
Optimization for Machine Learning

Introduction into supervised learning

Lecturers: Francis Bach & Robert M. Gower

Tutorials: Hadrien Hendrikx, Rui Yuan, Nidham Gazagnadou

African Master's in Machine Intelligence (AMMI), Kigali



Core Info

● Where : AMMI Kigali
● Room : ? 
● Volume : 24 hours
● When :  04/02 – 15/02 
● Online: https://perso.telecom-paristech.fr/rgower/teaching.html
● Lab projects: Students send their lab python projects to: 

gowerrobert@gmail.com 



Course Outline

Week 1: Francis Bach and Hadrien Hendrikx
● Mon. 4/2 (4-6pm): Introduction to ML – introduction to 

Optimization
● Tue. 5/2 (9-11pm): Exercises
● Wed. 6/2 (9-11pm): Proximal methods
● Wed. 6/2 (2-4pm): Exercises
● Fri. 8/2 (9-10pm): Quiz
● Fri. 8/2 (10.15pm – 12.15pm + 2-4pm): Lab with week 1 and 

week 2 teachers!



Course Outline

Week 2: Robert Gower and Rui Yuan, Nidham 

Gazagnadou
● Mon 11/2 (9-11pm): Stochastic gradient
● Mon 11/2 (2-4pm): Exercises
● Wed 13/2 (9-11pm): Variance reduction
● Wed 13/12 (2-4pm): Exercises
● Fri. 15/2 (9-10pm): Quiz
● Fri. 15/2 (10.15pm – 12.15pm + 2-4pm): Lab  



An Introduction to 

Supervised Learning



References classes today

Convex Optimization, 

Stephen Boyd

Pages 67 to 79

Understanding Machine 

Learning: From Theory to 
Algorithms

Chapter 2



Is There a Cat in the Photo?

Yes

No
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Is There a Cat in the Photo?

Yes



Is There a Cat in the Photo?

No



Is There a Cat in the Photo?

Yes



Find mapping  h that assigns the “correct” target to each input 

Is There a Cat in the Photo?

Yes

No

x: Input/Feature y: Output/Target



Labeled Data: The training set

Learning 

Algorithm

 -1

y= -1 means no/false



Example Training Problem:

Example Hypothesis: Linear Model

Example: Linear Regression for 
Height

Sex        0

Age       30

Height    1,72 cm

Sex        1

Age       70

Height    1,52 cm

 Labelled data

Male = 0
Female = 1



Linear Regression for Height

The Training 
Algorithm

Age

Height

Other options 
aside from linear?

Sex = 0



Parametrizing the Hypothesis
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Neural Net:



Loss Functions

Why a 
Squared
Loss?

Loss Functions

The Training Problem

Typically a 
convex function



Choosing the Loss Function

Quadratic Loss

Binary Loss

Hinge Loss

EXE: Plot the binary and hinge loss function in when           

y=1 in all 
figures



Loss Functions

The Training Problem

Is a notion of Loss enough? 

What happens when we do not have enough data?



Overfitting and Model Complexity 

Fitting 1st order polynomial 



Overfitting and Model Complexity 

Fitting 2nd order polynomial 



Overfitting and Model Complexity

Fitting 3rd order polynomial 



Overfitting and Model Complexity 

Fitting 9th order polynomial 



Regularizor Functions

General Training Problem

Regularization

Exe:

Goodness of fit, 
fidelity term ...etc

Penalizes 
complexity

Controls tradeoff 
between fit and 
complexity



Overfitting and Model Complexity

Fitting kth order polynomial 

For λ big enough, 
the solution is a 2nd 
order polynomial



Linear hypothesis

Exe: Ridge Regression

Ridge Regression 

L2 loss

L2 regularizor



Linear hypothesis

Exe: Support Vector Machines

SVM with soft margin

Hinge loss

L2 regularizor



Linear hypothesis

Exe: Logistic Regression

Logistic Regression

Logistic loss

L2 regularizor



The Machine Learners Job



The Statistical Learning Problem:
The hard truth

Do we really care if the loss 

is small on the known labelled data paris (xi,yi) ? Nope 

We really want to have a small loss on new unlabelled 

Observations!

 

Assume data sampled                 where     is an unknown 

distribution



The statistical learning problem:

Minimize the expected loss over an unknown expectation 

The Statistical Learning Problem:
The hard truth

Variance of sample mean:

2



Optimization for Machine Learning

Convexity, Smoothness and the Gradient 

Method

Lecturers: Francis Bach & Robert M. Gower

Tutorials: Hadrien Hendrikx, Rui Yuan, Nidham Gazagnadou

African Master's in Machine Intelligence (AMMI), Kigali



Solving the Finite Sum Training 

Problem



A Datum Function

Finite Sum Training Problem 

Op�miza�on Sum of Terms



The Training Problem



  Optimal point

Gradient Descent Example

A Logistic Regression 

problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 

works?

Convex and 
smooth training 

problems

No! There is no 

universal optimization 
method. The “no free 

lunch” of Optimization 

Specialize



Convergence GD 

Theorem

Let f be m-strongly convex and L-smooth. 

Where



Gradient Descent Example: logis�c 



Convexity

Global minimizer = 

Stationary point = 
Local minimizer



Convexity: First deriva�ve



Convexity: Second deriva�ve



Convexity: Examples

Norms and squared norms:

Negative log and logistic:

Proof is an 

exercise!

Hinge loss

Negatives log determinant, exponentiation … etc



Smoothness

y



Smoothness: Examples

Convex quadratics:

Logistic:

Proof is an 
exercise!

Trigonometric:



Smoothness: Convex 

counter-example

Does not fit. 

Not smooth



Smoothness Equivalence

EXE: Using that

Show that



Insight into Gradient Descent

Minimizing the upper bound in w we get:

A gradient 
descent 

step !

EXE:    If f is L-smooth, show that 



Smoothness Proper�es

Proof on board



Strong convexity

Hinge loss + L2

Quadratic lower bound



Strong convexity

EXE: Using that

Show that



Convergence GD 

Theorem

Let f be m-strongly convex and L-smooth. 

Where

Proof on board



Convergence GD I

Theorem

Let f be convex and L-smooth. 

Where

Proof on board



Strong Convexity Proper�es

Proof on board

This property is known as the Polyak-Lojasiewicz inequality



Co-coercivity

Convex and Smooth Proper�es

Proof on board



Accelera�on and lower bouds



The Accelerated gradient method

Weird 

extrapolation, 

but it works



Convergence lower bounds 

strongly convex

Theorem (Nesterov)

such that

Yuri Nesterov (1998), Springer Publishing,  Introductory Lectures on Convex 

Op,miza,on: A Basic Course 

For any optimization algorithm where

Accelerated 
gradient has 

this rate



Convergence lower bounds convex

Theorem (Nesterov)

Yuri Nesterov (1998), Springer Publishing,  Introductory Lectures on Convex 

Op,miza,on: A Basic Course 

such that

For any optimization algorithm where
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