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Solving the Finite Sum Training 
Problem



General methods

Recap

● Gradient Descent

Training Problem

Two parts
● Proximal gradient 

(ISTA)
● Fast proximal 

gradient (FISTA)

L(w)



A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms

Can we use this 
sum structure?



The Training Problem



The Training Problem



Stochastic Gradient Descent
Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then

   

 

EXE: 



Stochastic Gradient Descent



Stochastic Gradient Descent

  Optimal point



Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence



Complexity / Convergence

Theorem

    



Proof:

  Unbiased estimatorTaking expectation with respect to j

Taking total expectation
Strong conv.

Bounded 
Stoch grad



Stochastic Gradient Descent 
α =0.01



Stochastic Gradient Descent 
α =0.1



Stochastic Gradient Descent 
α =0.2



Stochastic Gradient Descent 
α =0.5



Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence



Strongly quasi-convexity 

Realistic assumptions for 
Convergence

Each fi is convex and Li smooth

Gradient Noise



Strongly quasi-convexity 

Realistic assumptions for 
Convergence

Each fi is convex and Li smooth

Gradient Noise



Assumptions for Convergence

EXE: Calculate the Li ’s and Lmax for

HINT: A twice differentiable fi  is Li - smooth if and only if 
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Assumptions for Convergence

EXE:  Calculate the Li ’s and Lmax for



Relationship between smoothness 
constants
EXE: 

  Show that

  



Relationship between smoothness 
constants
EXE: 

  Show that

  
Proof: From the Hessian definition of smoothness

Furthermore

The final result now follows by taking the max over w, then max over i



Complexity / Convergence

Theorem

EXE: The steps of the proof are given in a exercise list for homework!  

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. 
Richtarik (2019)  arXiv:1901.09401
SGD: General Analysis and Improved Rates.



Stochastic Gradient Descent 
α =0.5



Stochastic Gradient Descent 
α =0.5

1) Start with 
big steps and 
end with 
smaller steps



Stochastic Gradient Descent 
α =0.5

2) Try 
averaging the 
points

1) Start with 
big steps and 
end with 
smaller steps



SGD shrinking stepsize

Shrinking 
Stepsize 



SGD shrinking stepsize

Shrinking 
Stepsize How should we  

sample j ?

Does this converge?



SGD with shrinking stepsize 
Compared with Gradient Descent

Gradient Descent

SGD 1.0



SGD with shrinking stepsize  
Compared with Gradient Descent

SGD 1.0

Gradient Descent



Complexity / Convergence

Theorem for shrinking stepsizes



Complexity / Convergence

Theorem for shrinking stepsizes

 



Complexity / Convergence

Theorem for shrinking stepsizes

 



Stochastic Gradient Descent 
Compared with Gradient Descent

Gradient Descent

SGD

Noisy iterates. 
Take averages?



SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging



SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging

This is not 
efficient. How to 
make this efficient?



Stochastic Gradient Descent 
With and without averaging

Starts slow, but 
can reach higher 
accuracy



Stochastic Gradient Descent 
With and without averaging

Starts slow, but 
can reach higher 
accuracy

Only use 
averaging 
towards the end?



Stochastic Gradient Descent 
Averaging the last few iterates

Averaging starts here



Comparison GD and SGD for strongly 
convex

 SGD GD

Iteration 
complexity

Cost of an 
interation



SGD

Total complexity GD and SGD for 
strongly convex

Gradient descent

Approximate solution

What happens 
if n is big?

What happens 
if    is small?



Comparison SGD vs GD

time

SGD

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.
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Comparison SGD vs GD

time

SGD

GD

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.



Comparison SGD vs GD

time

SGD

GD

Stoch. Average 
Gradient (SAG)

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.



Practical SGD for Sparse Data



Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Assume each data point xi is s-sparse, how 
many operations does each SGD step cost?
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Assume each data point xi is s-sparse, how 
many operations does each SGD step cost?

Rescaling 
O(d)

Addition sparse 
vector O(s)



SGD step

Lazy SGD updates for Sparse Data

EXE: 



SGD step

Lazy SGD updates for Sparse Data

EXE: 



SGD step

Lazy SGD updates for Sparse Data

EXE: 



SGD step

Lazy SGD updates for Sparse Data

O(1) scaling + 
O(s) sparse add 
= O(s) update

EXE: 



Why Machine Learners Like SGD



The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Why Machine Learners like SGD

SGD can solve the 
statistical learning problem!
SGD can solve the 
statistical learning problem!

Though we solve:

We want to solve:



The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Why Machine Learners like SGD



Coding time!



Appendix



Proof SGDA Part I:

  Unbiased estimatorTaking expectation with respect to j

Taking total expectation and re-arranging
Convexity Bounded 

Stoch grad

Summing up for 1 to T



Proof Part II:



SGD with averaging for non-
smooth and strongly convex 

functions



Complexity for strongly convex
Theorem (Shrinking stepsize)



Complexity for strongly convex
Theorem (Shrinking stepsize)

Faster 
Sublinear 
convergence



SGD for non-smooth functions



Assumptions
● f(w) is convex
● Subgradients bounded 
● There exists

SGD Theory for non-smooth



Convergence for Convex
Theorem for non-smooth (Shrinking stepsize)

Ohad Shamir and Tong Zhang (2013)
International Conference on Machine Learning 
Stochastic Gradient Descent for Non-smooth Optimization: 
Convergence Results and Optimal Averaging Schemes.



Convergence for Convex
Theorem for non-smooth (Shrinking stepsize)

 Sublinear 
convergence

Ohad Shamir and Tong Zhang (2013)
International Conference on Machine Learning 
Stochastic Gradient Descent for Non-smooth Optimization: 
Convergence Results and Optimal Averaging Schemes.



Complexity for Strong. Convex
Theorem for non-smooth (Shrinking stepsize)

Ohad Shamir and Tong Zhang (2013)
International Conference on Machine Learning 
Stochastic Gradient Descent for Non-smooth Optimization: 
Convergence Results and Optimal Averaging Schemes.



Complexity for Strong. Convex
Theorem for non-smooth (Shrinking stepsize)

Faster 
Sublinear 
convergence

Ohad Shamir and Tong Zhang (2013)
International Conference on Machine Learning 
Stochastic Gradient Descent for Non-smooth Optimization: 
Convergence Results and Optimal Averaging Schemes.
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