Optimization for Machine Learning

Proximal operator and proximal gradient methods

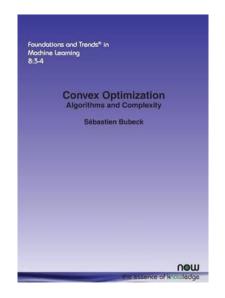
Lecturers: Francis Bach & Robert M. Gower

Tutorials: Hadrien Hendrikx, Rui Yuan, Nidham Gazagnadou

African Master's in Machine Intelligence (AMMI), Kigali

References classes today

Sébastien Bubeck (2015) Convex Optimization: Algorithms and Complexity



Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.

Chapter 1 and Section 5.1

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^1 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$
Output w^{T+1}

Convergence GD

Theorem

Let *f* be μ -strongly convex and *L*-smooth.

$$||w^{T} - w^{*}||_{2}^{2} \le \left(1 - \frac{\mu}{L}\right)^{T} ||w^{1} - w^{*}||_{2}^{2}$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

$$\Rightarrow \text{ for } \frac{||w^T - w^*||_2^2}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Convergence GD I

Not true for many problems

Theorem

Let f be convex and L-smooth.

$$f(w^{T}) - f(w^{*}) \le \frac{2L||w^{1} - w^{*}||_{2}^{2}}{T - 1} = O\left(\frac{1}{T}\right)$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

ls *f* always differentiable?

$$\Rightarrow \text{for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

Change notation: Keep loss and regularizor separate

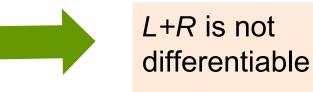
Loss function

$$L(w) := \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right)$$

The Training problem

$$\min_{w} L(w) + \lambda R(w)$$

If *L* or *R* is not differentiable

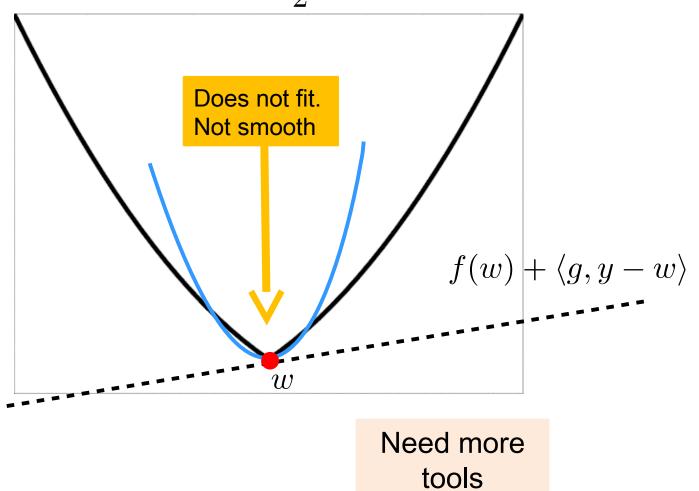


If *L* or *R* is not smooth

L+R is not smooth

Non-smooth Example

$$L(w) + R(w) = \frac{1}{2}||w||_{2}^{2} + ||w||_{1}$$



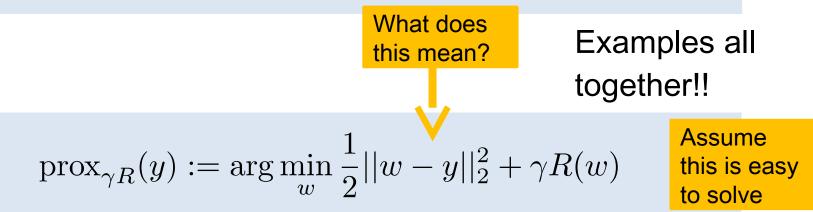
Assumptions for this class

The Training problem

$$\min_{w} L(w) + \lambda R(w)$$

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and "easy to optimize"



Examples

Lasso n $\min_{w \in \mathbf{R}^d} \frac{1}{2n} \sum_{i=1}^{\infty} (y^i - \langle w, a^i \rangle)^2 + \lambda ||w||_1$

Not smooth, but prox is easy

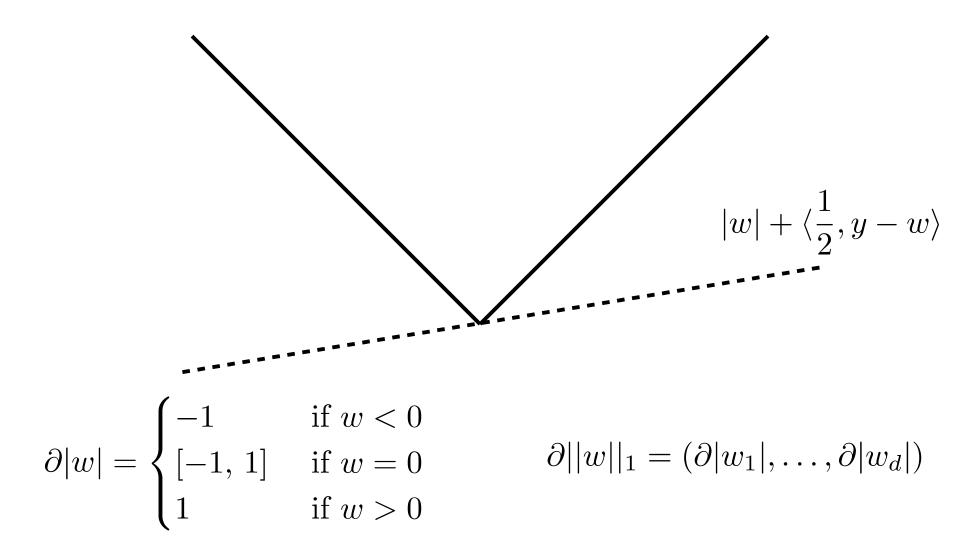
SVM with soft margin $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle w, a^i \rangle\} + \lambda ||w||_2^2$ Not smooth

Convexity: Subgradient

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex

 $\partial f(w) := \{ g \in \mathbb{R}^n : f(y) \ge f(w) + \langle g, y - w \rangle, \forall y \in \operatorname{dom}(f) \}$ q=0 $f(w) + \langle q, y - w \rangle$ $w^* = \arg\min f(w) \Leftrightarrow 0 \in \partial f(w^*)$

Examples: L1 norm



Optimality conditions

The Training problem

$$w^* = \arg\min_{w \in \mathbf{R}^d} L(w) + \lambda R(w)$$

$$0 \in \partial \left(L(w^*) + \lambda R(w^*) \right) = \nabla L(w^*) + \lambda \partial R(w^*)$$
$$-\nabla L(w^*) \in \lambda \partial R(w^*)$$

Working example: Lasso

Lasso

$$\min_{w \in \mathbf{R}^d} \frac{1}{2n} ||Aw - y||_2^2 + \lambda ||w||_1$$

$$A = [a^{1}, \dots, a^{n}]^{\top} \Rightarrow \sum_{i=1}^{n} (y^{i} - \langle w, a^{i} \rangle)^{2} = ||Aw - y||_{2}^{2}$$

.

$$-\nabla L(w^*) \in \partial R(w^*)$$

$$-\frac{1}{n}A^{\top}(Aw^* - y) \in \partial ||w^*||_1$$

Difficult inclusion, do iteratively.

Proximal method I

Using \mathcal{L} -smoothness of L:

$$L(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

The w that minimizes the upper bound gives gradient descent

$$w = y - \frac{1}{\mathcal{L}} \nabla L(y)$$

But what about R(w)? Adding on $+\lambda R(w)$ to upper bound:

$$L(w) + \lambda R(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w)$$

Can we minimize the right-hand side?

Proximal method II

Minimizing the right-hand side of

$$\begin{split} L(w) + \lambda R(w) &\leq L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w) \\ & \arg\min_w L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w) \\ &= \arg\min_w \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w) \\ &= \arg\min_w \frac{1}{2} ||w - (y - \frac{1}{\mathcal{L}} \nabla L(y))||^2 + \frac{\lambda}{\mathcal{L}} R(w) \\ &=: \operatorname{prox}_{\frac{\lambda}{\mathcal{L}}R}(y - \frac{1}{\mathcal{L}} \nabla L(y))) \\ \end{split}$$
 What is this prox operator?

Proximal Operator I

Let f(x) be a convex function. The proximal operator is

$$prox_{f}(v) := \arg\min_{w} \frac{1}{2} ||w - v||_{2}^{2} + f(w)$$

Let $w_v = \operatorname{prox}_f(v)$. Using optimality conditions

$$0 \in \partial\left(\frac{1}{2}||w_v - v||_2^2 + f(w)\right) = w_v - v + \partial f(w_v)$$

Rearranging

$$\operatorname{prox}_f(v) = w_v \in v - \partial f(w_v)$$

EXE: Is this Proximal operator well defined? Is it even a function?

Proximal Operator II: Optimality conditions

The Training problem

 $\min_{w} L(w) + \lambda R(w)$

Proximal Operator III: Properties

$$prox_f(v) := \arg\min_{w} \frac{1}{2} ||w - v||_2^2 + f(w)$$

Exe:
1) If
$$f(w) = \sum_{i=1}^{d} f_i(w_i)$$
 then
 $\operatorname{prox}_f(v) = (\operatorname{prox}_{f_1}(v_1), \dots, \operatorname{prox}_{f_d}(v_d))$
2) If $f(w) = I_C(w) := \begin{cases} 0 & \text{if } w \in C \\ \infty & \text{if } w \notin C \end{cases}$ where C is closed and convex
then $\operatorname{prox}_f(v) = \operatorname{proj}_C(v)$

3) If
$$f(w) = \langle b, w \rangle + c$$
 then $\operatorname{prox}_f(v) = v - b$

4) If $f(w) = \frac{\lambda}{2}w^{\top}Aw + \langle b, w \rangle$ where $A \succeq 0, A = A^{\top}, \lambda \ge 0$ then $\operatorname{prox}_{f}(v) = (I + \lambda A)^{-1}(v - b)$

Proximal Operator IV: Soft thresholding

$$\operatorname{prox}_{\lambda||w||_{1}}(v) := \arg\min_{w} \frac{1}{2}||w - v||_{2}^{2} + \lambda||w||_{1}$$

 $S_{\lambda}(\alpha)$

λ

 $-\lambda$

Exe:

1) Let $\alpha \in \mathbf{R}$. If $\alpha^* = \arg \min_{\alpha} \frac{1}{2} (\alpha - v)^2 + \lambda |\alpha|$ then $\alpha^* \in v - \lambda \partial |\alpha^*|$ (I) 2) If $\lambda < v$ show (I) gives $\alpha^* = v - \lambda$ 3) If $v < -\lambda$ show (I) gives $\alpha^* = v + \lambda$ 4) Show that

$$\operatorname{prox}_{\lambda|\alpha|}(v) = \begin{cases} v - \lambda & \text{if } \lambda < v \\ 0 & \text{if } -\lambda \le v \le \lambda \\ v + \lambda & \text{if } v < -\lambda. \end{cases}$$

Proximal Operator V: Singular value thresholding

$$S_{\lambda}(v) := \arg\min_{w} \frac{1}{2} ||w - v||_{2}^{2} + \lambda ||w||_{1}$$

Similarly, the prox of the nuclear norm for matrices:

$$U \operatorname{diag}(S_{\lambda}(\operatorname{diag}(\sigma(A)))) V^{\top} := \arg \min_{W \in \mathbf{R}^{d \times d}} \frac{1}{2} ||W - A||_F^2 + \lambda ||W||_*$$

where $A = U \operatorname{diag}(\sigma(A)) V^{\top}$ is a SVD decomposition.

Proximal method V

Minimizing the right-hand side of

 $L(w) + \lambda R(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w)$ $\arg\min_{w} L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w)$

$$= \arg\min_{w} \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^{2} + \lambda R(w)$$
$$= \arg\min_{w} \frac{1}{2} ||w - (y - \frac{1}{\mathcal{L}} \nabla L(y)||^{2} + \frac{\lambda}{\mathcal{L}} R(w)$$

$$= \operatorname{prox}_{\frac{\lambda}{\mathcal{L}}R} \left(y - \frac{1}{\mathcal{L}} \nabla L(w) \right)$$

Make iterative method based on this upper bound minimization

The Proximal Gradient Method

Solving the *training problem*:

 $\min_{w} L(w) + \lambda R(w)$

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Proximal Gradient Descent Set $w^1 = 0$. for t = 1, 2, 3, ..., T $w^{t+1} = \operatorname{prox}_{\lambda R/\mathcal{L}} \left(w^t - \frac{1}{\mathcal{L}} \nabla L(w^t) \right)$ Output w^{T+1}

Iterative Soft Thresholding Algorithm (ISTA)

$$\begin{split} \min_{w \in \mathbf{R}^d} \frac{1}{2n} ||Aw - y||_2^2 + \lambda ||w||_1 \\ A &= [a^1, \dots, a^n]^\top \Rightarrow \sum_{i=1}^n (y^i - \langle w, a^i \rangle)^2 = ||Aw - y||_2^2 \end{split}$$
$$\begin{aligned} \text{ISTA:} \qquad w^{t+1} &= \operatorname{prox}_{\lambda ||w||_1/\mathcal{L}} \left(w^t - \frac{1}{n\mathcal{L}} A^\top (Aw^t - y) \right) \\ \mathcal{L} &= \frac{\sigma_{\max}(A)^2}{n} \qquad = S_{\lambda/\mathcal{L}} \left(w^t - \frac{1}{\sigma_{\max}(A)^2} A^\top (Aw^t - y) \right) \end{split}$$

PDF Adobe

Lasso

min

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.

Convergence of Prox-GD

Theorem (Beck Teboulle 2009)

Let $f(w) = L(w) + \lambda R(w)$ where

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Can we do better?

Then

$$f(w^T) - f(w^*) \le \frac{L||w^1 - w^*||_2^2}{2T} = O\left(\frac{1}{T}\right)$$

where

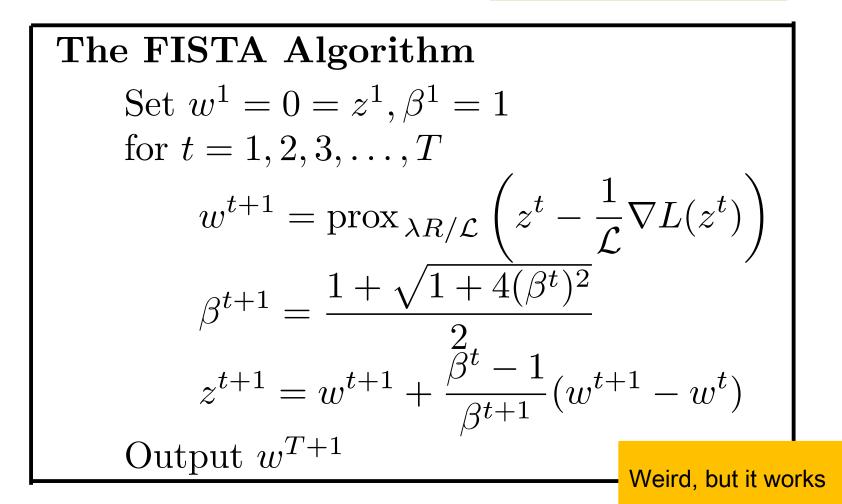
$$w^{t+1} = w^{t+1} = \operatorname{prox}_{\lambda R/\mathcal{L}} \left(w^t - \frac{1}{\mathcal{L}} \nabla L(w^t) \right)$$

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.

The FISTA Method

Solving the *training problem*:

$$\min_{w} L(w) + \lambda R(w)$$



Convergence of FISTA

Theorem (Beck Teboulle 2009)

Let $f(w) = L(w) + \lambda R(w)$ where

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Is this as good as it gets?

Then

PDF

Adobe

$$f(w^T) - f(w^*) \le \frac{2L||w^1 - w^*||_2^2}{(T+1)^2} = O\left(\frac{1}{(T+1)^2}\right)$$

Where w^t are given by the FISTA algorithm

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.

Lab Session 01.10

Bring your laptop!

Introduction to Stochastic Gradient Descent

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$
Output w^{T+1}

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for $t = 1, 2, 3, \dots, T$ $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^{T+1}

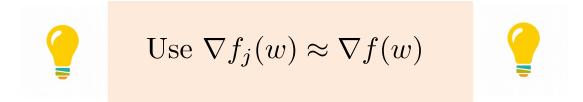
Stochastic Gradient Descent

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j\left[\nabla f_j(w)\right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$



Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm
Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
Sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^{T+1}