\langle w^{*}-w, \nabla f(w)\right\rangle+\frac{\mu}{2}\left\|w-w^{*}\right\|^{2} \tag{2}
\end{equation*}
$$

and each f_{i} is convex and L_{i}-smooth

$$
\begin{equation*}
f_{i}(w+h) \leq f_{i}(w)+\left\langle\nabla f_{i}(w), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, n . \tag{3}
\end{equation*}
$$

Here we will provide a modern proof of the convergence of the SGD algorithm

$$
\begin{equation*}
w^{t+1}=w^{t}-\gamma^{t} \nabla f_{i_{t}}\left(w^{t}\right), \quad \text { where } i_{t} \sim \frac{1}{n} . \tag{4}
\end{equation*}
$$

The result we will prove is given in the following theorem.
Theorem 1.1. Assume f is μ-quasi-strongly convex and the f_{i} 's are convex and L_{i}-smooth. Let $L_{\text {max }}=\max _{i=1, \ldots, n} L_{i}$ and let

$$
\begin{equation*}
\sigma^{2} \quad \stackrel{\text { def }}{=} \sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{*}\right)\right\|^{2} . \tag{5}
\end{equation*}
$$

Choose $\gamma^{t}=\gamma \in\left(0, \frac{1}{2 L_{\text {max }}}\right]$ for all t. Then the iterates of SGD given by (4) satisfy:

$$
\begin{equation*}
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq(1-\gamma \mu)^{t}\left\|w^{0}-w^{*}\right\|^{2}+\frac{2 \gamma \sigma^{2}}{\mu} . \tag{6}
\end{equation*}
$$

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.

Ex. $\mathbf{1}$ - Let $\mathbb{E}_{t}[\cdot] \stackrel{\text { def }}{=} \mathbb{E}\left[\cdot \mid w^{t}\right]$ and consider the t th iteration of the SGD method (4). Show that

$$
\mathbb{E}_{t}\left[\nabla f_{i_{t}}\left(w^{t}\right)\right]=\nabla f\left(w^{t}\right) .
$$

Answer (Ex. 1) - Since $i_{t} \sim 1 / n$ we have that

$$
\mathbb{E}_{t}\left[\nabla f_{i_{t}}\left(w^{t}\right)\right]=\sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}\left(w^{t}\right)=\nabla f\left(w^{t}\right)
$$

Ex. 2 - Let $\mathbb{E}_{t}[\cdot] \stackrel{\text { def }}{=} \mathbb{E}\left[\cdot \mid w^{t}\right]$ be the expectation conditioned on w^{t}. Using a step of SGD (4) show that

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|^{2}\right]=\left\|w^{t}-w^{*}\right\|^{2}-2 \gamma\left\langle w^{t}-w^{*}, \nabla f\left(w^{t}\right)\right\rangle+\gamma^{2} \sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{t}\right)\right\|^{2} \tag{7}
\end{equation*}
$$

Answer (Ex. 2) - By using (4) we have that

$$
\begin{equation*}
\left\|w^{t+1}-w^{*}\right\|^{2}=\left\|w^{t}-w^{*}\right\|^{2}-2 \gamma\left\langle w^{t}-w^{*}, \nabla f_{i_{t}}\left(w^{t}\right)\right\rangle+\gamma^{2}\left\|\nabla f_{i}\left(w^{t}\right)\right\|^{2} . \tag{8}
\end{equation*}
$$

Since i_{t} is the only random variable conditioned on w^{t} we have that

$$
\mathbb{E}_{t}\left[\left\langle w^{t}-w^{*}, \nabla f_{i_{t}}\left(w^{t}\right)\right\rangle\right]=\left\langle w^{t}-w^{*}, \mathbb{E}_{t}\left[\nabla f_{i_{t}}\left(w^{t}\right)\right]\right\rangle=\left\langle w^{t}-w^{*}, \nabla f\left(w^{t}\right)\right\rangle .
$$

Consequently applying $\mathbb{E}_{t}[\cdot]$ to (8) gives the result.
Ex. 3 - Now we need to bound the term $\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{t}\right)\right\|^{2}$ to continue the proof. We break this into the following steps.

Part I

Using that each f_{i} is L_{i}-smooth and convex and using Lemma A. 1 in the appendix show that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2 n L_{i}}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq f(w)-f\left(w^{*}\right) \tag{9}
\end{equation*}
$$

Hint: Remember that $\nabla f\left(w^{*}\right)=0$.
Now let $L_{\text {max }}=\max _{i=1, \ldots, n} L_{i}$ and conlude that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq 2 L_{\max }\left(f(w)-f\left(w^{*}\right)\right) \tag{10}
\end{equation*}
$$

Part II

Using (10) and Definition 5 show that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}(w)\right\|^{2} \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2} \tag{11}
\end{equation*}
$$

Answer (Ex. I) - From Lemma A. 1 we have, after re-arranging, that

$$
\begin{equation*}
\frac{1}{2 L_{i}}\left\|\nabla f_{i}(w)-\nabla f_{i}(y)\right\|_{2}^{2} \leq f_{i}(w)-f_{i}(y)+\left\langle\nabla f_{i}(y), y-w\right\rangle . \tag{12}
\end{equation*}
$$

Plugin $y=w^{*}$, dividing the above by n and summing over $i=1, \ldots, n$ gives

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{n} \frac{1}{2 L_{i}}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq f(w)-f\left(w^{*}\right)+\left\langle\nabla f\left(w^{*}\right), w^{*}-w\right\rangle \tag{13}
\end{equation*}
$$

where we used that $\sum_{i=1}^{n} \frac{1}{n} f_{i}(w)=f(w)$. The result (9) now follows from that $\nabla f\left(w^{*}\right)=0$. Finally (10) follows from $L_{\max } \geq L_{i}$ so that

$$
\sum_{i=1}^{n} \frac{1}{2 n L_{\max }}\left\|\nabla f_{i}(y)-\nabla f_{i}(w)\right\|_{2}^{2} \leq \sum_{i=1}^{n} \frac{1}{2 n L_{i}}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq f(w)-f\left(w^{*}\right)
$$

Answer (Ex. II) - Using that $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ for any $a, b \in \mathbb{R}$ we have that

$$
\begin{gather*}
\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}(w) \pm \nabla f_{i}\left(w^{*}\right)\right\|^{2} \leq 2 \sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|^{2}+2 \sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{*}\right)\right\|^{2} \\
(10)+(5) \tag{14}\\
\leq \leq L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2} .
\end{gather*}
$$

Ex. 4 - Using (11) together with (7) and the strong quasi-convexity (2) of $f(w)$ show that

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|^{2}\right] \leq(1-\mu \gamma)\left\|w^{t}-w^{*}\right\|^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+2 \sigma^{2} \gamma^{2} \tag{15}
\end{equation*}
$$

Answer (Ex. 4) - Follow immediatly.
Ex. 5 - Using that $\gamma \in\left(0, \frac{1}{2 L_{\text {max }}}\right]$ conclude the proof by taking expectation again, and unrolling the recurrence.

Answer (Ex. 5) - Since $\gamma \in\left(0, \frac{1}{2 L_{\text {max }}}\right]$ we have that $\left(2 \gamma L_{\max }-1\right) \leq 0$. Furthermore $f\left(w^{t}\right)-$ $f\left(w^{*}\right) \geq 0$ thus, by taking expectation and using the tower, from (15) we have that

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|^{2}\right] \leq(1-\mu \gamma) \mathbb{E}\left[\left\|w^{t}-w^{*}\right\|^{2}\right]+2 \sigma^{2} \gamma^{2} \tag{16}
\end{equation*}
$$

Let $r_{t}=\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|^{2}\right]$. The above gives the following recurrence

$$
\begin{aligned}
r_{t+1} & \leq(1-\mu \gamma) r_{t}+2 \sigma^{2} \gamma \\
& \leq(1-\mu \gamma)^{2} r_{t-1}+(1-\mu \gamma) 2 \sigma^{2} \gamma^{2}+2 \sigma^{2} \gamma^{2} \\
& \vdots \\
& \leq(1-\mu \gamma)^{t+1} r_{0}+\sum_{j=0}^{t}(1-\mu \gamma)^{j} 2 \sigma^{2} \gamma^{2} .
\end{aligned}
$$

Summing up the geometric series we have that

$$
\sum_{j=0}^{t}(1-\mu \gamma)^{j}=\frac{1-(1-\mu \gamma)^{t+1}}{1-(1-\mu \gamma)} \leq \frac{1}{\mu \gamma}
$$

Thus

$$
\begin{equation*}
r_{t+1} \leq(1-\mu \gamma)^{t+1} r_{0}+\frac{2 \sigma^{2} \gamma^{2}}{\mu \gamma}=(1-\mu \gamma)^{t+1} r_{0}+\frac{2 \sigma^{2} \gamma}{\mu} \tag{17}
\end{equation*}
$$

Ex. 6 - BONUS importance sampling: Let $i_{t} \sim p_{i}$ in the SGD update (4), where $p_{i}>0$ are probabilities with $\sum_{i=1}^{n} p_{i}=1$. What should the p_{i} 's be so that SGD has the fastest convergence?

3 Decreasing step-sizes

Based on Theorem 1.1 we can introduce a decreasing stepsize.
Theorem 3.1 (Decreasing stepsizes). Let f be μ-strongly quasi-convex and each f_{i} be L_{i}-smooth and convex. Let $\mathcal{K} \stackrel{\text { def }}{=} L_{\max } / \mu$ and

$$
\gamma^{t}=\left\{\begin{array}{lll}
\frac{1}{2 L_{\max }} & \text { for } & t \leq 4\lceil\mathcal{K}\rceil \tag{18}\\
\frac{2 t+1}{(t+1)^{2} \mu} & \text { for } & t>4\lceil\mathcal{K}\rceil .
\end{array}\right.
$$

If $t \geq 4\lceil\mathcal{K}\rceil$, then SGD iterates given by (4) satisfy:

$$
\begin{equation*}
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t}+\frac{16}{e^{2}} \frac{\lceil\mathcal{K}\rceil^{2}}{t^{2}}\left\|w^{0}-w^{*}\right\|^{2} \tag{19}
\end{equation*}
$$

Proof. Let $\gamma_{t} \stackrel{\text { def }}{=} \frac{2 t+1}{(t+1)^{2} \mu}$ and let t^{*} be an integer that satisfies $\gamma_{t^{*}} \leq \frac{1}{2 L_{\text {max }}}$. In particular this holds for

$$
t^{*} \geq\lceil 4 \mathcal{K}-1\rceil
$$

Note that γ_{t} is decreasing in t and consequently $\gamma_{t} \leq \frac{1}{2 L_{\max }}$ for all $t \geq t^{*}$. This in turn guarantees that (6) holds for all $t \geq t^{*}$ with γ_{t} in place of γ, that is

$$
\begin{equation*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} \leq \frac{t^{2}}{(t+1)^{2}} \mathbb{E}\left\|r^{t}\right\|^{2}+\frac{2 \sigma^{2}}{\mu^{2}} \frac{(2 t+1)^{2}}{(t+1)^{4}} . \tag{20}
\end{equation*}
$$

Multiplying both sides by $(t+1)^{2}$ we obtain

$$
\begin{aligned}
(t+1)^{2} \mathbb{E}\left\|r^{t+1}\right\|^{2} & \leq t^{2} \mathbb{E}\left\|r^{t}\right\|^{2}+\frac{2 \sigma^{2}}{\mu^{2}}\left(\frac{2 t+1}{t+1}\right)^{2} \\
& \leq t^{2} \mathbb{E}\left\|r^{t}\right\|^{2}+\frac{8 \sigma^{2}}{\mu^{2}}
\end{aligned}
$$

where the second inequality holds because $\frac{2 t+1}{t+1}<2$. Rearranging and summing from $j=t^{*} \ldots t$ we obtain:

$$
\begin{equation*}
\sum_{j=t^{*}}^{t}\left[(j+1)^{2} \mathbb{E}\left\|r^{j+1}\right\|^{2}-j^{2} \mathbb{E}\left\|r^{j}\right\|^{2}\right] \leq \sum_{j=t^{*}}^{t} \frac{8 \sigma^{2}}{\mu^{2}} \tag{21}
\end{equation*}
$$

Using telescopic cancellation gives

$$
(t+1)^{2} \mathbb{E}\left\|r^{t+1}\right\|^{2} \leq\left(t^{*}\right)^{2} \mathbb{E}\left\|r^{t^{*}}\right\|^{2}+\frac{8 \sigma^{2}\left(t-t^{*}\right)}{\mu^{2}}
$$

Dividing the above by $(t+1)^{2}$ gives

$$
\begin{equation*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} \leq \frac{\left(t^{*}\right)^{2}}{(t+1)^{2}} \mathbb{E}\left\|r^{t^{*}}\right\|^{2}+\frac{8 \sigma^{2}\left(t-t^{*}\right)}{\mu^{2}(t+1)^{2}} \tag{22}
\end{equation*}
$$

For $t \leq t^{*}$ we have that (6) holds, which combined with (22), gives

$$
\begin{align*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} & \leq \frac{\left(t^{*}\right)^{2}}{(t+1)^{2}}\left(1-\frac{\mu}{2 L_{\max }}\right)^{t^{*}}\left\|r^{0}\right\|^{2} \\
& +\frac{\sigma^{2}}{\mu^{2}(t+1)^{2}}\left(8\left(t-t^{*}\right)+\frac{\left(t^{*}\right)^{2}}{\mathcal{K}}\right) \tag{23}
\end{align*}
$$

Choosing t^{*} that minimizes the second line of the above gives $t^{*}=4\lceil\mathcal{K}\rceil$, which when inserted into (23) becomes

$$
\begin{align*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} \leq & \frac{16\lceil\mathcal{K}\rceil^{2}}{(t+1)^{2}}\left(1-\frac{1}{2 \mathcal{K}}\right)^{4\lceil\mathcal{K}\rceil}\left\|r^{0}\right\|^{2} \\
& +\frac{\sigma^{2}}{\mu^{2}} \frac{8(t-2\lceil\mathcal{K}\rceil)}{(t+1)^{2}} \\
\leq & \frac{16\lceil\mathcal{K}\rceil^{2}}{e^{2}(t+1)^{2}}\left\|r^{0}\right\|^{2}+\frac{\sigma^{2}}{\mu^{2}} \frac{8}{t+1} \tag{24}
\end{align*}
$$

where we have used that $\left(1-\frac{1}{2 x}\right)^{4 x} \leq e^{-2}$ for all $x \geq 1$.

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the f_{i} 's being smooth and convex we have that f is also smooth and convex. In particular f is convex since it is a convex combination of the f_{i} 's. This gives us the following useful lemma.

Lemma A.1. If f is both L-smooth

$$
\begin{equation*}
f(z) \leq f(w)+\langle\nabla f(w), z-w\rangle+\frac{L}{2}\|z-w\|_{2}^{2} \tag{25}
\end{equation*}
$$

and convex

$$
\begin{equation*}
f(z) \geq f(y)+\langle\nabla f(y), z-y\rangle, \tag{26}
\end{equation*}
$$

then we have that

$$
\begin{equation*}
f(y)-f(w) \leq\langle\nabla f(y), y-w\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(w)\|_{2}^{2} \tag{27}
\end{equation*}
$$

Proof. To prove (27), it follows that

$$
\begin{aligned}
& f(y)-f(w)= \\
& f(y)-f(z)+f(z)-f(w) \\
&= \\
&(26)+(25) \\
& \leq\langle\nabla f(y), y-z\rangle+\langle\nabla f(w), z-w\rangle+\frac{L}{2}\|z-w\|_{2}^{2}
\end{aligned}
$$

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z, which gives

$$
\begin{equation*}
z=w-\frac{1}{L}(\nabla f(w)-\nabla f(y)) \tag{28}
\end{equation*}
$$

Substituting this in gives

$$
\begin{aligned}
f(y)-f(w)= & \left\langle\nabla f(y), y-w+\frac{1}{L}(\nabla f(w)-\nabla f(y))\right\rangle \\
& -\frac{1}{L}\langle\nabla f(w), \nabla f(w)-\nabla f(y)\rangle+\frac{1}{2 L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2} \\
= & \langle\nabla f(y), y-w\rangle-\frac{1}{L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2}+\frac{1}{2 L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2} \\
= & \langle\nabla f(y), y-w\rangle-\frac{1}{2 L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2} .
\end{aligned}
$$

