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M. Schmidt, N. Le Roux, F. Bach (2016), 
Mathematical Programming Minimizing 
Finite Sums with the Stochastic Average 
Gradient.

Sébastien Bubeck (2015)
Foundations and Trends
Convex Optimization: Algorithms and 
Complexity

How to transform 
convergence results into 

iteration complexity

Section 1.3.5, R.M. Gower, Ph.d thesis: Sketch and 
Project: Randomized Iterative Methods for Linear Systems 
and Inverting Matrices University of Edinburgh, 2016

RMG, P. Richtárik and Francis Bach (2018)
Stochastic quasi-gradient methods: 
variance reduction via Jacobian sketching



Solving the Finite Sum Training 
Problem



A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms



SGD shrinking stepsize

Convergence for Strongly Convex
● f(w) is     - strongly convex
● Subgradients bounded 



SGD Theory

SGD recap



SGD initially fast, slow later

SGD suffers from 
high variance



Can we get best of both?

Today we learn 
about methods 
like this one



Variance reduced methods



Build an Estimate of the Gradient

Instead of using directly
Use             to update estimate 
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Covariates

Let x and z be random variables. We 
say that x and z are covariates if: 
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Covariates

Let x and z be random variables. We 
say that x and z are covariates if: 

Variance Reduced Estimate:



SVRG: Stochastic Variance Reduced 
Gradients 

grad estimate

Reference point

Sample 



SVRG: Stochastic Variance Reduced 
Gradients 

Freeze reference point 
for m iterations



SAGA: Stochastic Average Gradient 
unbiased version

grad estimate

Store gradient

Sample 



SAGA: Stochastic Average Gradient



SAGA: Stochastic Average Gradient

Stores a         matrixNo inner loop, rolling update



SAG: Stochastic Average Gradient 
(Biased version)

grad estimate

Store gradient

Sample 



SAG: Stochastic Average Gradient
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algorithm so G is updated efficiently at each iteration. 
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The Stochastic Average Gradient



The Stochastic Average Gradient

How to prove this converges? Is this the only option?



Stochastic Gradient Descent 
α =0.5



Convergence Theorems



Smoothness + convexity 

Strong Convexity 

Assumptions for Convergence

EXE:



Convergence SVRG

Theorem 

  In practice use 

Johnson, R. & Zhang, T. Accelerating Stochastic 
Gradient Descent using Predictive Variance 
Reduction, NIPS 2013



Convergence SAG

Theorem SAG

  A practical 
convergence result!

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.

Because of biased gradients, difficult proof 
that relies on computer assisted steps



Convergence SAGA

Theorem SAGA

  An even more practical 
convergence result!

A. Defazio,  F. Bach and J. Lacoste-Julien (2014)
NIPS, SAGA: A Fast Incremental Gradient Method 
With Support for Non-Strongly Convex Composite 
Objectives.

Much easier proof due to unbiased gradients



SGD 

Comparisons in complexity for strongly 
convex

Gradient descent

Approximate solution

SVRG/SAGA/SAG

Variance reduction faster than GD when

How did I get these 
complexity results from 
the convergence results?

Section 1.3.5, R.M. Gower, Ph.d thesis: Sketch and 
Project: Randomized Iterative Methods for Linear Systems 
and Inverting Matrices University of Edinburgh, 2016



Finite Sum Training Problem 

Practicals implementation of SAG 
for Linear Classifiers

L2 regularizor + 
linear hypothesis
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Finite Sum Training Problem 

Practicals implementation of SAG 
for Linear Classifiers

L2 regularizor + 
linear hypothesis

Only store real number

Nonlinear 
in w

Linear 
in w

Stoch. gradient estimate

Full gradient estimate

Reduce 
Storage 
to O(n)



Take for home Variance 
Reduction

● Variance reduced methods use only one stochastic gradient per 
iteration and converge linearly on strongly convex functions
 

● Choice of fixed stepsize possible
 

● SAGA only needs to know the smoothness parameter to work, but 
requires storing n past stochastic gradients

● SVRG only has O(d) storage, but requires full gradient 
computations every so often. Has an extra “number of inner 
iterations” parameter to tune



Proving Convergence of SVRG 



Proof:

  Unbiased estimatorTaking expectation with respect to j

Must 
control this!



Smoothness Consequences I
Smoothness 

EXE: Lemma 1 

Proof:



Smoothness 

Smoothness Consequences II

EXE: Lemma 2 

Proof:
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Smoothness 

Smoothness Consequences II

EXE: Lemma 2 

Proof:

Lemma 1



Bounding gradient estimate

EXE: Lemma 3 

Proof:  
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Bounding gradient estimate

EXE: Lemma 3 

Proof:  

Lemma 2



Proof:

  Unbiased estimatorTaking expectation with respect to j

Must 
control this!



Proof (continued I):

  Unbiased estimatorTaking expectation with respect to j



Proof (continued I):

  Unbiased estimatorTaking expectation with respect to j
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Proof (continued II):

Jensen’s 
inequality

Re-arranging again



Proof (continued II):

Jensen’s 
inequality

Re-arranging again

 = 7/8 
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