Optimization for Machine Learning

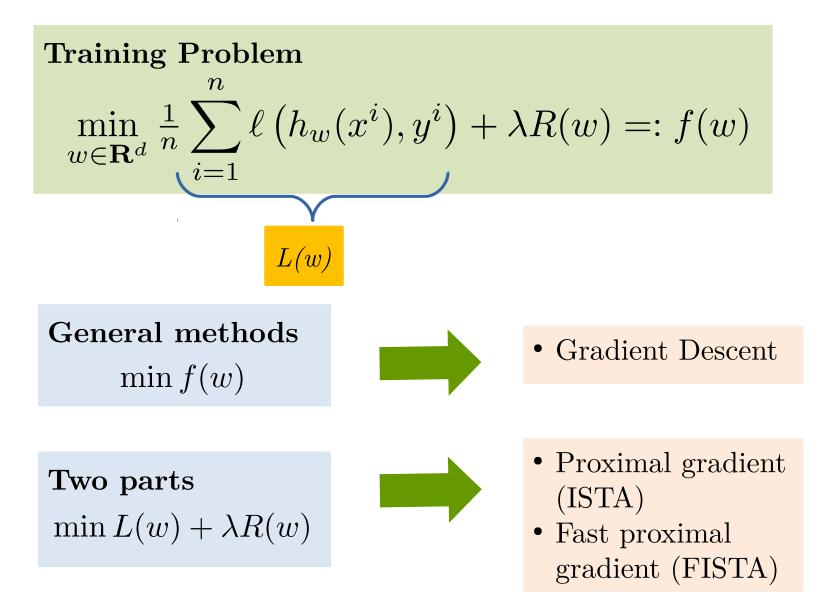
Stochastic Gradient Methods

Lecturers: Francis Bach & Robert M. Gower

Tutorials: Hadrien Hendrikx, Rui Yuan, Nidham Gazagnadou

African Master's in Machine Intelligence (AMMI), Kigali

Solving the Finite Sum Training Problem Recap



Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$
Can we use this sum structure?

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for $t = 0, 1, 2, \dots, T - 1$ $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for t = 0, 1, 2, ..., T $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^T

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

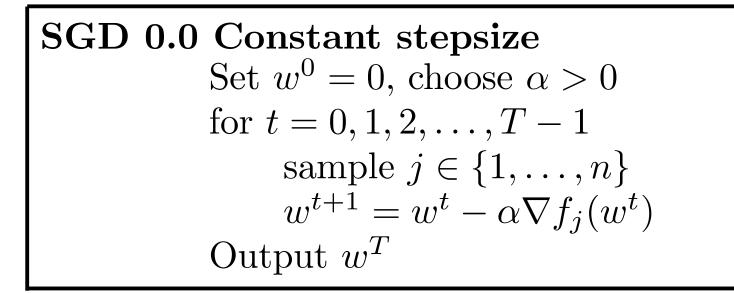
Unbiased Estimate

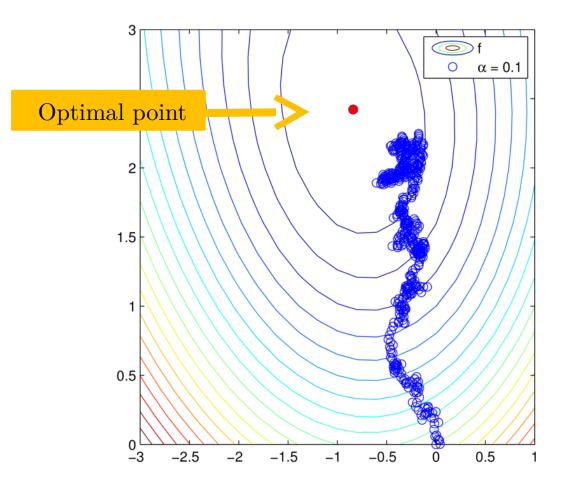
Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j[\nabla f_j(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

EXE: Let $\sum_{i=1}^{n} p_i = 1$ and $j \sim p_j$. Show $\mathbb{E}[\nabla f_j(w)/(np_j)] = \nabla f(w)$





Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}_{j}[||\nabla f_{j}(w^{t})||_{2}^{2}] \leq B^{2}$$
, for all iterates w^{t} of SGD

Complexity / Convergence

Theorem

If $0 < \alpha \leq \frac{1}{\lambda}$ then the iterates of the SGD 0.0 method satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{\alpha}{\lambda}B^{2}$$
Shows that $\alpha \approx \frac{1}{\lambda}$
Shows that $\alpha \approx 0$

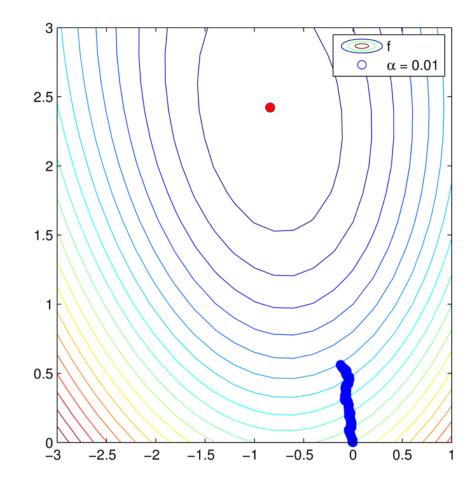
Proof:

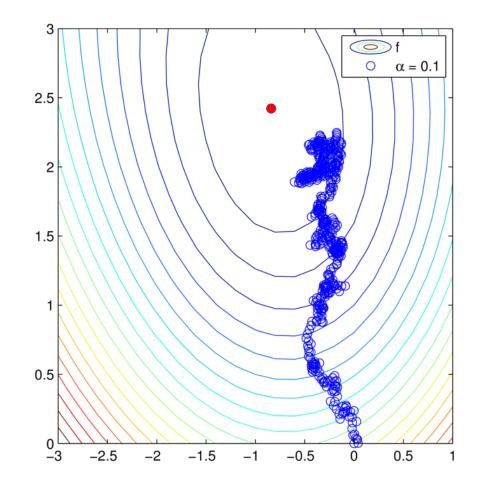
$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2. \end{split}$$
Taking expectation with respect to j

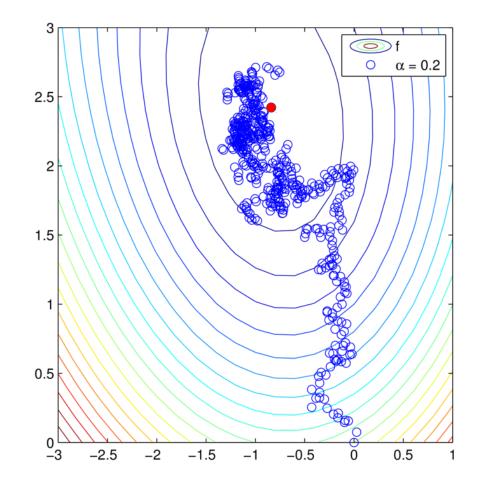
$$\mathbb{E}_j \left[||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 \mathbb{E}_j \left[||\nabla f_j(w^t)||_2^2 \\ &\leq ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 B^2 \\ \end{bmatrix}$$
Strong conv. $\swarrow \leq (1 - \alpha \lambda) ||w^t - w^*||_2^2 + \alpha^2 B^2$
Taking total expectation
$$\mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] \leq (1 - \alpha \lambda) \mathbb{E} \left[||w^t - w^*||_2^2 + \alpha^2 B^2 \\ &= (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha \lambda)^i \alpha^2 B^2 \\ \end{bmatrix}$$
Using the geometric series sum
$$\sum_{i=0}^t (1 - \alpha \lambda)^i = \frac{1 - (1 - \alpha \lambda)^{t+1}}{\alpha \lambda} \leq \frac{1}{\alpha \lambda}$$

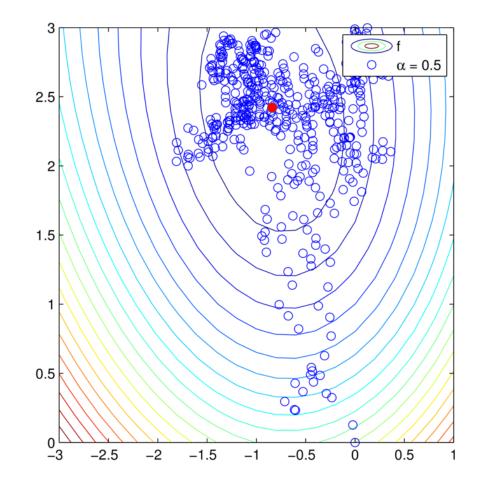
$$\mathbb{E} \left[||w^{t+1} - w^*||_2^2 \right] \leq (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda} B^2$$

П







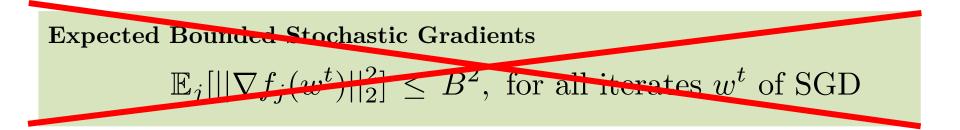


Strong Convexity

$$f(y) \ge f(w) + \langle \nabla f(w), y - w \rangle + \frac{\lambda}{2} ||y - w||_2^2, \quad \forall w, y$$

$$y = w^*$$

$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$



Realistic assumptions for Convergence

Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\lambda}{2} ||w^* - w||_2^2, \quad \forall w$$

Each f_i is convex and L_i smooth $f_i(y) \leq f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$ $L_{\max} := \max_{i=1,...,n} L_i$

Gradient Noise

$$\mathbb{E}_j[||\nabla f_j(w^*)||_2^2] \le \sigma^2$$

Realistic assumptions for Convergence

Strongly quasi-convexity

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\lambda}{2} ||w^* - w||_2^2, \quad \forall w$$

Each f_i is convex and L_i smooth $f_i(y) \leq f_i(w) + \langle \nabla f_i(w), y - w \rangle + \frac{L_i}{2} ||y - w||_2^2, \quad \forall w$ $L_{\max} := \max_{i=1,...,n} L_i$

Gradient Noise

$$\mathbb{E}_j[||\nabla f_j(w^*)||_2^2] \le \sigma^2$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{max} for 1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{max} for 1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{max} for 1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = A_{i:} A_{i:}^\top + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I \quad = \quad L_i \ I$

Assumptions for Convergence

EXE: Calculate the L_i 's and L_{max} for 1. $f(w) = \frac{1}{2n} ||Aw - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

HINT: A twice differentiable f_i is L_i - smooth if and only if $\nabla^2 f_i(w) \preceq L_i I \iff v^\top \nabla^2 f_i(w) v \leq L_i ||v||^2, \forall v$

1.
$$f(w) = \frac{1}{2n} ||Aw - y||_{2}^{2} + \frac{\lambda}{2} ||w||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{2} (A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2} ||w||_{2}^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_{i}(w)$$

 $\nabla^2 f_i(w) = A_{i:} A_{i:}^\top + \lambda \quad \preceq \quad (||A_{i:}||_2^2 + \lambda)I = L_i I$ $L_{\max} = \max_{i=1,\dots,n} (||A_{i:}||_2^2 + \lambda) = \max_{i=1,\dots,n} ||A_{i:}||_2^2 + \lambda$

EXE: Calculate the L_i 's and L_{max} for 2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

EXE: Calculate the
$$L_i$$
's and L_{max} for
2. $f(w) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2,$$

$$\begin{aligned} \mathbf{EXE:} \quad \text{Calculate the } L_i \text{'s and } L_{max} \text{ for} \\ 2. \quad f(w) &= \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2 \end{aligned}$$

$$\begin{aligned} 2. \quad f_i(w) &= \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2, \\ \nabla f_i(w) &= \frac{-y_i a_i e^{-y_i \langle w, a_i \rangle}}{1 + e^{-y_i \langle w, a_i \rangle}} + \lambda w \end{aligned}$$

$$\nabla^2 f_i(w) &= a_i a_i^{\mathsf{T}} \left(\frac{(1 + e^{-y_i \langle w, a_i \rangle}) e^{-y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle})^2} - \frac{e^{-2y_i \langle w, a_i \rangle}}{(1 + e^{-y_i \langle w, a_i \rangle})^2} \right) + \lambda I \end{aligned}$$

$$=a_i a_i^{\top} \frac{e^{-y_i \langle w, a_i \rangle}}{(1+e^{-y_i \langle w, a_i \rangle})^2} + \lambda I \quad \preceq \quad \left(\frac{||a_i||_2^2}{4} + \lambda\right) I = L_i I$$

Relationship between smoothness constants

EXE: Let f(w) be convex. Show that f(w) is *L*-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max} (\nabla^2 f(w))$$

Thus $f_i(w)$ is L_i -smooth with $L_i = \max_{w \in d} \lambda_{\max} (\nabla^2 f_i(w))$
Show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Relationship between smoothness constants

EXE: Let f(w) be convex. Show that f(w) is *L*-smooth with

$$L = \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))$$

Thus $f_i(w)$ is L_i -smooth with $L_i = \max_{w \in d} \lambda_{\max}(\nabla^2 f_i(w))$
Show that
$$L \leq \frac{1}{n} \sum_{i=1}^n L_i \leq L_{\max} := \max_{i=1,...,n} L_i$$

Proof: From the Hessian definition of smoothness

$$\nabla^2 f(w) \preceq \lambda_{\max}(\nabla^2 f(w))I \preceq \max_{w \in \mathbb{R}^d} \lambda_{\max}(\nabla^2 f(w))I$$

Furthermore

$$\lambda_{\max}(\nabla^2 f(w)) = \lambda_{\max}\left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(w)\right) \le \frac{1}{n}\sum_{i=1}^n \lambda_{\max}(\nabla^2 f_i(w)) \le \frac{1}{n}\sum_{i=1}^n L_i$$

The final result now follows by taking the max over w, then max over i

Complexity / Convergence

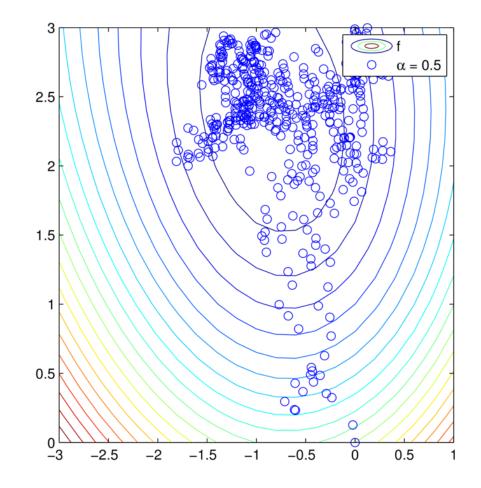
Theorem

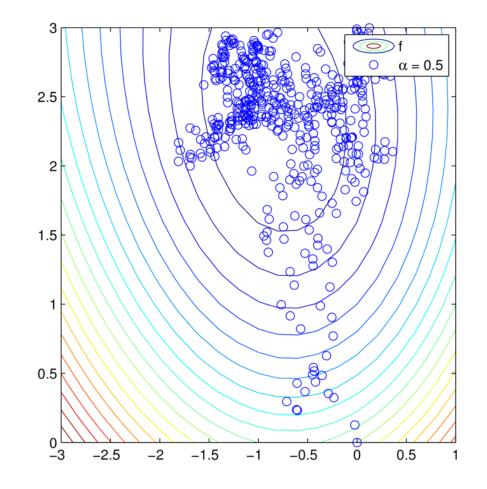
If $0 < \alpha \leq \frac{1}{2L_{\text{max}}}$ then the iterates of the SGD 0.0 satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\lambda)^{t}||w^{0} - w^{*}||_{2}^{2} + \frac{2\alpha}{\lambda}\sigma^{2}$$

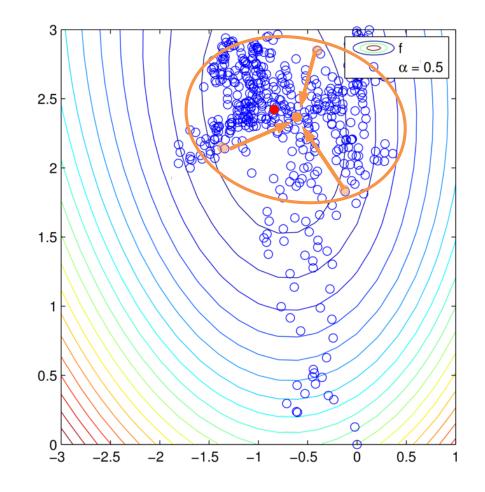
EXE: The steps of the proof are given in a exercise list for homework!

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtarik (2019) arXiv:1901.09401 SGD: General Analysis and Improved Rates.





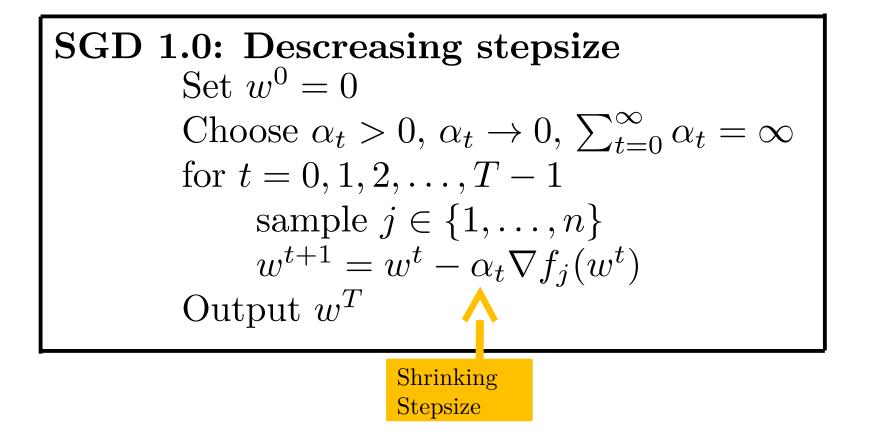
1) Start with big steps and end with smaller steps



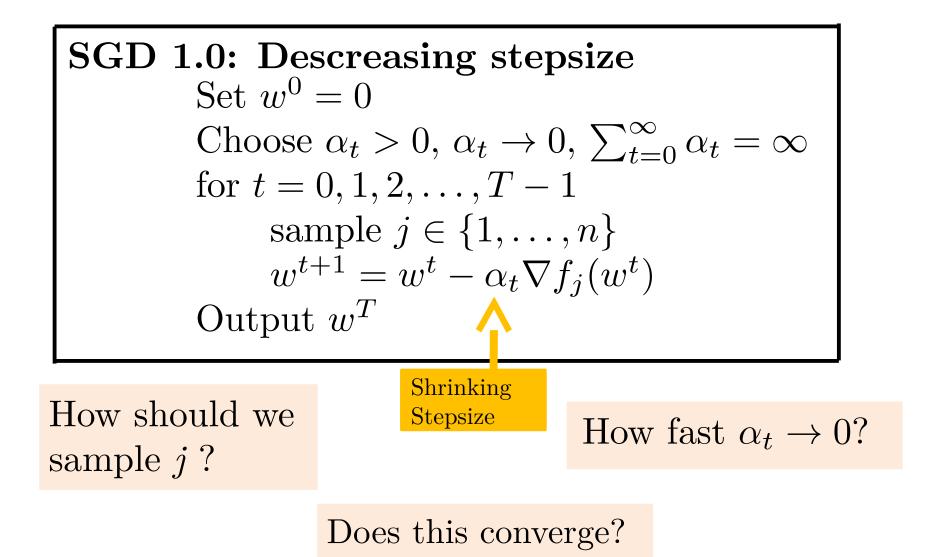
1) Start with big steps and end with smaller steps

2) Try averaging the points

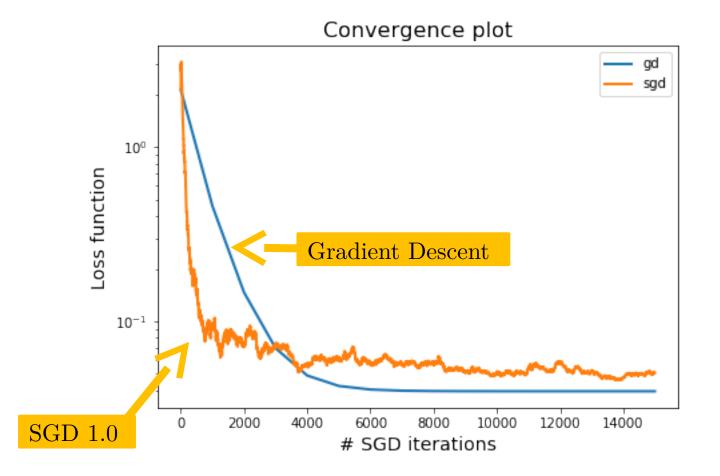
SGD shrinking stepsize



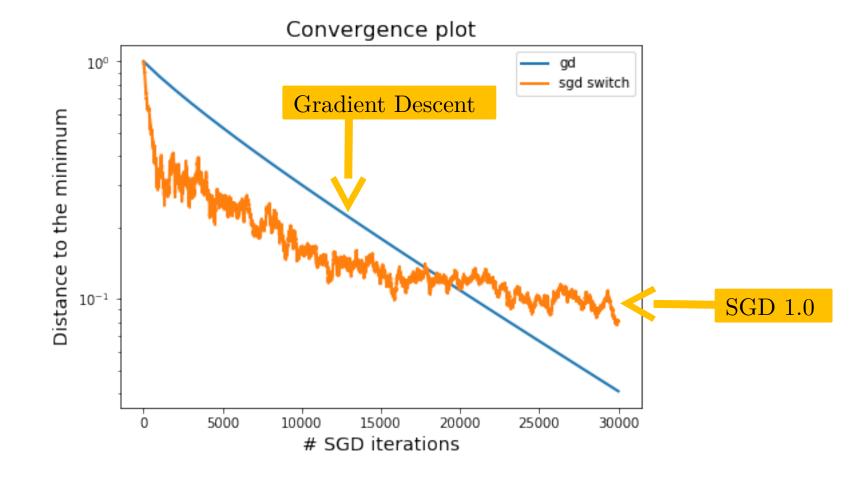
SGD shrinking stepsize



SGD with shrinking stepsize Compared with Gradient Descent



SGD with shrinking stepsize Compared with Gradient Descent



Complexity / Convergence

Theorem for shrinking stepsizes

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4 \lceil \mathcal{K} \rceil$, then SGD 1.0 satisfies

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

Complexity / Convergence

Theorem for shrinking stepsizes

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

If $t \ge 4\lceil \mathcal{K} \rceil$, then SGD 1.0 satisfies

$$\alpha^{t} = O(1/\left(t+1\right))$$

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{|\mathcal{K}|^2}{t^2} \|w^0 - w^*\|^2$$

Complexity / Convergence

Theorem for shrinking stepsizes

Let $\mathcal{K} := L_{\max}/\mu$ and let

$$\alpha^{t} = \begin{cases} \frac{1}{2L_{\max}} & \text{for } t \leq 4\lceil \mathcal{K} \rceil \\ \\ \frac{2t+1}{(t+1)^{2}\mu} & \text{for } t > 4\lceil \mathcal{K} \rceil. \end{cases}$$

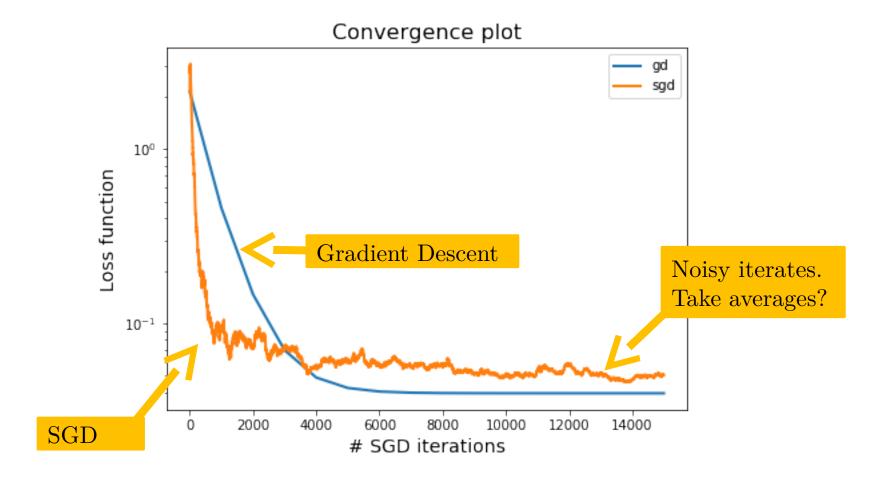
If $t \ge 4 \lceil \mathcal{K} \rceil$, then SGD 1.0 satifies

$$\alpha^{t} = O(\left.1/\left(t+1\right)\right)$$

$$\mathbb{E}\|w^t - w^*\|^2 \le \frac{\sigma^2}{\mu^2} \frac{8}{t} + \frac{16}{e^2} \frac{\lceil \mathcal{K} \rceil^2}{t^2} \|w^0 - w^*\|^2$$

In practice often $\alpha^t = C/(t+1)$ where C is tuned

Stochastic Gradient Descent Compared with Gradient Descent



SGD with (late start) averaging

SGDA 1.1
Set
$$w^0 = 0$$

Choose $\alpha_t > 0, \ \alpha_t \to 0, \ \sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)
Acceleration of stochastic approximation by averaging

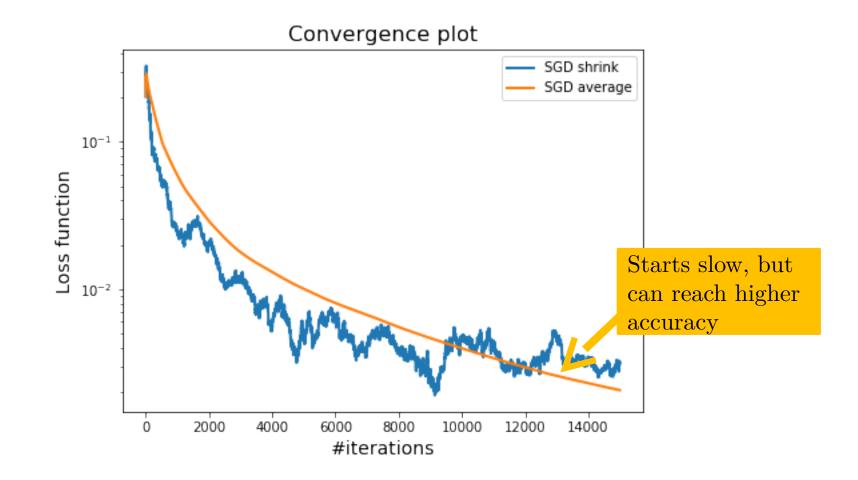
SGD with (late start) averaging

SGDA 1.1
Set
$$w^0 = 0$$

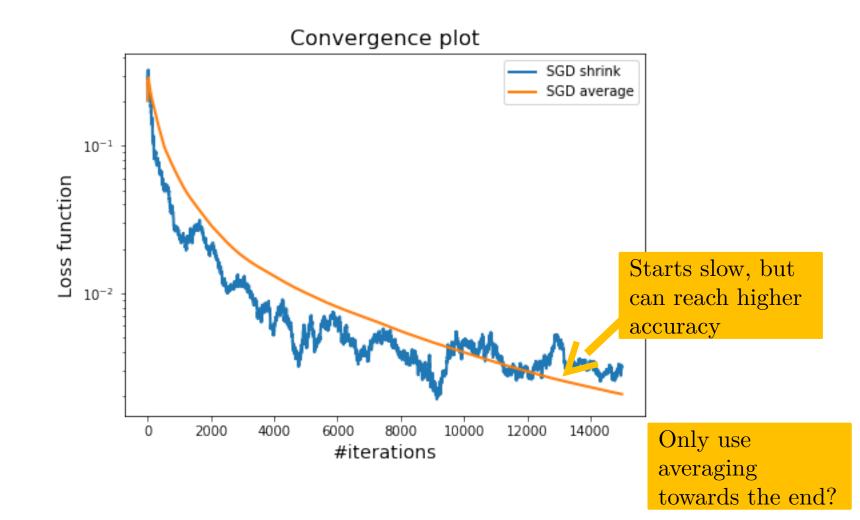
Choose $\alpha_t > 0, \ \alpha_t \to 0, \ \sum_{t=0}^{\infty} \alpha_t = \infty$
Choose averaging start $s_0 \in \mathbb{N}$
for $t = 0, 1, 2, \dots, T - 1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$
if $t > s_0$
 $\overline{w} = \frac{1}{t-s_0} \sum_{i=s_0}^t w^t$
else: $\overline{w} = w$
Output \overline{w}

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control and Optimization (1992)Acceleration of stochastic approximation by averaging

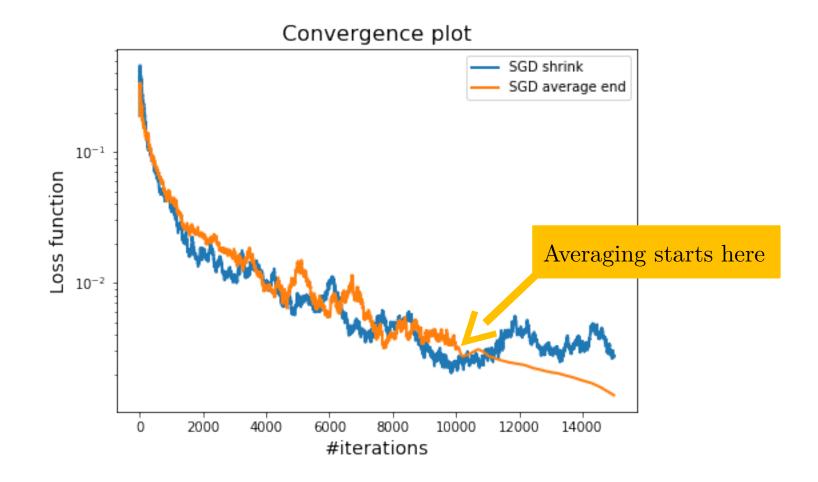
Stochastic Gradient Descent With and without averaging



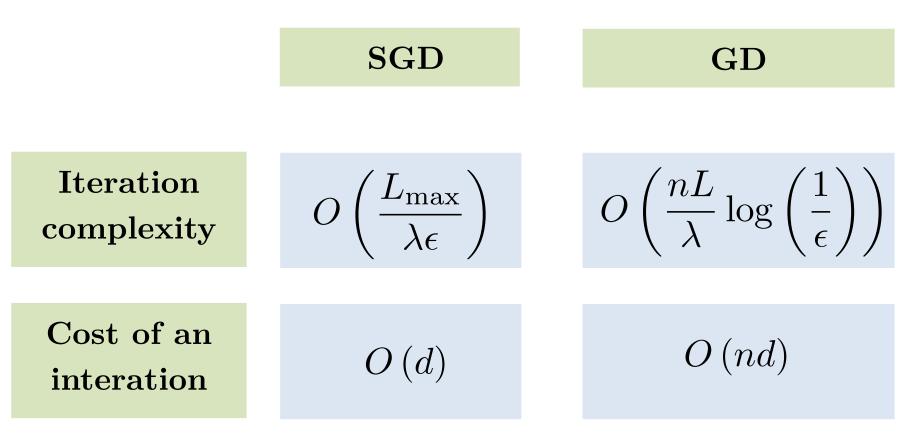
Stochastic Gradient Descent With and without averaging



Stochastic Gradient Descent Averaging the last few iterates



Comparison GD and SGD for strongly convex



Total complexity = (Iteration complexity) \times (Cost of an iteration)

Total complexity GD and SGD for strongly convex

Approximate solution $\mathbb{E}[\|w^t - w^*\|] \le \epsilon$

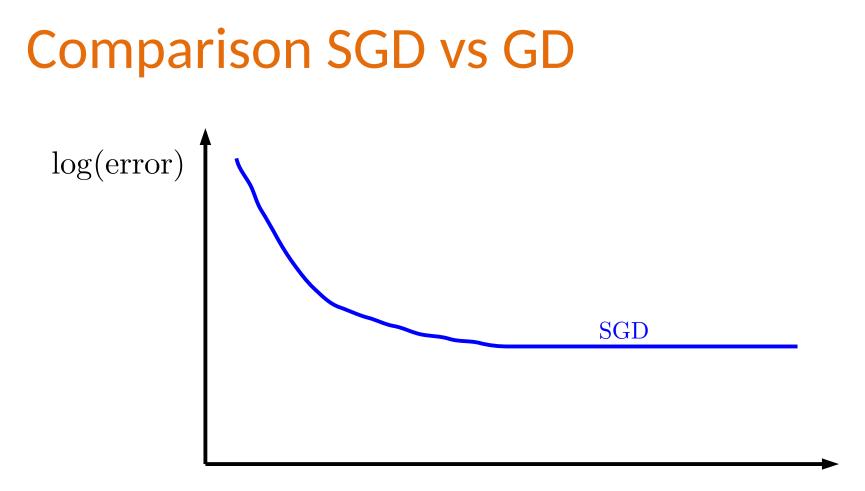
 $\frac{\text{SGD}}{O\left(\frac{L_{\max}}{\lambda\epsilon}\right)}$

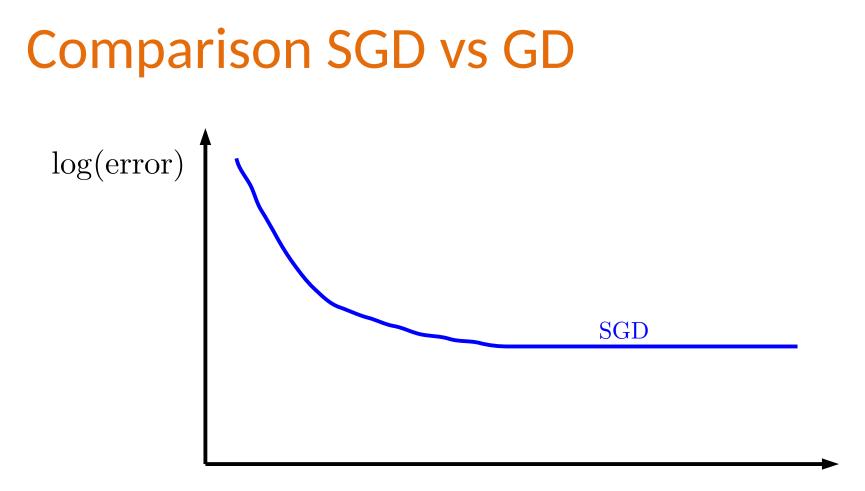
T

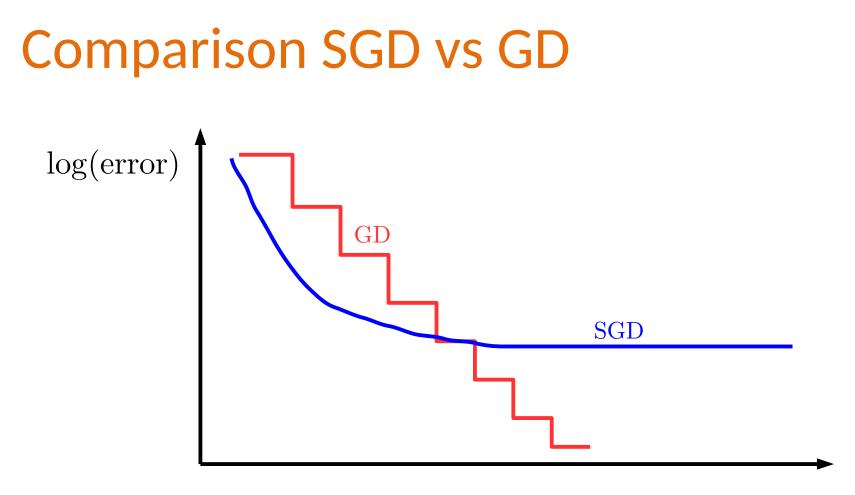
Gradient descent $O\left(\frac{nL}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$

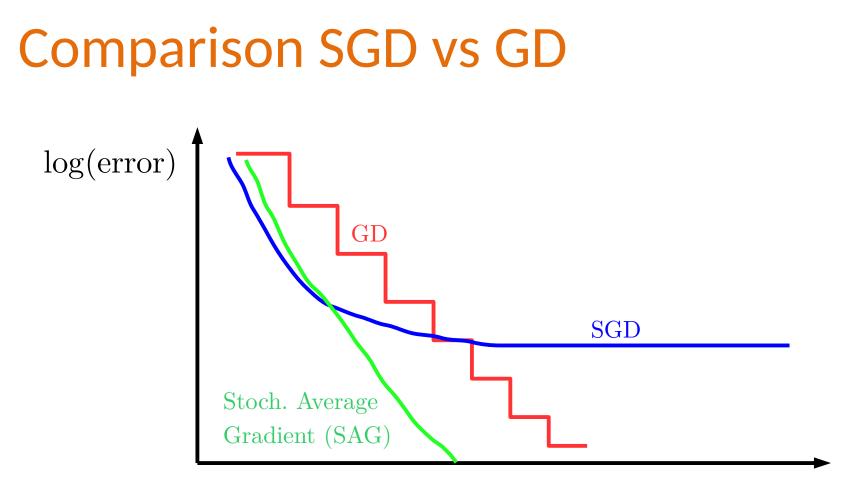
What happens if ϵ is small?

What happens if n is big?









Practical SGD for Sparse Data

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^t - \alpha_t \left(\ell'(\langle w^t, x^i \rangle, y^i) x^i + \lambda w^t \right)$$

= $(1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\langle w, x^i \rangle, y^i\right) + \frac{\lambda}{2} ||w||_2^2$$

Assume each data point x^i is *s*-sparse, how many operations does each SGD step cost?

$$w^{t+1} = w^{t} - \alpha_{t} \left(\ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i} + \lambda w^{t} \right)$$

= $(1 - \lambda \alpha_{t}) w^{t} - \alpha_{t} \ell'(\langle w^{t}, x^{i} \rangle, y^{i}) x^{i}$
Rescaling
 $O(d)$ + Addition sparse
vector $O(s)$ = $O(d$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, \ z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)? $\beta_{t+1} z^{t+1} = (1 - \lambda \alpha_t) \beta_t z^t - \alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i) x^i$ $= (1 - \lambda \alpha_t) \beta_t \left(z^t - \frac{\alpha_t \ell' (\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t) \beta_t} x^i \right)$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$
$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$
$$\beta_{t+1} z^{t+1}$$

 $\beta_{t+1} = (1 - \lambda \alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda \alpha_t)\beta_t} x^i$

SGD step $w^{t+1} = (1 - \lambda \alpha_t) w^t - \alpha_t \ell'(\langle w^t, x^i \rangle, y^i) x^i$

EXE: re-write the iterates using $w^t = \beta_t z^t$ where $\beta_t \in \mathbb{R}, z^t \in \mathbb{R}^d$ Can you update β_t and z^t so that each iteration is O(s)?

$$\beta_{t+1}z^{t+1} = (1 - \lambda\alpha_t)\beta_t z^t - \alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i) x^i$$

$$= (1 - \lambda\alpha_t)\beta_t \left(z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i \right)$$

$$\beta_{t+1} = (1 - \lambda\alpha_t)\beta_t, \quad z^{t+1} = z^t - \frac{\alpha_t \ell'(\beta_t \langle z^t, x^i \rangle, y^i)}{(1 - \lambda\alpha_t)\beta_t} x^i$$

Why Machine Learners Like SGD

Why Machine Learners like SGD

Though we solve:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want to solve:

The statistical learning problem: Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

SGD can solve the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation $\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$

$$\begin{aligned} \mathbf{SGD} & \infty.0 \text{ for learning} \\ & \text{Set } w^0 = 0, \ \alpha > 0 \\ & \text{for } t = 0, 1, 2, \dots, T-1 \\ & \text{sample } (x, y) \sim \mathcal{D} \\ & \text{calculate } v_t \in \partial \ell(h_{w^t}(x), y) \\ & w^{t+1} = w^t - \alpha v_t \\ & \text{Output } \overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t \end{aligned}$$

Coding time!

Appendix

Proof SGDA Part I: $||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \alpha_t \nabla f_i(w^t)||_2^2$ $= ||w^t - w^*||_2^2 - 2\alpha_t \langle \nabla f_i(w^t), w^t - w^* \rangle + \alpha_t^2 ||\nabla f_i(w^t)||_2^2.$ Unbiased estimator Taking expectation with respect to j $\mathbb{E}_{i}\left[||w^{t+1} - w^{*}||_{2}^{2}\right] = ||w^{t} - w^{*}||_{2}^{2} - 2\alpha_{t} \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha_{t}^{2} \mathbb{E}_{i}\left[||\nabla f_{i}(w^{t})||_{2}^{2}\right]$ $\leq ||w^t - w^*||_2^2 - 2\alpha_t \langle \nabla f(w^t), w^t - w^* \rangle + \alpha_t^2 B^2$ $= ||w^t - w^*||_2^2 - 2\alpha(f(w^t) - f(w^*)) + \alpha_t^2 B^2$ Convexity Bounded Stoch grad Taking total expectation and re-arranging $\mathbb{E}[f(w^{t})] - f(w^{*}) \leq \frac{1}{2\alpha_{t}} \mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] - \frac{1}{2\alpha_{t}} \mathbb{E}\left[||w^{t+1} - w^{*}||_{2}^{2}\right] + \frac{\alpha_{t}}{2} B^{2}$ Summing up for 1 to T $\sum_{t=1}^{T} \left(\mathbb{E}\left[f(w^{t})\right] - f(w^{*})\right) \leq \frac{1}{2\alpha_{1}} ||w^{1} - w^{*}||_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T-1} \left(\frac{1}{\alpha_{t+1}} - \frac{1}{\alpha_{t}}\right) \mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right]$ $-\frac{1}{2\alpha_{T+1}}\mathbb{E}\left[||w^{T+1} - w^*||_2^2\right] + \frac{B^2}{2}\sum_{t=1}^{T}\alpha_t$

Proof Part II:

$$\begin{split} \sum_{t=1}^{T} (\mathbb{E} \left[f(w^{t}) \right] - f(w^{*})) &\leq \frac{1}{2\alpha_{1}} ||w^{1} - w^{*}||_{2}^{2} + \frac{1}{2} \sum_{t=1}^{T-1} \left(\frac{1}{\alpha_{t+1}} - \frac{1}{\alpha_{t}} \right) \mathbb{E} \left[||w^{t} - w^{*}||_{2}^{2} \right] \\ &- \frac{1}{2\alpha_{T+1}} \mathbb{E} \left[||w^{T+1} - w^{*}||_{2}^{2} \right] + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t} \\ \hline ||w||_{2}^{2} \leq r^{2} \\ \alpha_{t+1} \leq \alpha_{t} \end{split} \leq \frac{2r^{2}}{\alpha_{1}} + 2r^{2} \sum_{t=1}^{T-1} \left(\frac{1}{\alpha_{t+1}} - \frac{1}{\alpha_{t}} \right) + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t} \\ &= \frac{2r^{2}}{\alpha_{T}} + \frac{B^{2}}{2} \sum_{t=1}^{T} \alpha_{t} \\ Finally let \ \overline{w}^{T} = \frac{1}{T} \sum_{t=1}^{T} w^{t} \text{ and dividing by } T, \text{ using } \alpha_{t} = \frac{\alpha_{0}}{\sqrt{t}} \\ \mathbb{E}[f(\bar{w}_{T})] - f(w^{*})) \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[f(w_{t})] - f(w^{*})) \leq \frac{r^{2}\sqrt{T}}{T\alpha_{0}} + \frac{B^{2}}{2T} \sum_{t=1}^{T} \frac{\alpha_{0}}{\sqrt{t}} \end{split}$$

$$\mathbb{E}[f(\bar{w}_T)] - f(w^*)) \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[f(w_t)] - f(w^*)) \leq \frac{r^2 \sqrt{T}}{T \alpha_0} + \frac{B^2}{2T} \sum_{t=1}^{T} \frac{\alpha_0}{\sqrt{t}} \\ \leq \frac{1}{\sqrt{T}} \left(\frac{2r^2}{\alpha_0} + \alpha_0 B^2 \right)$$

Minimizing in α_0 gives $\alpha_0 = \sqrt{2}r/B$ and thus

$$\mathbb{E}[f(\bar{w}_T)] - f(w^*)) \leq \frac{1}{\sqrt{T}} \left(\sqrt{2}rB + \sqrt{2}rB\right) \leq \frac{3rB}{\sqrt{T}}$$

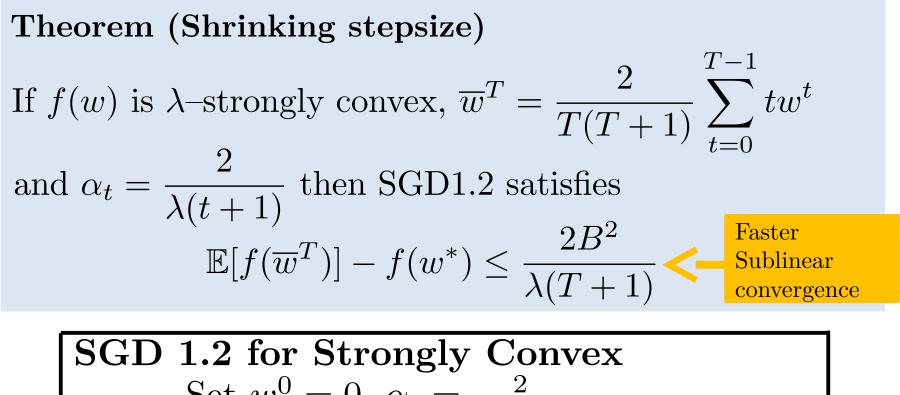
SGD with averaging for nonsmooth and strongly convex functions

Complexity for strongly convex

Theorem (Shrinking stepsize)
If
$$f(w)$$
 is λ -strongly convex, $\overline{w}^T = \frac{2}{T(T+1)} \sum_{t=0}^{T-1} t w^t$
and $\alpha_t = \frac{2}{\lambda(t+1)}$ then SGD1.2 satisfies
 $\mathbb{E}[f(\overline{w}^T)] - f(w^*) \leq \frac{2B^2}{\lambda(T+1)}$

SGD 1.2 for Strongly Convex Set $w^0 = 0$, $\alpha_t = \frac{2}{\lambda(t+1)}$, for $t = 0, 1, 2, \dots, T-1$ sample $j \in \{1, \dots, n\}$ $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$ Output \overline{w}^T

Complexity for strongly convex



Set
$$w^0 = 0$$
, $\alpha_t = \frac{2}{\lambda(t+1)}$,
for $t = 0, 1, 2, \dots, T-1$
sample $j \in \{1, \dots, n\}$
 $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$
Output \overline{w}^T

SGD for non-smooth functions

SGD Theory for non-smooth

Assumptions

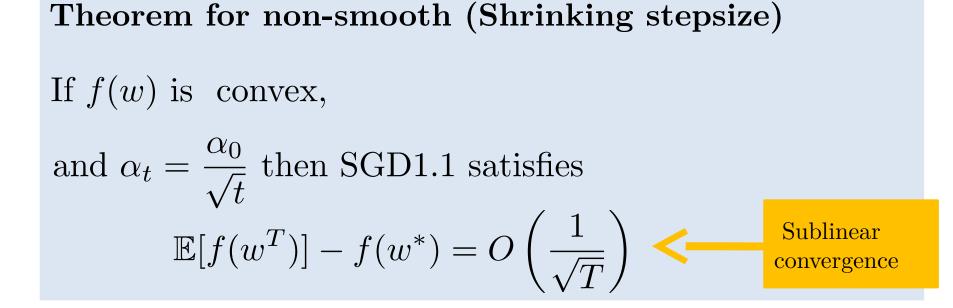
- f(w) is convex
- Subgradients bounded $\mathbb{E}_j ||\nabla f_j(w^t)||_2 \leq B$
- There exists $r \in \mathbb{R}_+$ such that $w^* \in D := \{w : ||w|| \le r\}$

SGD 1.1 theoretical Set $w^1 = 0$, $\alpha_t \in \mathbb{R}_+$, $\alpha_t \xrightarrow{\to} 0$ for $t = 1, 2, \dots, T$ sample $j \in \{1, \dots, n\}$ $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$ Output w^T

Convergence for Convex

Theorem for non-smooth (Shrinking stepsize) If f(w) is convex, and $\alpha_t = \frac{\alpha_0}{\sqrt{t}}$ then SGD1.1 satisfies $\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\sqrt{T}}\right)$

Convergence for Convex



Complexity for Strong. Convex

Theorem for non-smooth (Shrinking stepsize) If f(w) is λ -strongly convex, and $\alpha_t = \frac{\alpha_0}{\lambda t}$ then SGD1.1 satisfies $\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\lambda T}\right)$

Complexity for Strong. Convex

Theorem for non-smooth (Shrinking stepsize) If f(w) is λ -strongly convex, and $\alpha_t = \frac{\alpha_0}{\lambda t}$ then SGD1.1 satisfies $\mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\lambda T}\right)$ \leftarrow Faster Sublinear convergence

