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Sample mini-batch with

The Stochastic Gradient Method

 What should b and   be?
 How does b influence the stepsize   ?
 How does the data influence the best 

mini-batch and stepsize?
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SGD with arbitrary sampling 

How to analyse this general SGD?

Includes all forms of 
SGD (including GD)

Look at the extremes:
 GD and single element SGD
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Now smoothness 
gives
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Assumptions and Convergence of 
Stochastic Gradient Descent

Iteration complexity of SGDIteration complexity of SGD

Definition Definition 

Bigger smoothness constant/ stronger assumption

Needell, Srebro, Ward: Math. Prog, 2016.
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GDGD SGDSGD

In general:In general:How do they compare? 

Need new “interpolating” 
notion of smoothness

When n is big
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Ass: Expected Smoothness.  We write                      when Ass: Expected Smoothness.  We write                      when 

Key constant: Expected smoothness

Lemma: Lemma: 

Rough estimate 
(we can do better)

Expected smoothness constant
Depends on v and f 

RMG, Richtárik and Bach (arXiv:1805.02632, 2018)

Definition: Gradient noiseDefinition: Gradient noise

Generalization of 
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Main Theorem (Linear convergence to a neighborhood)

Theorem Theorem 

Fixed stepsize 

saves time for theorists: Includes GD and 
SGD as special cases. Also tighter!



Proof is SUPER EASY:

Taking expectation with respect to

Taking total expectation
Lemma Lemma 

quasi strong conv



Exercises on Sampling, Expected 
Smoothness + gradient noise
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CorollaryCorollary

Total complexity for mini-batch SGD

Total complexity is a simple 
function of mini-batch size b

Total Complexity =  
#stochastic gradient calculated

 in each iteration
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Optimal mini-batch size for models 
that interpolate data

Linearly increasing

increases with b

All gains in mini-batching are due to 
multi-threading and cache memory?



Stochastic Gradient Descent 
𝛄 = 0.2
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109
Stochastic Gradient Descent with 
switch to decreasing stepsizes

Switch point



Stochastic variance reduced 
methods 
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Original finite 
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Simple Stochastic Reformulation

What to do about the variance?
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Linear approximationLinear approximation

Choosing the covariate

We would like:

A reference point/ snap shot
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Theorem for SVRG  Theorem for SVRG  

stepsize Iteration complexity

Sebbouh, Gazagnadou, Jelassi, Bach, G., 2019 

Theorem for SAGA (and the JacSketch family of methods)  Theorem for SAGA (and the JacSketch family of methods)  

stepsize Iteration complexity

G., Bach, Richtarik, 2018

Missing details due to extra definitions
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Total Complexity of mini-batch 
SAGA

Linearly increasing Linearly decreasing

Always smaller
than 25% of data

Gazagnadou, G & Salmon, ICML 2019
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Total Complexity of mini-batch 
SAGA

Slice data:
(n,d) = (53’500, 386)

Predicts good
 total complexity
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Issue with Gradient Descent

Step size/
 Learning rate



Max local rateMax local rate

Local rate of changeLocal rate of change

Issue with Gradient Descent

GD is the “steepest descent”



Issue with Gradient Descent

Solution

Get’s stuck in “flat” valleys Give momentum to keep going
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GD with momentum (GDm):GD with momentum (GDm):
Adds “Momentum” 

to update
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Theorem Theorem 
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momentum parameter

CorollaryCorollary

Polyak 1964
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Fundamental Theorem of CalculusFundamental Theorem of Calculus

Proof sketch: GDm convergence

Depends on past. Difficult recurrence
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Stochastic Heavey Ball Method:Stochastic Heavey Ball Method:

Adding Momentum to SGD

Adds “Inertia” to update

SGD with momentum (SGDm):SGD with momentum (SGDm):

Sampled i.i.d
  

Rumelhart, Hinton, 
Geoffrey, Ronald, 
1986, Nature
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RMG, P. Richtarik, F. Bach (2018), preprint online 
Stochastic quasi-gradient methods: Variance 
reduction via Jacobian sketching

N. Gazagnadou, RMG, J. Salmon (2019) , ICML 2019. 
Optimal mini-batch and step sizes for SAGA 

RMG, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, 
Egor Shulgin and Peter Richtárik (2019), ICML
 SGD: general analysis and improved rates

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, RMG 
Neurips 2019, preprint online. Towards closing the 
gap between the theory and practice of SVRG
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