Optimization for Data Science

Mini-batching, sampling, momentum and other tricks

Lecturer: Robert M. Gower & Alexandre Gramfort

Tutorials: Quentin Bertrand. Nidham Gazagnadou

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Baseline method: Stochastic Gradient Descent (SGD)

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Baseline method: Stochastic Gradient Descent (SGD)

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Baseline method: Stochastic Gradient Descent (SGD)

$$w^{t+1} = w^t - \gamma \frac{1}{b} \sum_{j \in B} \nabla f_j(w^t)$$

Sample mini-batch with $B \subset \{1, \dots, n\}$ with $|B|$

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Baseline method: Stochastic Gradient Descent (SGD)

$$w^{t+1} = w^t - \gamma \frac{1}{b} \sum_{j \in B} \nabla f_j(w^t)$$

• What should b and be?

Sample mini-batch with $B \subset \{1, \ldots, n\}$ with |B| = b

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Baseline method: Stochastic Gradient Descent (SGD)

$$w^{t+1} = w^t - \gamma \frac{1}{b} \sum_{j \in B} \nabla f_j(w^t)$$

- What should $\frac{b}{b}$ and $\frac{b}{b}$?
- How does b influence the stepsize ?

Sample mini-batch with $B \subset \{1, \ldots, n\}$ with |B| = b

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Baseline method: Stochastic Gradient Descent (SGD)

$$w^{t+1} = w^t - \gamma \frac{1}{b} \sum_{j \in B} \nabla f_j(w^t)$$

- What should b and γ be?
- How does **b** influence the stepsize γ ?
- How does the data influence the best mini-batch and stepsize?

Sample mini-batch with $B \subset \{1, \ldots, n\}$ with |B| = b

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, Goyal et al., CoRR 2017

Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning rate by k.

multiplied by k, multiply the learning rate by k.

Stochastic Reformulation of Finite sum problems

Random sampling vector $\boldsymbol{v} = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) \sim \mathcal{D}$ with $\mathbb{E}[\boldsymbol{v}_i] = 1, \text{ for } i = 1, \dots, n$

Random sampling vector $\boldsymbol{v} = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) \sim \mathcal{D}$ with $\mathbb{E}[\boldsymbol{v}_i] = 1, \text{ for } i = 1, \dots, n$

$$f(w) := \frac{1}{n} \sum_{i=1}^{n} f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[v_i] f_i(w) = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} v_i f_i(w)\right]$$

Random sampling vector $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_n) \sim \mathcal{D}$ with $\mathbb{E}[\mathbf{v}_i] = 1$, for $i = 1, \dots, n$

$$f(w) := \frac{1}{n} \sum_{i=1}^{n} f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[v_i] f_i(w) = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} v_i f_i(w)\right]$$
$$= f_v(w)$$

Random sampling vector $\boldsymbol{v} = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) \sim \mathcal{D}$ with $\mathbb{E}[\boldsymbol{v}_i] = 1, \text{ for } i = 1, \dots, n$

$$f(w) := \frac{1}{n} \sum_{i=1}^{n} f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[v_i] f_i(w) = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} v_i f_i(w)\right]$$
$$= f_v(w)$$

Stochastic Reformulation

 $\min_{w \in \mathbb{R}^d} \mathbb{E}\left[f_{\boldsymbol{v}}(w)\right]$

Minimizing the expectation of **random linear combinations** of original function

$$\min_{w \in \mathbf{R}^d} \mathbb{E}\left[f_{\mathbf{v}}(w) := \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(w) \right]$$

$$\min_{w \in \mathbf{R}^d} \mathbb{E} \left[f_{\mathbf{v}}(w) := \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(w) \right]$$

Sample
$$\boldsymbol{v}^t \sim \mathcal{D}$$
 i.i.d
 $w^{t+1} = w^t - \gamma \nabla f_{\boldsymbol{v}^t}(w^t)$

By design we have that $\mathbb{E}[\nabla f_{v^t}(w^t)] = \nabla f(w^t)$

$$\min_{w \in \mathbf{R}^d} \mathbb{E} \left[f_{\mathbf{v}}(w) := \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(w) \right]$$

Sample $\boldsymbol{v}^{t} \sim \mathcal{D}$ i.i.d $w^{t+1} = w^{t} - \gamma \nabla f_{\boldsymbol{v}^{t}}(w^{t})$ The distribution \mathcal{D} encodes any form of i.i.d mini-batching/ non-uniform sampling.

Example: Gradient descent

$$v \equiv (1, \dots, 1)$$
 $w^{t+1} = w^t - \gamma_t \nabla f(w^t)$

By design we have that $\mathbb{E}[\nabla f_{v^t}(w^t)] = \nabla f(w^t)$

$$\min_{w \in \mathbf{R}^{d}} \mathbb{E} \left[f_{\mathbf{v}}(w) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{v}_{i} f_{i}(w) \right]$$

Sample $\boldsymbol{v}^{t} \sim \mathcal{D}$ i.i.d $w^{t+1} = w^{t} - \gamma \nabla f_{\boldsymbol{v}^{t}}(w^{t})$ saves time for theorists: One representation for all forms of sampling

The distribution \mathcal{D} encodes any form of i.i.d mini-batching/ non-uniform sampling.

Example: Gradient descent

$$v \equiv (1, \dots, 1)$$
 $w^{t+1} = w^t - \gamma_t \nabla f(w^t)$

By design we have that $\mathbb{E}[\nabla f_{v^t}(w^t)] = \nabla f(w^t)$

Examples of arbitrary sampling: uniform single element

Random set

$$\mathbb{P}[S = \{i\}] = 1/n, \text{ for } i = 1, ..., n$$

Examples of arbitrary sampling: uniform single element

Random set

$$\mathbb{P}[S = \{i\}] = 1/n, \text{ for } i = 1, \dots, n$$

$$v_i = egin{cases} n & i \in S \ 0 & i
ot\in S \end{bmatrix}$$
 $\mathbb{E}[v_i] = 1$
Examples of arbitrary sampling: uniform single element

Random set

$$\mathbb{P}[S = \{i\}] = 1/n, \text{ for } i = 1, ..., n$$

$$\nabla f_{v}(w) = \nabla f_{i}(w)$$

$$\mathbf{E}[\nabla f_{v}(w)] = \nabla f(w)$$

Examples of arbitrary sampling: uniform single element

Random set
$$S \subset \{1, \dots, n\}, |S| = b$$

 $\mathbb{P}[i \in S] = b/n, \text{ for } i = 1, \dots, n$

$$v_i = egin{cases} rac{n}{b} & i \in S \ 0 & i
ot\in S \end{cases}$$
 $\mathbb{E}[v_i] = 1$

Mini-batch SGD without replacement Sample $v^t \sim D$ $w^{t+1} = w^t - \gamma \nabla f_{v^t}(w^t)$

 $\nabla f_{\boldsymbol{v}}(w) = \frac{1}{b} \sum_{i \in S} \nabla f_i(w)$

 $\mathbb{E}[\nabla f_v(w)] = \nabla f(w)$

Random set $S \subset \{1, \ldots, n\}, \mathbb{E}|S| = b$ $\mathbb{P}[i \in S] = p_i, \text{ for } i = 1, \ldots, n$

Random set $S \subset \{1, \ldots, n\}, \mathbb{E}|S| = b$ $\mathbb{P}[i \in S] = p_i, \text{ for } i = 1, \ldots, n$

Random set $S \subset \{1, \ldots, n\}, \mathbb{E}|S| = b$ $\mathbb{P}[i \in S] = p_i, \text{ for } i = 1, \ldots, n$

$$\nabla f_{v}(w) = \frac{n}{p_{i}} \sum_{i \in S} \nabla f_{i}(w)$$

$$\nabla f_{v}(w) = \nabla f(w)$$

Richtárik and Takáč (arXiv:1310.3438; Opt Letters 2016)

E

Random set $S \subset \{1, \dots, n\}, \mathbb{E}|S| = b$ $\mathbb{P}[i \in S] = p_i, \text{ for } i = 1, \dots, n$

$$v_i = egin{cases} rac{1}{p_i} & i \in S \ 0 & i
ot \in S \end{cases}$$
 $\mathbb{E}[v_i] = 1$

Arbitrary sampling SGD

Sample
$$\boldsymbol{v^{t}} \sim \mathcal{D}$$

 $w^{t+1} = w^{t} - \gamma \nabla f_{\boldsymbol{v^{t}}}(w^{t})$

$$\nabla f_{v}(w) = \frac{n}{p_{i}} \sum_{i \in S} \nabla f_{i}(w)$$
$$\mathbb{E}[\nabla f_{v}(w)] = \nabla f(w)$$

Richtárik and Takáč (arXiv:1310.3438; Opt Letters 2016)

SGD with arbitrary sampling

$$\min_{w \in \mathbf{R}^{d}} \mathbb{E} \left[f_{\boldsymbol{v}}(w) := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{v}_{i} f_{i}(w) \right]$$
Includes all forms of Sample $\boldsymbol{v}^{t} \sim \mathcal{D}$
We suppose $\boldsymbol{v}^{t+1} = \boldsymbol{w}^{t} - \gamma \nabla f_{\boldsymbol{v}^{t}}(\boldsymbol{w}^{t})$

SGD with arbitrary sampling

$$\min_{w \in \mathbf{R}^{d}} \mathbb{E} \left[f_{\boldsymbol{v}}(w) := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{v}_{i} f_{i}(w) \right]$$

$$\text{Sample } \boldsymbol{v}^{t} \sim \mathcal{D}$$

$$w^{t+1} = w^{t} - \gamma \nabla f_{\boldsymbol{v}^{t}}(w^{t})$$

How to analyse this general SGD?

In S

SGD with arbitrary sampling

$$\min_{w \in \mathbf{R}^{d}} \mathbb{E} \left[f_{\boldsymbol{v}}(w) := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{v}_{i} f_{i}(w) \right]$$
Includes all forms of SGD (including GD)
$$w^{t+1} = w^{t} - \gamma \nabla f_{\boldsymbol{v}^{t}}(w^{t})$$

How to analyse this general SGD?

Look at the extremes: GD and single element SGD Assumption and convergence of Gradient Descent and SGD

Reminder: Convergence GD strongly convex + smooth

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle \nabla f(w^t), w^* - w^t \rangle + \frac{1}{L^2} ||\nabla f(w^t)||_2^2$$

Now smoothness gives

$$f(w^*) - f(w) \le -\frac{1}{2L} ||\nabla f(w)||_2^2$$
$$||\nabla f(w)||_2^2 \le 2L(f(w) - f(w^*))$$

Assumptions and Convergence of **Gradient Descent** quasi strong convexity constant $f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2$ $\forall w$ Smoothness constant $||\nabla f(w) - \nabla f(w^*)||_2^2 \leq 2L (f(w) - f(w^*))$ $\forall w$

Assumptions and Convergence of
Gradient Descent

$$f(w^{*}) \ge f(w) + \langle \nabla f(w), w^{*} - w \rangle + \frac{\mu}{2} ||w^{*} - w||_{2}^{2} \quad \forall w$$

$$f(w^{*}) \ge f(w) + \langle \nabla f(w), w^{*} - w \rangle + \frac{\mu}{2} ||w^{*} - w||_{2}^{2} \quad \forall w$$
Smoothness constant

$$||\nabla f(w) - \nabla f(w^{*})||_{2}^{2} \le 2L (f(w) - f(w^{*})) \quad \forall w$$

$$w^{*} = \arg \min_{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$
Iteration complexity of gradient descent
Given $\epsilon > 0$ and $t \ge \frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right)$

$$\frac{||w^{t} - w^{*}||^{2}}{||w^{0} - w^{*}||^{2}} \le \epsilon$$

Assumptions and Convergence of Stochastic Gradient Descent

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2 \quad \forall w$$

Bigger smoothness constant/ stronger assumption

$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(w) - \nabla f_i(w^*)||_2^2 \le 2L_{\max} (f(w) - f(w^*)) \\ \forall w$$

Assumptions and Convergence of Stochastic Gradient Descent

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2 \quad \forall w$$

Bigger smoothness constant/ stronger assumption

$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(w) - \nabla f_i(w^*)||_2^2 \le 2L_{\max} (f(w) - f(w^*))$$

Definition
$$\sigma_*^2 := \frac{1}{n} \sum_{i=1}^n \|\nabla f_i(w^*)\|^2$$

Assumptions and Convergence of Stochastic Gradient Descent

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2 \quad \forall w$$

Bigger smoothness constant/ stronger assumption

$$\frac{1}{n} \sum_{i=1}^{n} ||\nabla f_i(w) - \nabla f_i(w^*)||_2^2 \le 2L_{\max} (f(w) - f(w^*)) \\ \forall w$$

$$w^{t+1} = w^{t} - \frac{1}{2L_{\max}} \nabla f_{j}(w^{t}) \qquad \text{Definition} \qquad \sigma_{*}^{2} := \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_{i}(w^{*})\|^{2}$$

$$\text{Iteration complexity of SGD}$$

$$t \ge \left(\frac{L_{\max}}{\mu} + \frac{\sigma_{*}^{2}}{\epsilon \mu^{2}}\right) \log\left(\frac{1}{\epsilon}\right) \qquad \bigoplus \qquad \frac{\mathbb{E}[\|w^{t} - w^{*}\|^{2}]}{\|w^{0} - w^{*}\|^{2}} \le \epsilon$$

$$\text{Needell, Srebro, Ward: Math. Prog. 2016.}$$

How do they compare?

In general:
$$L \leq L_{\max} \leq nL$$

Ass: Expected Smoothness. We write $(f, \mathcal{D}) \sim ES(\mathcal{L})$ when $\mathbb{E}[||\nabla f_{\boldsymbol{v}}(w) - \nabla f_{\boldsymbol{v}}(w^*)||_2^2] \leq 2\mathcal{L} (f(w) - f(w^*)) |_{\forall w}$

Ass: Expected Smoothness. We write $(f, \mathcal{D}) \sim ES(\mathcal{L})$ when $\mathbb{E}[||\nabla f_{\boldsymbol{v}}(w) - \nabla f_{\boldsymbol{v}}(w^*)||_2^2] \leq 2\mathcal{L} (f(w) - f(w^*)) |_{\forall w}$

$$\nabla f_v(w) = \frac{1}{n} \sum_{i=1}^n v_i \nabla f_i(w)$$

Expected smoothness gives awesome bound on 2nd moment

Normally bound on gradient is an <u>assumption</u>

Assumption There exists B > 0

 $\mathbb{E}[\|\nabla f_{\boldsymbol{v}}(w^t)\|^2] \leq B^2$

Recht, Wright & Niu, F. Hogwild: Neurips, 2011.

Hazan & Kale, JMLR 2014.

Rakhlin, Shamir, $\,\&\,$ Sridharan, ICML 2012

Shamir & Zhang, ICML 2013.

Expected smoothness gives awesome bound on 2nd moment

Normally bound on gradient is an <u>assumption</u>

Assumption There exists B > 0

 $\mathbb{E}[\|\nabla f_{\boldsymbol{v}}(w^t)\|^2] \leq B^2$

Recht, Wright & Niu, F. Hogwild: Neurips, 2011.

Hazan & Kale, JMLR 2014.

Rakhlin, Shamir, $\,\&\,$ Sridharan, ICML 2012

Shamir & Zhang, ICML 2013.

Expected smoothness gives awesome bound on 2nd moment

Normally bound on gradient is an <u>assumption</u>

Assumption There exists B > 0 $\mathbb{E}[\|\nabla f_v(w^t)\|^2] \le B^2$

Recht, Wright & Niu, F. Hogwild: Neurips, 2011.

Hazan & Kale, JMLR 2014.

Rakhlin, Shamir, & Sridharan, ICML 2012

Shamir & Zhang, ICML 2013.
Expected smoothness gives awesome bound on 2nd moment

Normally bound on gradient is an <u>assumption</u>

Assumption There exists B > 0 $\mathbb{E}[\|\nabla f_v(w^t)\|^2] \le B^2$

 $\sigma^{2} := \mathbb{E}[\|\nabla f_{v}(w^{*})\|^{2}]$ Lemma $(f, \mathcal{D}) \sim ES(\mathcal{L})$ $\mathbb{E}[\|\nabla f_{v}(w)\|^{2}] \leq 4\mathcal{L}(f(w) - f(w^{*})) + 2\sigma^{2}$ $\forall w$

Expected smoothness gives awesome bound on 2nd moment

 $f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2$

Theorem $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -quasi strongly convex

$$\mathbb{E}[\|w^{t} - w^{*}\|^{2}] \leq (1 - \gamma \mu)^{t} \|w^{0} - w^{*}\|^{2} + \frac{2\gamma c}{\mu}$$

 $\sigma^2 := \mathbb{E}[\|\nabla f_v(w^*)\|^2]$

.2

 $f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2$

Theorem $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -quasi strongly convex

$$\mathbb{E}[\|w^{t} - w^{*}\|^{2}] \leq (1 - \gamma \mu)^{t} \|w^{0} - w^{*}\|^{2} + \frac{2\gamma\sigma}{\mu}$$

Fixed stepsize $\gamma_t \equiv \gamma \leq \frac{1}{2\mathcal{L}}$

 $\sigma^2 := \mathbb{E}[\|\nabla f_v(w^*)\|^2]$

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2$$

Theorem $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -quasi strongly convex

$$\mathbb{E}[\|w^{t} - w^{*}\|^{2}] \leq (1 - \gamma \mu)^{t} \|w^{0} - w^{*}\|^{2} + \frac{2\gamma \sigma^{2}}{\mu}$$

Fixed stepsize $\gamma_t \equiv \gamma \leq \frac{1}{2\mathcal{L}}$

 $\sigma^2 := \mathbb{E}[\|\nabla f_v(w^*)\|^2]$

$$\begin{aligned} \mathbf{Corollary} \quad \gamma &= \frac{1}{2} \max\left\{\frac{1}{\mathcal{L}}, \frac{\epsilon\mu}{2\sigma^2}\right\} \\ t &\geq \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \quad \blacksquare \quad \frac{\mathbb{E}[\|w^t - w^*\|^2]}{\|w^0 - w^*\|^2} \leq \epsilon \end{aligned}$$

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w^* - w||_2^2$$

Theorem $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -quasi strongly convex

$$\mathbb{E}[\|w^{t} - w^{*}\|^{2}] \leq (1 - \gamma\mu)^{t} \|w^{0} - w^{*}\|^{2} + \frac{2\gamma\sigma}{\mu}$$

Fixed stepsize $\gamma_t \equiv \gamma \leq \frac{1}{2\mathcal{L}}$

 $\sigma^2 := \mathbb{E}[\|\nabla f_v(w^*)\|^2]$

$$\begin{aligned} \mathbf{Corollary} \quad \gamma &= \frac{1}{2} \max\left\{\frac{1}{\mathcal{L}}, \frac{\epsilon\mu}{2\sigma^2}\right\} \\ t &\geq \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \quad \blacksquare \quad \frac{\mathbb{E}[\|w^t - w^*\|^2]}{\|w^0 - w^*\|^2} \leq \epsilon \end{aligned}$$

saves time for theorists: Includes GD and SGD as special cases. Also tighter!

Proof is SUPER EASY:

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \gamma \nabla f_v(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f_v(w^t), w^t - w^* \rangle + \gamma^2 ||\nabla f_v(w^t)||_2^2. \\ \text{Taking expectation with respect to } v \sim \mathcal{D} \qquad \mathbb{E}[\nabla f_v(w)] = \nabla f(w) \\ \mathbb{E}_v \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\gamma \langle \nabla f(w^t), w^t - w^* \rangle + \gamma^2 \mathbb{E}_v \left[||\nabla f_v(w^t)||_2^2 \right] \\ \text{quasi strong conv} &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 - 2\gamma (f(w^t) - f(w^*)) + \gamma^2 \mathbb{E}_v \left[||\nabla f_v(w^t)||_2^2 \right] \\ &\leq (1 - \gamma \mu) ||w^t - w^*||_2^2 + 2\gamma (2\gamma \mathcal{L} - 1) (f(w) - f(w^*)) + 2\gamma^2 \sigma^2 \\ \text{Taking total expectation} \\ \mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] &\leq (1 - \gamma \mu) \mathbb{E} \left[||w^t - w^*||_2^2 + 2\gamma^2 \sigma^2 \right] \\ &= (1 - \gamma \mu)^{t+1} ||w^0 - w^*||_2^2 + 2\sum_{i=0}^t (1 - \gamma \mu)^i \gamma^2 \sigma^2 \\ &\leq (1 - \gamma \mu)^{t+1} ||w^0 - w^*||_2^2 + 2\frac{\gamma \sigma^2}{\mu} \qquad \sum_{i=0}^t (1 - \gamma \mu)^i = \frac{1 - (1 - \gamma \mu)^{t+1}}{\gamma \mu} \leq \frac{1}{\gamma \mu} \end{split}$$

Exercises on Sampling, Expected Smoothness + gradient noise

Optimal mini-batch sizes

$$\begin{aligned} \mathbf{Corollary}^{\gamma = \max\left\{\frac{1}{\mathcal{L}}, \frac{\epsilon\mu}{4\sigma^{2}}\right\}} \\ t \geq \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^{2}}{\epsilon\mu^{2}}\right\} \log\left(\frac{2}{\epsilon}\right) \quad \blacksquare \quad \frac{\mathbb{E}[\|w^{t} - w^{*}\|]}{\|w^{0} - w^{*}\|} \leq \epsilon \end{aligned}$$

$$C(b) := \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \times b$$

$$Corollary$$

$$t \ge \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \quad \bigoplus \quad \underbrace{\mathbb{E}[\|w^t - w^*\|]}_{\|w^0 - w^*\|} \le \epsilon$$

$$C(b) := \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \times b$$

$$Corollary$$

$$t \ge \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \quad \bigoplus \quad \underbrace{\mathbb{E}[\|w^t - w^*\|]}_{\|w^0 - w^*\|} \le \epsilon$$

$$C(b) := \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \times b$$
Total Complexity =
#stochastic gradient calculated
in each iteration
$$\operatorname{Corellary}_{t \ge \max\left\{\frac{1}{\mathcal{L}}, \frac{\epsilon\mu}{\epsilon\mu^2}\right\}}_{t \ge \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right)} \xrightarrow{\mathbb{E}[||w^t - w^*||]}_{||w^0 - w^*||} \le \epsilon$$

$$C(b) := \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \times b \qquad \text{Total Complexity} = \\ \#\text{stochastic gradient calculated} \\ \text{in each iteration} \\ \text{Coreliary} \\ t \ge \max\left\{\frac{1}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2}{\epsilon}\right) \qquad \qquad \mathbb{E}[\|w^t - w^*\|] \\ \|w^0 - w^*\| \le \epsilon \end{cases}$$

$$\mathcal{L} = \frac{n(b-1)}{b(n-1)}L + \frac{n-b}{b(n-1)}L_{\max}$$
$$\sigma^2 = \frac{n-b}{b(n-1)}\sigma_*^2$$

Total complexity is a simple function of mini-batch size b

Linearly increasing

b

n

 b^*

Optimal mini-batch size for models that interpolate data $\nabla f_i(w^*) = 0, \forall i$ $\times \log\left(\frac{2}{t}\right)$

$$C(\mathbf{b}) := \frac{2}{\mu(n-1)} \max\left\{ n(\mathbf{b}-1)L + (n-\mathbf{b})L_{\max}, \ \frac{2(n-\mathbf{b})\sigma_*^2}{\epsilon\mu} \right\}^{(\mathbf{c})}$$

Optimal mini-batch size for models that interpolate data $\nabla f_i(w^*) = 0, \forall i$ $C(b) := \frac{2}{\mu(n-1)} \max \left\{ n(b-1)L + (n-b)L_{\max}, \frac{2(n-b)\sigma_*^2}{\epsilon\mu} \right\}^{1/2}$

Optimal mini-batch size for models
that interpolate data
$$\nabla f_i(w^*) = 0, \forall i$$

 $C(b) := \frac{2}{\mu(n-1)} \max \left\{ n(b-1)L + (n-b)L_{\max}, \frac{2(n-b)\sigma_*^2}{\epsilon\mu} \right\}^{\times \log\left(\frac{2}{\epsilon}\right)}$
 $= \frac{2}{\mu(n-1)} \left(n(b-1)L + (n-b)L_{\max} \right)$

Optimal mini-batch size for models
that interpolate data
$$\nabla f_i(w^*) = 0, \forall i$$

 $C(b) := \frac{2}{\mu(n-1)} \max \left\{ n(b-1)L + (n-b)L_{\max}, \frac{2(n-b)\sigma_*^2}{\epsilon\mu} \right\}^2$

$$= \frac{2}{\mu(n-1)} \left(n(\mathbf{b}-1)L + (n-\mathbf{b})L_{\max} \right)$$

$$\gamma(\mathbf{b}) := \frac{n-1}{2} \frac{\mathbf{b}}{n(\mathbf{b}-1)L + (n-\mathbf{b})L_{\max}}$$

Optimal mini-batch size for models
that interpolate data
$$\nabla f_i(w^*) = 0, \forall i$$

 $C(b) := \frac{2}{\mu(n-1)} \max \left\{ n(b-1)L + (n-b)L_{\max}, \frac{2(n-b)\sigma_*^2}{\epsilon\mu} \right\}^{\log \left(\frac{2}{\epsilon}\right)}$
 $= \frac{2}{\mu(n-1)} \underbrace{(n(b-1)L + (n-b)L_{\max})}_{\text{Linearly increasing}}$
 $\gamma(b) := \frac{n-1}{2} \frac{b}{n(b-1)L + (n-b)L_{\max}}$
All gains in mini-batching are due to
multi-threading and cache memory? $b^* = 1$

Stochastic Gradient Descent $\gamma = 0.2$

Theorem $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -quasi strongly convex Learning rate with switch point $\gamma_t = \begin{cases} \frac{1}{2\mathcal{L}} & \text{for } t \leq 4\lceil \mathcal{L}/\mu \rceil \\ \frac{2t+1}{(t+1)^2\mu} & \text{for } t > 4\lceil \mathcal{L}/\mu \rceil \end{cases}$

Stochastic Gradient Descent with switch to decreasing stepsizes

Stochastic variance reduced methods

Simple Stochastic Reformulation

Random sampling vector $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$ with $\mathbb{E}[v_i] = 1$, for $i = 1, \ldots, n$

$$f(w) := \frac{1}{n} \sum_{i=1}^{n} f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[v_i] f_i(w) = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} v_i f_i(w)\right]$$
What to do about the variance?

What to do about the variance?

Original finite sum problem $\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$

Stochastic Reformulation

JU

 $\min_{w \in \mathbb{R}^d} \mathbb{E}\left[f_{\boldsymbol{v}}(w)\right]$

Minimizing the expectation of **random linear combinations** of original function

Controlled Stochastic Reformulation

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}(w) = \mathbb{E}[f_{\boldsymbol{v}}(w)] = \mathbb{E}[f_{\boldsymbol{v}}(w)] - \mathbb{E}[z_{\boldsymbol{v}}(w)] + \mathbb{E}[z_{\boldsymbol{v}}(w)]$$

Controlled Stochastic Reformulation

covariate $z_v(w) \in \mathbb{R}$

Cancel out

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}(w) = \mathbb{E}[f_{\boldsymbol{v}}(w)] = \mathbb{E}[f_{\boldsymbol{v}}(w)] - \mathbb{E}[z_{\boldsymbol{v}}(w)] + \mathbb{E}[z_{\boldsymbol{v}}(w)]$$

Controlled Stochastic Reformulation

covariate $z_v(w) \in \mathbb{R}$

Cancel out

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}(w) = \mathbb{E}[f_{\boldsymbol{v}}(w)] = \mathbb{E}[f_{\boldsymbol{v}}(w)] - \mathbb{E}[z_{\boldsymbol{v}}(w)] + \mathbb{E}[z_{\boldsymbol{v}}(w)]$$

$$\mathbb{E}\left[f_{\boldsymbol{v}}(w) - \mathbb{E}[z_{\boldsymbol{v}}(w)] + \mathbb{E}[z_{\boldsymbol{v}}(w)]\right]$$

 $= \mathbb{E}\left[f_{\boldsymbol{v}}(w) - z_{\boldsymbol{v}}(w) + \mathbb{E}[z_{\boldsymbol{v}}(w)]\right]$
Controlled Stochastic Reformulation

$$\frac{1}{n} \sum_{i=1}^{n} f_i(w) = \mathbb{E}[f_v(w)] = \mathbb{E}[f_v(w)] - \mathbb{E}[z_v(w)] + \mathbb{E}[z_v(w)]$$
$$= \mathbb{E}[f_v(w) - z_v(w) + \mathbb{E}[z_v(w)]]$$

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Controlled Stochastic Reformulation

$$\min_{w \in \mathbb{R}^d} \mathbb{E} \left[f_{\mathbf{v}}(w) - z_{\mathbf{v}}(w) + \mathbb{E}[z_{\mathbf{v}}(w)] \right]$$

Use covariates to control the variance

$$\min_{w \in \mathbb{R}^d} \mathbb{E} \left[f_{\mathbf{v}}(w) - z_{\mathbf{v}}(w) + \mathbb{E} [z_{\mathbf{v}}(w)] \right]$$

$$\min_{w \in \mathbb{R}^d} \mathbb{E} \left[f_{\boldsymbol{v}}(w) - z_{\boldsymbol{v}}(w) + \mathbb{E} [z_{\boldsymbol{v}}(w) \right]$$

$$Sample \ \boldsymbol{v}^t \sim \mathcal{D}$$

$$w^{t+1} = w^t - \gamma_t g_{\boldsymbol{v}^t}(w^t)$$

]

$$\begin{split} \min_{w \in \mathbb{R}^d} \mathbb{E} \left[f_v(w) - z_v(w) + \mathbb{E}[z_v(w)] \right] \\ \\ \text{Sample } v^t \sim \mathcal{D} \\ w^{t+1} = w^t - \gamma_t g_{v^t}(w^t) \\ \\ \\ g_v(w) := \nabla f_v(w) - \nabla z_v(w) + \mathbb{E}[\nabla z_v(w)$$

How

Sample
$$v^t \sim \mathcal{D}$$

 $w^{t+1} = w^t - \gamma_t g_{v^t}(w^t) := \nabla f_v(w) - \nabla z_v(w) + \mathbb{E}[\nabla z_v(w)]$

Sample
$$v^t \sim \mathcal{D}$$

 $w^{t+1} = w^t - \gamma_t g_{v^t}(w^t) := \nabla f_v(w) - \nabla z_v(w) + \mathbb{E}[\nabla z_v(w)]$

We would like:

$$g_{\mathbf{v}}(w) \approx \nabla f(w)$$

Sample
$$v^t \sim \mathcal{D}$$

 $w^{t+1} = w^t - \gamma_t g_{v^t}(w^t) := \nabla f_v(w) - \nabla z_v(w) + \mathbb{E}[\nabla z_v(w)]$
We would like: $g_v(w) \approx \nabla f(w)$ $\nabla z_v(w) \approx \nabla f_v(w)$

Sample
$$v^t \sim \mathcal{D}$$

 $w^{t+1} = w^t - \gamma_t g_{v^t}(w^t) := \nabla f_v(w) - \nabla z_v(w) + \mathbb{E}[\nabla z_v(w)]$
We would like: $g_v(w) \approx \nabla f(w)$ \longrightarrow $\nabla z_v(w) \approx \nabla f_v(w)$
Linear approximation
 $z_v(w) = f_v(\tilde{w}) + \langle \nabla f_v(\tilde{w}), w - \tilde{w} \rangle$
A reference point/ snap shot

$$w^{t+1} = w^t - \gamma_t g_{\boldsymbol{v}^t}(w^t)$$

$$w^{t+1} = w^t - \gamma_t g_{\boldsymbol{v}^t}(w^t)$$

Reference point
$$\tilde{w} \in \mathbb{R}^d$$
Sample $\nabla f_{v^t}(w^t), \quad v^t \sim \mathcal{D}$ Sampled i.i.dGrad. estimate $g_{v^t}(w^t) = \nabla f_{v^t}(w^t) - \nabla f_{v^t}(\tilde{w}) + \nabla f(\tilde{w})$ $\nabla z_{v^t}(w^t) = \nabla f_{v^t}(\tilde{w})$

$$w^{t+1} = w^t - \gamma_t g_{\boldsymbol{v}^t}(w^t)$$

Reference point
$$\tilde{w} \in \mathbb{R}^d$$
Sample $\nabla f_{v^t}(w^t), \quad v^t \sim \mathcal{D}$ Sampled i.i.dGrad. estimate $g_{v^t}(w^t) = \nabla f_{v^t}(w^t) - \nabla f_{v^t}(\tilde{w}) + \nabla f(\tilde{w})$ $z_{v^t}(w) = f_{v^t}(\tilde{w}) + \langle \nabla f_{v^t}(\tilde{w}), w - \tilde{w} \rangle$ $\nabla z_{v^t}(w^t) = \nabla f_{v^t}(\tilde{w})$

$$w^{t+1} = w^t - \gamma_t g_{\boldsymbol{v}^t}(w^t)$$

Reference point
$$\tilde{w} \in \mathbb{R}^d$$
Sample $\nabla f_{v^t}(w^t), \quad v^t \sim \mathcal{D}$ Sampled i.i.dGrad. estimate $g_{v^t}(w^t) = \nabla f_{v^t}(w^t) - \nabla f_{v^t}(\tilde{w}) + \nabla f(\tilde{w})$ $z_{v^t}(w) = f_{v^t}(\tilde{w}) + \langle \nabla f_{v^t}(\tilde{w}), w - \tilde{w} \rangle$ $\nabla z_{v^t}(w^t) = \nabla f_{v^t}(\tilde{w})$ $\mathbb{P}[\nabla z_{v^t}(w^t)] = \nabla f(\tilde{w})$

Iteration complexity for SVRG and SAGA for arbitrary sampling

Theorem for SVRG $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -strongly convex

stepsize
$$\gamma \leq \frac{1}{6\mathcal{L}}$$
 Iteration complexity $\approx O\left(\frac{\mathcal{L}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$

Sebbouh, Gazagnadou, Jelassi, Bach, G., 2019

Iteration complexity for SVRG and SAGA for arbitrary sampling

Theorem for SVRG $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -strongly convex

stepsize
$$\gamma \leq \frac{1}{6\mathcal{L}}$$
 Iteration complexity $\approx O\left(\frac{\mathcal{L}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$

Sebbouh, Gazagnadou, Jelassi, Bach, G., 2019

Theorem for SAGA (and the JacSketch family of methods) $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -quasi strongly convex stepsize $\gamma \leq \frac{1}{4\mathcal{L}}$ Iteration complexity $\approx O\left(\frac{\mathcal{L}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$

G., Bach, Richtarik, 2018

Iteration complexity for SVRG and SAGA for arbitrary sampling

Theorem for SVRG $(f, \mathcal{D}) \sim ES(\mathcal{L})$ and μ -strongly convex

Svrg Sebbouh, Gazagnadou, Jelassi, Bach, G, 2019 $C(b) = 2\left(\frac{n}{m} + 2b\right) \max\left\{\frac{3}{b}\frac{n-b}{n-1}\frac{L_{\max}}{\mu} + \frac{3n}{b}\frac{b-1}{n-1}\frac{L}{\mu}, m\right\}$

$$\gamma = \frac{1}{6} \frac{b(n-1)}{(n-b)L_{\max} + n(b-1)L}$$

SAGA Gazagnadou, G & Salmon, ICML 2019

$$C(b) = \max\left\{n\frac{b-1}{n-1}\frac{4L}{\mu} + \frac{n-b}{n-1}\frac{4L_{\max}}{\mu}, \ n + \frac{n-b}{n-1}\frac{4L_{\max}}{\mu}\right\}_{\times \log\left(\frac{2}{\epsilon}\right)}$$

$$\gamma = \frac{1}{4} \frac{b(n-1)}{\max\left\{n(b-1)L + (n-b)L_{\max}, (n-b)L_{\max} + \frac{n(n-1)\mu}{4}\right\}} \\$$
n
1
n
n
n

Predicts good total complexity

Take home message so far

Stochastic reformulations allow to view all variants as simple SGD

$$\min_{w \in \mathbf{R}^d} \mathbb{E}\left[f_{\mathbf{v}}(w) := \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(w)\right]$$

To analyse all forms of sampling used through expected smooth

 $\mathbb{E}[||\nabla f_{\boldsymbol{v}}(w) - \nabla f_{\boldsymbol{v}}(w^*)||_2^2] \leq \mathcal{L} (f(w) - f(w^*))$ $(f, \mathcal{D}) \sim ES(\mathcal{L})$

How to calculate optimal mini-batch size of SGD, SAGA and SVRG

Stepsize increase by orders when mini-batch size increases

Take home message so far

Stochastic reformulations allow to view all variants as simple SGD $\min_{w \in \mathbf{R}^d} \mathbb{E}\left[f_{\boldsymbol{v}}(w) := \frac{1}{n} \sum_{i=1}^n \boldsymbol{v}_i f_i(w)\right]$

To analyse all forms of sampling used through expected smooth

How to calculate optimal mini-batch size of SGD, SAGA and SVRG

Stepsize increase by orders when mini-batch size increases $\mathbb{E}[||\nabla f_{\boldsymbol{v}}(w) - \nabla f_{\boldsymbol{v}}(w^*)||_2^2] \leq \mathcal{L} (f(w) - f(w^*))$ $(f, \mathcal{D}) \sim ES(\mathcal{L})$

Momentum

Issue with Gradient Descent

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

Baseline method: Gradient Descent (GD)

Issue with Gradient Descent

Issue with Gradient Descent

Adding some Momentum to GD

Heavey Ball Method: $w^{t+1} = w^t - \gamma \nabla f(w^t) + \beta(w^t - w^{t-1})$

Adds "Inertia" to update

Adding some Momentum to GD

GD with momentum:

$$\begin{split} m^t &= \beta \, m^{t-1} + \nabla f(w^t) \\ w^{t+1} &= w^t - \gamma \, m^t \end{split}$$

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^t - \gamma m^t$$

= $w^t - \gamma (\beta m^{t-1} + \nabla f(w^t))$
= $w^t - \gamma \nabla f(w^t) - \gamma \beta m^{t-1}$
= $w^t - \gamma \nabla f(w^t) + \frac{\gamma \beta}{\gamma} (w^t - w^{t-1})$

GD with momentum:

1

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

$$w^{t+1} = w^t - \gamma m^t$$

= $w^t - \gamma (\beta m^{t-1} + \nabla f(w^t))$
$$w^{t-1} = -\frac{1}{\gamma} (w^t - w^{t-1})$$

= $w^t - \gamma \nabla f(w^t) - \gamma \beta m^{t-1}$
= $w^t - \gamma \nabla f(w^t) + \frac{\gamma \beta}{\gamma} (w^t - w^{t-1})$

GD with momentum:

1

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t},$$

GD with momentum:

$$m^{t} = \beta m^{t-1} + \nabla f(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t},$$

$$\begin{split} w^{t+1} &= w^t - \gamma \, m^t \\ &= w^t - \gamma \left(\beta m^{t-1} + \nabla f(w^t)\right) \qquad \stackrel{m^{t-1} = -\frac{1}{\gamma} (w^t - w^{t-1})}{\\ &= w^t - \gamma \, \nabla f(w^t) - \gamma \beta \, m^{t-1} \\ &= w^t - \gamma \, \nabla f(w^t) + \frac{\gamma \beta}{\gamma} \left(w^t - w^{t-1}\right) \end{split}$$
Heavey Ball Method:

$$w^{t+1} = w^t - \gamma \, \nabla f(w^t) + \beta (w^t - w^{t-1})$$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Theorem Let f be μ -strongly convex and L-smooth, that is

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If $\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges
momentum parameter
 $\|w^t - w^*\| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^t \|w^0 - w^*\|$
 $\kappa := L/\mu$

Convergence of Gradient Descent with

Momentum

Polyak 1964

Let f be μ -strongly convex and L-smooth, that is Theorem

stepsize
$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w \in \mathbb{R}^d$$

If $\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then SGDm converges
momentum parameter
 $\|w^t - w^*\| \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^t \|w^0 - w^*\|$
 $\kappa := L/\mu$
Corollary $t \geq \frac{1}{\sqrt{\kappa} + 1} \log\left(\frac{1}{\epsilon}\right)$ $\|w^t - w^*\| \leq \epsilon$

 $\|w^0 - w^*\|$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^2 f(w_s) ds(w^t - w^*) = \nabla f(w^t) - \nabla f(w^*) = \nabla f(w^t)$$

$$w_s := w^* + s(w^t - w^*)$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^{2} f(w_{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w_{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^{2} f(w_{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w_{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right)(w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right)(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{s}$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^{2} f(w_{s}) ds(w^{t} - w^{*}) = \nabla f(w^{t}) - \nabla f(w^{*}) = \nabla f(w^{t})$$

$$w_{s} := w^{*} + s(w^{t} - w^{*})$$

$$w^{t+1} - w^{*} = w^{t} - w^{*} - \gamma \nabla f(w^{t}) + \beta(w^{t} - w^{t-1}) + w^{*} - w^{*}$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) + \beta(w^{t} - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^{2} f(w^{s})\right) (w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

$$= A_{s}(w^{t} - w^{*}) - \beta(w^{t-1} - w^{*})$$

Fundamental Theorem of Calculus

$$\int_{s=0}^{1} \nabla^2 f(w_s) ds(w^t - w^*) = \nabla f(w^t) - \nabla f(w^*) = \nabla f(w^t)$$

$$w_s := w^* + s(w^t - w^*)$$

$$w^{t+1} - w^* = w^t - w^* - \gamma \nabla f(w^t) + \beta(w^t - w^{t-1}) + w^* - w^*$$

$$= \left(I - \gamma \int_{s=0}^{1} \nabla^2 f(w^s)\right)(w^t - w^*) + \beta(w^t - w^{t-1})$$

$$= \left((1 + \beta)I - \gamma \int_{s=0}^{1} \nabla^2 f(w^s)\right)(w^t - w^*) - \beta(w^{t-1} - w^*)$$

$$= A_s(w^t - w^*) - \beta(w^{t-1} - w^*)$$
Depends on past. Difficult recurrence

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} z^t$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} z^t - \text{Simple recurrence!}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} \in \mathbb{R}^{2d}$$

$$z^{t+1} = \begin{bmatrix} w^{t+1} - w^* \\ w^t - w^* \end{bmatrix} = \begin{bmatrix} A_s(w^t - w^*) - \beta(w^{t-1} - w^*) \\ w^t - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \begin{bmatrix} w^t - w^* \\ w^{t-1} - w^* \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} z^t \qquad \text{Simple recurrence!}$$
$$\|z^{t+1}\| \leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\|$$

$$\|z^{t+1}\| \leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\|$$
$$\|A\| := \max_{i=1,\dots,2n} |\lambda_i(A)|$$

$$\|z^{t+1}\| \leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\|$$
$$\|A\| := \max_{i=1,\dots,2n} |\lambda_i(A)|$$

EXE on Eigenvalues:

If
$$\gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ then
$$\left\| \begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix} \right\| = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

$$\begin{aligned} \|z^{t+1}\| &\leq \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| \|z^t\| \\ \|A\| &\coloneqq \max_{i=1,\dots,2n} |\lambda_i(A)| \\ (1+\beta)I - \gamma \int_{s=0}^1 \nabla^2 f(w^s) \\ \text{If } \gamma &= \frac{4}{(\sqrt{L} + \sqrt{\mu})^2} \text{ and } \beta &= \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} \text{ then} \\ \|\begin{bmatrix} A_s & -I\beta \\ I & 0 \end{bmatrix}\| &= \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \end{aligned}$$

Adding Momentum to SGD

Rumelhart, Hinton, Geoffrey, Ronald, 1986, Nature

SGD with momentum (SGDm):

$$m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$$
$$w^{t+1} = w^{t} - \gamma m^{t}$$

Sampled i.i.d $j \in \{1, \dots, n\}$ $j \sim \frac{1}{n}$

SGDm and Averaging

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ $= \beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$

SGDm and Averaging

 $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$ = $\beta m^{t-2} + \nabla f_{j_{t}}(w^{t}) + \beta \nabla f_{j_{t-1}}(w^{t-1})$ = $\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i})$ $m^{0} = 0$

SGDm and Averaging $m^t = \beta m^{t-1} + \nabla f_{j_t}(w^t)$ $= \beta m^{t-2} + \nabla f_{i_t}(w^t) + \beta \nabla f_{i_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \qquad m^{0} = 0$ SGD with momentum (SGDm): $w^{t+1} = w^t - \gamma \sum \beta^i \nabla f_{j_{t-i}}(w^{t-i})$ i=1

SGDm and Averaging $m^t = \beta m^{t-1} + \nabla f_{j_t}(w^t)$ $= \beta m^{t-2} + \nabla f_{i_t}(w^t) + \beta \nabla f_{i_{t-1}}(w^{t-1})$ $= \sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \qquad m^{0} = 0$ SGD with momentum (SGDm): $w^{t+1} = w^t - \gamma \sum \beta^i \nabla f_{j_{t-i}}(w^{t-i})$

Acts like an approximate variance reduction since

i=1

SGDm and Averaging $m^{t} = \beta m^{t-1} + \nabla f_{j_{t}}(w^{t})$

 $= \beta m^{t-2} + \nabla f_{j_t}(w^t) + \beta \nabla f_{j_{t-1}}(w^{t-1})$

$$= \sum_{i=1}^{l} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \qquad m^{0} = 0$$

SGD with momentum (SGDm):

$$w^{t+1} = w^t - \gamma \sum_{i=1}^t \beta^i \nabla f_{j_{t-i}}(w^{t-i})$$

Acts like an approximate variance reduction since

$$\sum_{i=1}^{t} \beta^{i} \nabla f_{j_{t-i}}(w^{t-i}) \approx \sum_{i=1}^{n} \frac{1}{n} \nabla f_{i}(w^{t})$$

RMG, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin and Peter Richtárik (2019), ICML **SGD: general analysis and improved rates**

RMG, P. Richtarik, F. Bach (2018), preprint online Stochastic quasi-gradient methods: Variance reduction via Jacobian sketching

N. Gazagnadou, RMG, J. Salmon (2019) , ICML 2019. **Optimal mini-batch and step sizes for SAGA**

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, RMG Neurips 2019, preprint online. **Towards closing the gap between the theory and practice of SVRG**