Optimization for Machine Learning

Stochastic Variance Reduced Gradient Methods

Lecturers: Francis Bach & Robert M. Gower

Tutorials: Hadrien Hendrikx, Rui Yuan, Nidham Gazagnadou

African Master's in Machine Intelligence (AMMI), Kigali

References for this class

Sébastien Bubeck (2015) Foundations and Trends **Convex Optimization: Algorithms and Complexity**

M. Schmidt, N. Le Roux, F. Bach (2016), Mathematical Programming **Minimizing Finite Sums with the Stochastic Average Gradient.**

RMG, P. Richtárik and Francis Bach (2018) Stochastic quasi-gradient methods: variance reduction via Jacobian sketching

How to transform convergence results into iteration complexity

Section 6.3:

Section 1.3.5, R.M. Gower, Ph.d thesis: Sketch and Project: Randomized Iterative Methods for Linear Systems and Inverting Matrices University of Edinburgh, 2016 Solving the Finite Sum Training Problem

Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

SGD shrinking stepsize

SGD 1.0: Descreasing stepsize
Set
$$w^0 = 0$$
, choose $\alpha_t > 0$, $\alpha_t = \frac{\alpha}{\sqrt{t+1}}$,
for $t = 0, 1, 2, \dots, T-1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
Output w^T

Convergence for Strongly Convex

- f(w) is λ strongly convex
- Subgradients bounded

$$\alpha_t = O\left(\frac{1}{\lambda t}\right) \quad \Rightarrow \quad \mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\lambda T}\right)$$

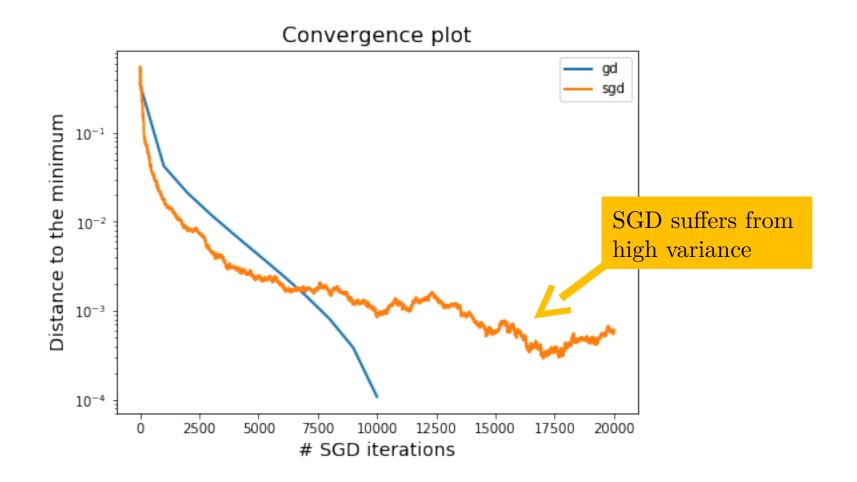
SGD recap

SGD 1.0: Descreasing stepsize
Set
$$w^0 = 0$$

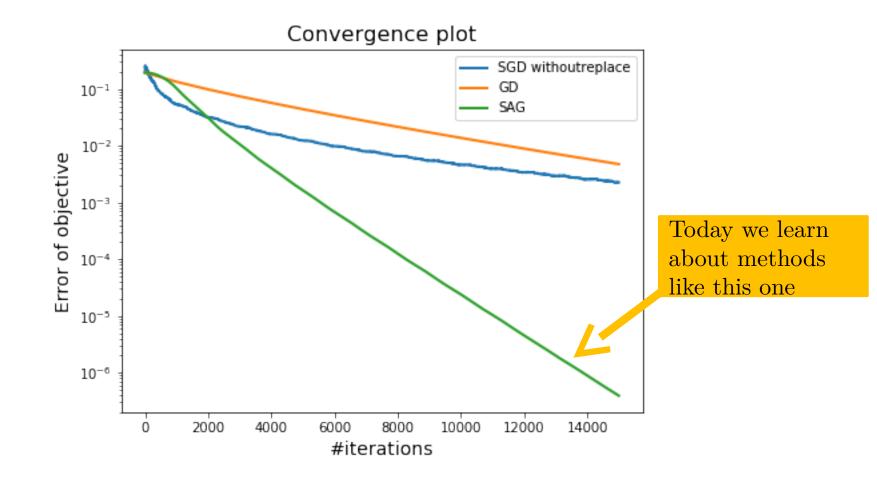
Choose $\alpha_t > 0, \ \alpha_t \to 0, \ \sum_{t=0}^{\infty} \alpha_t = \infty$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
Output w^T

SGD Theory
$$\alpha_t = O\left(\frac{1}{t+1}\right) \quad \Rightarrow \quad \mathbb{E}\|w^t - w^*\|^2 \le O\left(\frac{1}{t}\right)$$

SGD initially fast, slow later



Can we get best of both?



Variance reduced methods

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Similar

$$g^t \approx \nabla f(w^t)$$

Converges in L2

$$\mathbb{E}||g^t - \nabla f(w^t)||_2^2 \xrightarrow[t \to \infty]{} 0$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Typically unbiased $\mathbf{E}[g^t] = \nabla f(w^t)$

Similar

$$g^t \approx \nabla f(w^t)$$

Converges in L2

$$\mathbb{E}||g^t - \nabla f(w^t)||_2^2 \xrightarrow[t \to \infty]{} 0$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

 $\mathbb{E}||g^t - \nabla f(w^t)||_2^2$

We would like gradient estimate such that:

Typically unbiased $\mathbf{E}[g^t] = \nabla f(w^t)$

Similar

 $g^t \approx \nabla f(w^t)$ Solves problem of $\mathbb{E}||\nabla f_j(w)||_2^2 \leq B^2$

Converges in L2

Let x and z be random variables. We say that x and z are covariates if:

Variance Reduced Estimate:

$$\operatorname{cov}(x,z) \ge 0$$

$$x_z = x - z + \mathbb{E}[z]$$

Covariates

 $\operatorname{cov}(x, z) := \mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])]$

Let x and z be random variables. We say that x and z are covariates if:

$$\bigvee_{\operatorname{cov}}(x,z) \ge 0$$

$$x_z = x - z + \mathbb{E}[z]$$

Variance Reduced Estimate:

EXE:

- 1. Show that $\mathbb{E}[x_z] = \mathbb{E}[x]$
- 2. $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2] = ?$
- 3. When is $\mathbb{VAR}[x_z] \leq \mathbb{VAR}[x]$

Covariates

 $\operatorname{cov}(x, z) := \mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])]$

Let x and z be random variables. We say that x and z are covariates if:

$$\operatorname{cov}(x,z) \ge 0$$

 $x_z = x - z + \mathbb{E}[z]$

Variance Reduced Estimate:

EXE:

- 1. Show that $\mathbb{E}[x_z] = \mathbb{E}[x]$
- 2. $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2] = ?$
- 3. When is $\mathbb{VAR}[x_z] \leq \mathbb{VAR}[x]$

$$\mathbb{E}[(x_z - \mathbb{E}[x_z])^2] = \mathbb{E}[(x - \mathbb{E}[x] - (z - \mathbb{E}[z]))^2]$$

= $\mathbb{E}[(x - \mathbb{E}[x])^2] - 2\mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])]$
+ $\mathbb{E}[(z - \mathbb{E}[z])^2]$
= $\mathbb{VAR}[x] - 2\mathrm{cov}(x, z) + \mathbb{VAR}[z]$

SVRG: Stochastic Variance Reduced Gradients

$$w^{t+1} = w^t - \alpha g^t$$

Reference point
$$\tilde{w} \in \mathbb{R}^d$$
Sample $\nabla f_i(w^t), \quad i \in \{1, \dots, n\}$ uniformlygrad estimate $g^t = \nabla f_i(w^t) - \nabla f_i(\tilde{w}) + \nabla f(\tilde{w})$ $x_z = -x - z + \mathbb{E}[z]$

SVRG: Stochastic Variance Reduced Gradients

Set
$$w^0 = 0$$
, choose $\alpha > 0, m \in \mathbb{N}$
 $\tilde{w}^0 = w^0$
for $t = 0, 1, 2, \dots, T - 1$
calculate $\nabla f(\tilde{w}^t)$
 $w^0 = \tilde{w}^t$
for $k = 0, 1, 2, \dots, m - 1$
sample $i \in \{1, \dots, n\}$
 $g^k = \nabla f_i(w^k) - \nabla f_i(\tilde{w}^t) + \nabla f(\tilde{w}^t)$
 $w^{k+1} = w^k - \alpha g^k$
Option I: $\tilde{w}^{t+1} = w^m$
Option II: $\tilde{w}^{t+1} = \frac{1}{m} \sum_{i=0}^{m-1} w^i$
Output \tilde{w}^T

SAGA: Stochastic Average Gradient unbiased version

$$w^{t+1} = w^t - \alpha g^t$$

Sample

$$\nabla f_i(w^t), \quad i \in \{1, \dots, n\}$$
 uniformly

grad estimate

$$g^t = \nabla f_i(w^t) - \nabla f_i(w^t_i) + \frac{1}{n} \sum_{j=1}^n \nabla f_j(w^t_j)$$

$$x_z = x - z + \mathbb{E}[z]$$

Store gradient

$$\nabla f_i(w_i^t) = \nabla f_i(w^t), \quad \nabla f_i(w_j^{t+1}) = \nabla f_i(w_j^t)$$
$$\forall j \neq i$$

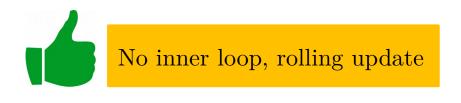
SAGA: Stochastic Average Gradient

Set
$$w^0 = 0, g_i = \nabla f_i(w^0)$$
, for $i = 1..., n$
Choose $\alpha > 0$
for $t = 0, 1, 2, ..., T - 1$
sample $i \in \{1, ..., n\}$
 $g^t = \nabla f_i(w^t) - g_i + \frac{1}{n} \sum_{j=1}^n g_j$
 $w^{t+1} = w^t - \alpha g^t$
 $g_i = \nabla f_j(w_i^t)$
Output w^T

SAGA: Stochastic Average Gradient

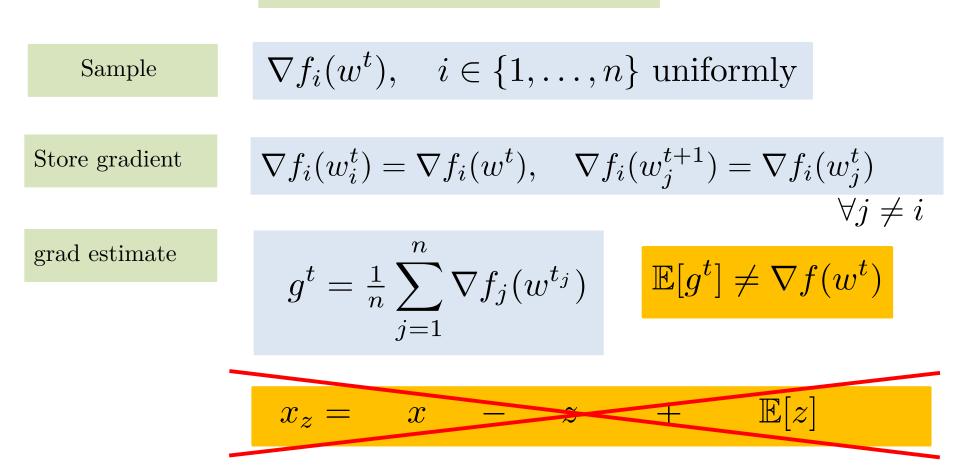
Set
$$w^0 = 0, g_i = \nabla f_i(w^0)$$
, for $i = 1..., n$
Choose $\alpha > 0$
for $t = 0, 1, 2, ..., T - 1$
sample $i \in \{1, ..., n\}$
 $g^t = \nabla f_i(w^t) - g_i + \frac{1}{n} \sum_{j=1}^n g_j$
 $w^{t+1} = w^t - \alpha g^t$
 $g_i = \nabla f_j(w_i^t)$
Output w^T

Stores a $d \times n$ matrix



SAG: Stochastic Average Gradient (Biased version)

$$w^{t+1} = w^t - \alpha g^t$$



SAG: Stochastic Average Gradient

Set
$$w^0 = 0, g_i = \nabla f_i(w^0)$$
, for $i = 1, ..., n$
Choose $\alpha > 0$
for $t = 0, 1, 2, ..., T - 1$
sample $i \in \{1, ..., n\}$
 $g_i = \nabla f_i(w^t)$ (update grad)
 $g^t = \frac{1}{n} \sum_{j=1}^n g_j$
 $w^{t+1} = w^t - \alpha g^t$
Output w^T

 $d \times n$

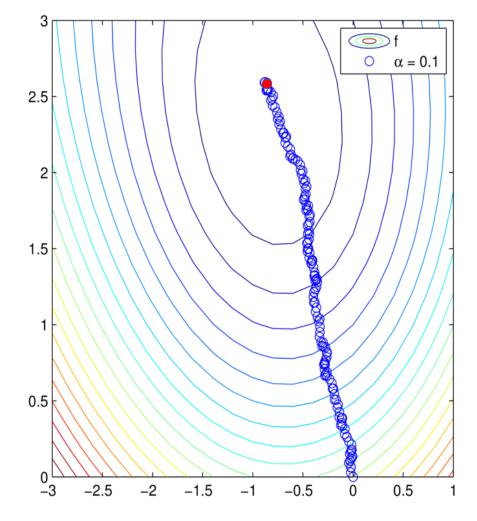
EXE: Introduce a variable $G = (1/n) \sum_{j=1} g_j$. Re-write the SAG algorithm so G is updated efficiently at each iteration.

SAG: Stochastic Average Gradient

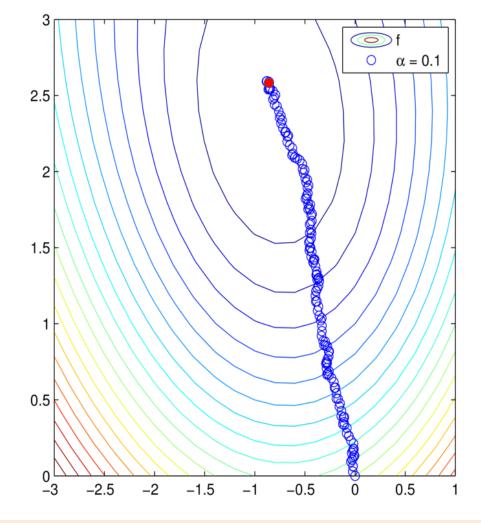
Set
$$w^0 = 0, g_i = \nabla f_i(w^0)$$
, for $i = 1, ..., n$
Choose $\alpha > 0$
for $t = 0, 1, 2, ..., T - 1$
sample $i \in \{1, ..., n\}$
 $g_i = \nabla f_i(w^t)$ (update grad)
 $g^t = \frac{1}{n} \sum_{j=1}^n g_j$
 $w^{t+1} = w^t - \alpha g^t$
Output w^T
Very easy to implement
Stores a $d \times n$ matrix

EXE: Introduce a variable $G = (1/n) \sum_{j=1} g_j$. Re-write the SAG algorithm so G is updated efficiently at each iteration.

The Stochastic Average Gradient

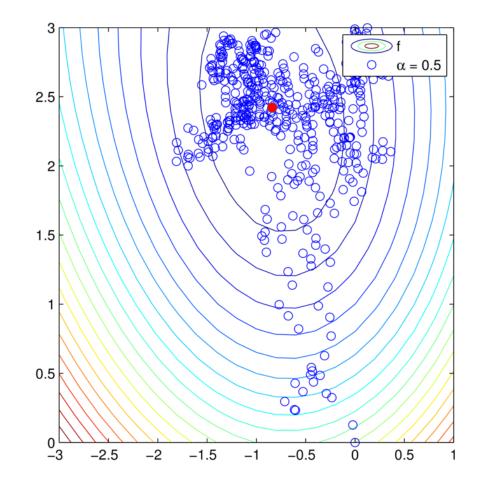


The Stochastic Average Gradient



How to prove this converges? Is this the only option?

Stochastic Gradient Descent α =0.5



Convergence Theorems

Assumptions for Convergence

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$

Smoothness + convexity $f_i(y) + \langle \nabla f_i(y), w - y \rangle \leq f_i(w) \leq f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2$ for i = 1, ..., n

EXE: Calculate
$$L_i$$
 and $L_{\max} := \max_{i=1,...,n} L_i$ for
1. $f(w) = \frac{1}{2} ||Xw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$, where $X \in \mathbb{R}^{n \times d}$
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, x_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

Convergence SVRG

Theorem

If f(w) is λ -strongly convex, $f_i(w)$ is L_{\max} -smooth

If $\alpha = 1/10L_{\text{max}}$ and $m = 20L_{\text{max}}/\lambda$ then

$$\mathbb{E}[f(\tilde{w}^t)] - f(w^*) \leq \left(\frac{7}{8}\right)^t \left(f(\tilde{w}^0) - f(w^*)\right)$$

Need $O(L_{\text{max}}/\lambda)$ inner iterations to have linear convergence

In practice use $\alpha = 1/L_{\max}, \ m = n$

Johnson, R. & Zhang, T. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, NIPS 2013

Convergence SAG

Theorem SAG If f(w) is λ -strongly convex, $f_i(w)$ is L_{\max} -smooth and $\alpha = 1/(16L_{\max})$ then $\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \left(1 - \min\left\{\frac{1}{8n}, \frac{\lambda}{16L_{\max}}\right\}\right)^t C_0$ where $C_0 = \frac{3}{2}(f(w^0) - f(w^*)) + \frac{4L_{\max}}{n}||w^0 - w^*||_2^2 \ge 0$

A practical convergence result!

Because of biased gradients, difficult proof that relies on computer assisted steps

M. Schmidt, N. Le Roux, F. Bach (2016) Mathematical Programming **Minimizing Finite Sums with the Stochastic Average Gradient.**

Convergence SAGA

Theorem SAGA If f(w) is λ -strongly convex, $f_i(w)$ is L_{\max} -smooth and $\alpha = 1/(3L_{\max})$ then $\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \left(1 - \min\left\{\frac{1}{4n}, \frac{\lambda}{3L_{\max}}\right\}\right)^t C_0$ where $C_0 = \frac{2n}{3L_{\max}}(f(w^0) - f(w^*)) + ||w^0 - w^*||_2^2 \ge 0$

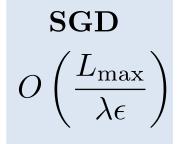
An even more practical convergence result!

Much easier proof due to unbiased gradients

A. Defazio, F. Bach and J. Lacoste-Julien (2014) NIPS, SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives.

Comparisons in complexity for strongly convex

Approximate solution $\mathbb{E}[f(w^T)] - f(w^*) \le \epsilon \quad \text{or} \quad \mathbb{E}||w^t - w^*||^2 \le \epsilon$



Gradient descent $O\left(\frac{nL}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$

SVRG/SAGA/SAG $O\left(\left(n + \frac{L_{\max}}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$

Variance reduction faster than GD when

 $L \ge \lambda + L_{\max}/n$

How did I get these complexity results from the convergence results?

Section 1.3.5, R.M. Gower, Ph.d thesis: Sketch and Project: Randomized Iterative Methods for Linear Systems and Inverting Matrices University of Edinburgh, 2016

Practicals implementation of SAG for Linear Classifiers

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

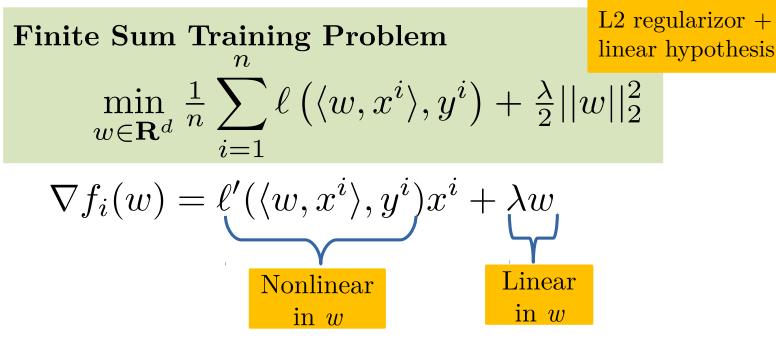
Practicals implementation of SAG for Linear Classifiers

Finite Sum Training Problem

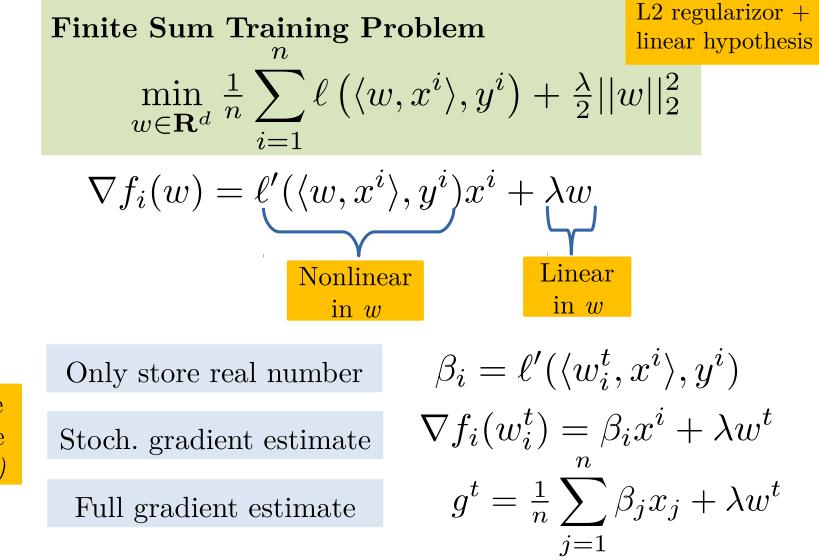
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

$$\nabla f_i(w) = \ell'(\langle w, x^i \rangle, y^i) x^i + \lambda w$$

Practicals implementation of SAG for Linear Classifiers



Practicals implementation of SAG for Linear Classifiers



Reduce Storage to O(n)

Take for home Variance Reduction

- Variance reduced methods use only **one stochastic gradient per iteration** and converge linearly on strongly convex functions
- Choice of **fixed stepsize** possible
- **SAGA** only needs to know the smoothness parameter to work, but requires storing *n* past stochastic gradients
- **SVRG** only has O(d) storage, but requires full gradient computations every so often. Has an extra "number of inner iterations" parameter to tune

Proving Convergence of SVRG

Proof:

$$\begin{aligned} ||w^{k+1} - w^*||_2^2 &= ||w^k - w^* - \alpha g^k\rangle||_2^2 \\ &= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2. \end{aligned}$$

Taking expectation with respect to j
 $\mathbb{E}_j \left[||w^{k+1} - w^*||_2^2 \right] &= ||w^k - w^*||_2^2 - 2\alpha \langle \nabla f(w^k), w^k - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right]$

$$\overset{\text{conv.}}{\leq} ||w^k - w^*||_2^2 - 2\alpha (f(w^k) - f(w^*)) + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right] \end{aligned}$$

Smoothness Consequences I

$\mathbf{Smoothness}$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||_2^2$$
, for $i = 1, ..., n$

EXE: Lemma 1

$$f(y - \frac{1}{L}\nabla f(y)) - f(y) \le -\frac{1}{2L} ||\nabla f(y)||_2^2, \quad \forall y \ge 0$$

Proof:

Substituting $w = y - \frac{1}{L}\nabla f(y)$ into the smoothness inequality gives

$$\begin{split} f(y - \frac{1}{L}\nabla f(y)) - f(y) &\leq \langle \nabla f(y), -\frac{1}{L}\nabla f(y) \rangle + \frac{L}{2} || - \frac{1}{L}\nabla f(y) ||_2^2 \\ &= -\frac{1}{2L} ||\nabla f(y)||_2^2. \quad \blacksquare \end{split}$$

Smoothness Consequences II

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 2

$$\mathbb{E}[||\nabla f_i(w) - \nabla f_i(w^*)||_2^2] \le 2L_{\max}(f(w) - f(w^*))$$

Proof: Let $g_i(w) = f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$ which is L_i -smooth.

Smoothness Consequences II

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 2

$$\mathbb{E}[||\nabla f_i(w) - \nabla f_i(w^*)||_2^2] \le 2L_{\max}(f(w) - f(w^*))$$

Proof: Let $g_i(w) = f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$ which is L_i -smooth.

Smoothness Consequences II

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 2

$$\mathbb{E}[||\nabla f_i(w) - \nabla f_i(w^*)||_2^2] \le 2L_{\max}(f(w) - f(w^*))$$

Proof: Let $g_i(w) = f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$ which is L_i -smooth. Convexity of $f_i(w) \Rightarrow g_i(w) \ge 0$ for all w. From Lemma 1 we have

$$g_{i}(w) \geq g_{i}(w) - g_{i}(w - \frac{1}{L_{i}}\nabla g_{i}(w)) \geq \frac{1}{2L_{i}}||\nabla g_{i}(w)||_{2}^{2} \geq \frac{1}{2L_{\max}}||\nabla g_{i}(w)||_{2}^{2}$$

Inserting definition of $g_{i}(w)$ we have
$$\frac{1}{2L_{\max}}||\nabla f_{i}(w) - \nabla f_{i}(w^{*})||_{2}^{2} \leq f_{i}(w) - f_{i}(w^{*}) - \langle \nabla f_{i}(w^{*}), w - w^{*} \rangle$$

Result follows by taking expectation of i.

Bounding gradient estimate

EXE: Lemma 3

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof: Hint: use $||a + b||_2^2 \le 2||a||_2^2 + 2||b||_2^2$ and Lemma 2

Where we used in the first inequality that $\mathbb{E}[||X - \mathbb{E}X||_2^2] \leq \mathbb{E}[||X||_2^2]$ with $X = \nabla f_i(w^*) - \nabla f_i(\tilde{w}^t)$ thus $\mathbb{E}[X] = -\nabla f(\tilde{w}^t)$

Bounding gradient estimate

EXE: Lemma 3

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof: Hint: use $||a + b||_2^2 \le 2||a||_2^2 + 2||b||_2^2$ and Lemma 2

Where we used in the first inequality that $\mathbb{E}[||X - \mathbb{E}X||_2^2] \leq \mathbb{E}[||X||_2^2]$ with $X = \nabla f_i(w^*) - \nabla f_i(\tilde{w}^t)$ thus $\mathbb{E}[X] = -\nabla f(\tilde{w}^t)$

Bounding gradient estimate

EXE: Lemma 3

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof: Hint: use $||a + b||_2^2 \le 2||a||_2^2 + 2||b||_2^2$ and Lemma 2

$$\mathbb{E}_{j}[||g^{k}||_{2}^{2}] = \mathbb{E}_{j}[||\nabla f_{i}(w^{k}) - \nabla f_{i}(w^{*}) + \nabla f_{i}(w^{*}) - \nabla f_{i}(\tilde{w}^{t}) + \nabla f(\tilde{w}^{t})||_{2}^{2}]$$

$$\leq 2\mathbb{E}_{j}[||\nabla f_{i}(w^{k}) - \nabla f_{i}(w^{*})||_{2}^{2}] + 2\mathbb{E}_{j}[||\nabla f_{i}(w^{*}) - \nabla f_{i}(\tilde{w}^{t}) + \nabla f(\tilde{w}^{t})||_{2}^{2}]$$

$$\leq 2\mathbb{E}_{j}[||\nabla f_{i}(w^{k}) - \nabla f_{i}(w^{*})||_{2}^{2}] + 2\mathbb{E}_{j}[||\nabla f_{i}(w^{*}) - \nabla f_{i}(\tilde{w}^{t})||_{2}^{2}]$$

$$= 4L_{\max} \left(f(w^k) - f(w^*) + f(\tilde{w}^t) - f(w^*) \right)$$

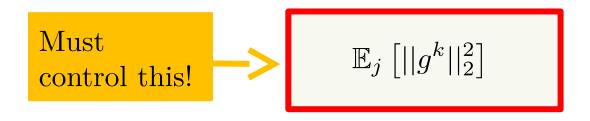
Where we used in the first inequality that $\mathbb{E}[||X - \mathbb{E}X||_2^2] \leq \mathbb{E}[||X||_2^2]$ with $X = \nabla f_i(w^*) - \nabla f_i(\tilde{w}^t)$ thus $\mathbb{E}[X] = -\nabla f(\tilde{w}^t)$

Proof:

$$\begin{aligned} ||w^{k+1} - w^*||_2^2 &= ||w^k - w^* - \alpha g^k\rangle||_2^2 \\ &= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2. \end{aligned}$$

Taking expectation with respect to j
 $\mathbb{E}_j \left[||w^{k+1} - w^*||_2^2 \right] &= ||w^k - w^*||_2^2 - 2\alpha \langle \nabla f(w^k), w^k - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right]$

$$\overset{\text{conv.}}{\leq} ||w^k - w^*||_2^2 - 2\alpha (f(w^k) - f(w^*)) + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right] \end{aligned}$$



 $\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$

$$\begin{aligned} ||w^{k+1} - w^*||_2^2 &= ||w^k - w^* - \alpha g^k\rangle||_2^2 \\ &= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2. \end{aligned}$$
Taking expectation with respect to *j*
Unbiased estimator

$$\mathbb{E}_j \left[||w^{k+1} - w^*||_2^2 \right] &= ||w^k - w^*||_2^2 - 2\alpha \langle \nabla f(w^k), w^k - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right]$$
conv.

$$\leq ||w^k - w^*||_2^2 - 2\alpha (f(w^k) - f(w^*)) + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right]$$

$$\leq ||w^k - w^*||_2^2 - 2\alpha (1 - 2\alpha L_{\max}) (f(w^k) - f(w^*)) + 4\alpha^2 L_{\max} (f(\tilde{w}^t) - f(w^*)) \right]$$

$$\begin{split} ||w^{k+1} - w^*||_2^2 &= ||w^k - w^* - \alpha g^k\rangle||_2^2 \\ &= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2. \end{split}$$
Taking expectation with respect to *j*
Unbiased estimator
 $\mathbb{E}_j \left[||w^{k+1} - w^*||_2^2 \right] &= ||w^k - w^*||_2^2 - 2\alpha \langle \nabla f(w^k), w^k - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right]$
 $\stackrel{\text{conv.}}{\leq} ||w^k - w^*||_2^2 - 2\alpha (f(w^k) - f(w^*)) + \alpha^2 \mathbb{E}_j \left[||g^k||_2^2 \right]$
 $\leq ||w^k - w^*||_2^2 - 2\alpha (1 - 2\alpha L_{\max}) (f(w^k) - f(w^*)) + 4\alpha^2 L_{\max} (f(\tilde{w}^t) - f(w^*))$
Taking expectation and summing from $k = 0, \ldots, m-1$ gives
 $\mathbb{E} \left[||w^m - w^*||_2^2 \right] \leq \mathbb{E} \left[||w^0 - w^*||_2^2 \right] - 2\alpha (1 - 2\alpha L_{\max}) \mathbb{E} \left[\sum_{k=0}^{m-1} (f(w^k) - f(w^*)) \right] + 4m\alpha^2 L_{\max} \mathbb{E} \left[f(\tilde{w}^t) - f(w^*) \right]$

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1}(f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1}(f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging and using strong convexity $f(\tilde{w}^t) - f(w^*) \ge \frac{\lambda}{2} ||\tilde{w}^t - w^*||_2^2$

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1}(f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging and using strong convexity $f(\tilde{w}^t) - f(w^*) \ge \frac{\lambda}{2} ||\tilde{w}^t - w^*||_2^2$

$$2\alpha(1 - 2\alpha L_{\max})\mathbb{E}[\sum_{k=0}^{m-1}(f(w^{k}) - f(w^{*}))] \leq \mathbb{E}[||w^{0} - w^{*}||_{2}^{2}] - \mathbb{E}[||w^{m} - w^{*}||_{2}^{2}]$$

$$w^{0} = \tilde{w}^{t} + 4m\alpha^{2}L_{\max}\mathbb{E}[f(\tilde{w}^{t}) - f(w^{*})]$$

$$\leq 2(2m\alpha^{2}L_{\max} - \lambda^{-1})\mathbb{E}[f(\tilde{w}^{t}) - f(w^{*})]$$

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1}(f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging and using strong convexity $f(\tilde{w}^t) - f(w^*) \ge \frac{\lambda}{2} ||\tilde{w}^t - w^*||_2^2$

$$2\alpha(1 - 2\alpha L_{\max})\mathbb{E}[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - \mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right] \leq 2(2m\alpha^{2}L_{\max} - \lambda^{-1})\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging again

$$\mathbb{E}[(f(\sum_{k=0}^{m-1} \frac{w^k}{m}) - f(w^*))] \leq \mathbb{E}[\frac{1}{m} \sum_{k=0}^{m-1} (f(w^k) - f(w^*))]$$

$$Jensen's \qquad \leq \left(\frac{2\alpha L_{\max}}{1 - 2\alpha L_{\max}} + \frac{1}{\lambda\alpha(1 - 2\alpha L_{\max})m}\right) \mathbb{E}\left[f(\tilde{w}^t) - f(w^*)\right]$$

Now plug in values $\alpha = 1/(10L_{\rm max})$ and $m = 20L_{\rm max}/\lambda$

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1}(f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging and using strong convexity $f(\tilde{w}^t) - f(w^*) \ge \frac{\lambda}{2} ||\tilde{w}^t - w^*||_2^2$

$$2\alpha(1 - 2\alpha L_{\max})\mathbb{E}[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))] \leq \mathbb{E}[||w^{0} - w^{*}||_{2}^{2}] - \mathbb{E}[||w^{m} - w^{*}||_{2}^{2}] + 4m\alpha^{2}L_{\max}\mathbb{E}[f(\tilde{w}^{t}) - f(w^{*})] \leq 2(2m\alpha^{2}L_{\max} - \lambda^{-1})\mathbb{E}[f(\tilde{w}^{t}) - f(w^{*})]$$

Re-arranging again

$$\mathbb{E}[(f(\sum_{k=0}^{m-1} \frac{w^k}{m}) - f(w^*))] \leq \mathbb{E}[\frac{1}{m} \sum_{k=0}^{m-1} (f(w^k) - f(w^*))] = 7/8$$
Jensen's
inequality
$$\leq \left(\frac{2\alpha L_{\max}}{1 - 2\alpha L_{\max}} + \frac{1}{\lambda\alpha(1 - 2\alpha L_{\max})m}\right) \mathbb{E}\left[f(\tilde{w}^t) - f(w^*)\right]$$

Now plug in values $\alpha = 1/(10L_{\rm max})$ and $m = 20L_{\rm max}/\lambda$