Exercise List: Convergence rates and complexity

Francis Bach and Robert M. Gower

February 10, 2019

1 Rate of convergence and complexity

All the algorithm we discuss in the course generate a sequence of random vectors x^{t} that converge to a desired x^{*} in some sense. Because the x^{t} 's are random we always prove convergence in expectation. In particular, we focus on two forms of convergence, either showing that the difference of function values converges

$$
\mathbb{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right] \longrightarrow 0,
$$

or the expected norm difference of the iterates converges

$$
\mathbb{E}\left[\left\|x^{t}-x^{*}\right\|^{2}\right] \longrightarrow 0
$$

Two important questions: 1) How fast is this convergence and 2) given an ϵ how many iterations t are needed before $\mathbb{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right]<\epsilon$ or $\mathbb{E}\left[\left\|x^{t}-x^{*}\right\|^{2}\right]<\epsilon$.
Ex. 1 - Consider a sequence $\left(\alpha_{t}\right)_{t} \in \mathbb{R}_{+}$that converge to zero according to

$$
\alpha_{t} \leq \frac{C}{t}
$$

where $C>0$. Given an $\epsilon>0$, show that

$$
t \geq \frac{C}{\epsilon} \quad \Rightarrow \alpha_{t}<\epsilon
$$

We refer to this result as a $O(1 / \epsilon)$ iteration complexity.
Ex. 2 - Using that

$$
\begin{equation*}
\frac{1}{1-\rho} \log \left(\frac{1}{\rho}\right) \geq 1 \tag{1}
\end{equation*}
$$

prove the following lemma.

Lemma 1.1. Consider the sequence $\left(\alpha_{k}\right)_{k} \in \mathbb{R}_{+}$of positive scalars that converges to zero according to

$$
\begin{equation*}
\alpha_{k} \leq \rho^{k} \alpha_{0}, \tag{2}
\end{equation*}
$$

where $\rho \in[0,1)$. For a given $1>\epsilon>0$ we have that

$$
\begin{equation*}
k \geq \frac{1}{1-\rho} \log \left(\frac{1}{\epsilon}\right) \quad \Rightarrow \quad \alpha_{k} \leq \epsilon \alpha_{0} . \tag{3}
\end{equation*}
$$

We refer to this as a $O(\log (1 / \epsilon))$ iteration complexity.
Following the introduction, we can write $\alpha^{t} \stackrel{\text { def }}{=} \mathbb{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right]$ or $\alpha^{t} \stackrel{\text { def }}{=} \mathbb{E}\left[\left\|x^{t}-x^{*}\right\|^{2}\right]$. The type of convergence (2) is known as linear convergence at a rate of ρ^{k}.

Exercise List: Proving convergence of the Stochastic Gradient Descent and Coordinate Descent on the Ridge Regression Problem.

Robert M. Gower \& Francis Bach \& Nidham Gazagnadou

February 10, 2019

Introduction

Consider the task of learning a rule that maps the feature vector $x \in \mathbb{R}^{d}$ to outputs $y \in \mathbb{R}$. Furthermore you are given a set of labelled observations $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$. We restrict ourselves to linear mappings. That is, we need to find $w \in \mathbb{R}^{d}$ such that

$$
\begin{equation*}
x_{i}^{\top} w \approx y_{i}, \quad \text { for } i=1, \ldots, n . \tag{1}
\end{equation*}
$$

That is the hypothesis function is parametrized by w and is given by $h_{w}: x \mapsto w^{\top} x .{ }^{1}$ To choose a w such that each $x_{i}^{\top} w$ is close to y_{i}, we use the squared loss $\ell(y)=y^{2} / 2$ and the squared regularizor. That is, we minimize

$$
\begin{equation*}
w^{*}=\arg \min _{w} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \tag{2}
\end{equation*}
$$

where $\lambda>0$ is the regularization parameter. We now have a complete training problem (2) ${ }^{2}$.

Using the matrix notation

$$
\begin{equation*}
X \stackrel{\text { def }}{=}\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}, \quad \text { and } \quad y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

we can re-write the objective function in (2) as

$$
\begin{equation*}
f(w) \stackrel{\text { def }}{=} \frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} . \tag{4}
\end{equation*}
$$

First we introduce some necessary notation.

[^0]Notation: For every $x, w, \in \mathbb{R}^{d}$ let $\langle x, w\rangle \xlongequal{\text { def }} x^{\top} y$ and let $\|x\|_{2}=\sqrt{\langle x, x\rangle}$. Let $A \in \mathbb{R}^{d \times d}$ be a matrix and let $\sigma_{\min }(A)$ and $\sigma_{\max }(A)$ be the smallest and largest singular values of A defined by

$$
\begin{equation*}
\sigma_{\min }(A) \stackrel{\text { def }}{=} \min _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \quad \text { and } \quad \sigma_{\max }(A) \stackrel{\text { def }}{=} \max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} . \tag{5}
\end{equation*}
$$

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the largest singular value of A can be defined instead as

$$
\begin{equation*}
\sigma_{\max }(A)=\max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\langle A x, x\rangle_{2}}{\|x\|_{2}^{2}}=\max _{x \in \mathbb{R}^{d}, x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} . \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\langle A x, x\rangle}{\|x\|_{2}^{2}} \leq \sigma_{\max }(A), \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\|A x\|_{2}}{\|x\|_{2}} \leq \sigma_{\max }(A), \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} \tag{8}
\end{equation*}
$$

We will now solve the following ridge regression problem

$$
\begin{equation*}
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\left(\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \stackrel{\text { def }}{=} f(w)\right), \tag{9}
\end{equation*}
$$

using stochastic gradient descent and stochastic coordinate descent.

Exercise 1: Stochastic Gradient Descent (SGD)

Some more notation: Let $\|A\|_{F}^{2} \stackrel{\text { def }}{=} \operatorname{Tr}\left(A^{\top} A\right)$ denote the Frobenius norm of A. Let

$$
\begin{equation*}
A \xlongequal{\text { def }} \frac{1}{n} X X^{\top}+\lambda I \in \mathbb{R}^{d \times d} \text { and } b \stackrel{\text { def }}{=} \frac{1}{n} X y . \tag{10}
\end{equation*}
$$

We can exploit the separability of the objective function (2) to design a stochastic gradient method. For this, first we re-write the problem $A w=b$ as different linear least squares problem

$$
\begin{equation*}
\hat{w}^{*}=\arg \min _{w} \frac{1}{2}\|A w-b\|_{2}^{2}=\quad \arg \min _{w} \sum_{i=1}^{d} \frac{1}{2}\left(A_{i}: w-b_{i}\right)^{2} \quad \stackrel{\text { def }}{=} \quad \arg \min _{w} \sum_{i=1}^{d} p_{i} f_{i}(w) \tag{11}
\end{equation*}
$$

where $f_{i}(w)=\frac{1}{2 p_{i}}\left(A_{i}: w-b_{i}\right)^{2}, A_{i}$ denotes the i th row of A, b_{i} denotes the i th element of b and $p_{i}=\frac{\left\|A_{i}:\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for $i=1, \ldots, d$. Note that $\sum_{i=1}^{d} p_{i}=1$ thus the p_{i} 's are probabilities.

From a given $w^{0} \in \mathbb{R}^{d}$, consider the iterates

$$
\begin{equation*}
w^{t+1}=w^{t}-\alpha \nabla f_{j}\left(w^{t}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{\|A\|_{F}^{2}}, \tag{13}
\end{equation*}
$$

and j is a random index chosen from $\{1, \ldots, d\}$ sampled with probability p_{j}. In other words, $\mathbb{P}(j=i)=p_{i}=\frac{\left\|A_{i}:\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for all $i \in\{1, \ldots, d\}$.

Question 1.1: Show that the solution \hat{w}^{*} to (11) and the solution to w^{*} to (9) are equal.
Question 1.2: Show that

$$
\begin{equation*}
\nabla f_{j}(w)=\frac{1}{p_{j}} A_{j:}^{\top} A_{j:}\left(w-w^{*}\right) \tag{14}
\end{equation*}
$$

and that

$$
\mathbb{E}_{j \sim p}\left[\nabla f_{j}(w)\right] \stackrel{\text { def }}{=} \sum_{i=1}^{d} p_{i} \nabla f_{i}(w)=A^{\top} A\left(w-w^{*}\right)
$$

thus $\nabla f_{j}(w)$ is an unbiased estimator of the full gradient of the objective function in (11). This justifies applying the stochastic gradient method.

Question 1.3: Let $\Pi_{j} \stackrel{\text { def }}{=} \frac{A_{j:}^{\top} A_{j}}{\left\|A_{j}:\right\|_{2}^{2}}$, show that

$$
\begin{equation*}
\Pi_{j} \Pi_{j}=\Pi_{j} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-\Pi_{j}\right)\left(I-\Pi_{j}\right)=I-\Pi_{j} . \tag{16}
\end{equation*}
$$

In other words, Π_{j} is a projection operator which projects orthogonally onto Range (A_{j} :) . Furthermore, if $j \sim p_{j}$ verify that

$$
\begin{equation*}
\mathbb{E}\left[\Pi_{j}\right]=\sum_{i=1}^{d} p_{i} \Pi_{i}=\frac{A^{\top} A}{\|A\|_{F}^{2}} \tag{17}
\end{equation*}
$$

Question 1.4: Show the following equality ruling the squared norm of the distance to the solution

$$
\begin{equation*}
\left\|w^{t+1}-w^{*}\right\|_{2}^{2}=\left\|w^{t}-w^{*}\right\|_{2}^{2}-\left\langle\frac{A_{j:}^{\top} A_{j}:}{\left\|A_{j:}:\right\|_{2}^{2}}\left(w^{t}-w^{*}\right), w^{t}-w^{*}\right\rangle \tag{18}
\end{equation*}
$$

Question 1.5: Using previous answer and analogous techniques from the course, show that the iterates (12) converge according to

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{t+1}-w^{*}\right\|_{2}^{2}\right] \leq\left(1-\frac{\sigma_{\min }(A)^{2}}{\|A\|_{F}^{2}}\right) \mathbb{E}\left[\left\|w^{t}-w^{*}\right\|_{2}^{2}\right] \tag{19}
\end{equation*}
$$

Remark: This is an amazing and recent result [2], since it shows that SGD converges exponentially fast despite the fact that the iterates (14) only require access to a single row of A at a time! This result can be extended to solving any linear system $A w=b$, including the case where A rank deficient. Indeed, so long as there exists a solution to $A w=b$, the iterates (14) converge to the solution of least norm and at rate of $\left(1-\frac{\sigma_{\min }^{+}(A)^{2}}{\|A\|_{F}^{2}}\right)$ where $\sigma_{\text {min }}^{+}(A)$ is the smallest nonzero singular value of A [1]. Thus this method can solve any linear system.

BONUS

Exercise 2: Stochastic Coordinate Descent (CD)

Consider the minimization problem

$$
\begin{equation*}
w^{*}=\arg \min _{x \in \mathbb{R}^{d}}\left(f(w) \stackrel{\text { def }}{=} \frac{1}{2} w^{\top} A w-w^{\top} b\right), \tag{20}
\end{equation*}
$$

where $A \in \mathbb{R}^{d \times d}$ is a symmetric positive definite matrix, and $w, b \in \mathbb{R}^{d}$.
Question 2.1: First show that, using the notation (10), solving (20) is equivalent to solving (9).

Question 2.2: Show that

$$
\begin{equation*}
\frac{\partial f(w)}{\partial w_{i}}=A_{i: w}-b_{i} \tag{21}
\end{equation*}
$$

where A_{i} is the i th row of A. Furthermore note that $w^{*}=A^{-1} b$, thus

$$
\begin{equation*}
\frac{\partial f(w)}{\partial w_{i}}=e_{i}^{\top}(A w-b)=e_{i}^{\top} A\left(w-w^{*}\right) . \tag{22}
\end{equation*}
$$

Question 2.3: Consider a step of the stochastic coordinate descent method

$$
\begin{equation*}
w^{k+1}=w^{k}-\alpha_{i} \frac{\partial f\left(w^{k}\right)}{\partial x_{i}} e_{i}, \tag{23}
\end{equation*}
$$

where $e_{i} \in \mathbb{R}^{d}$ is the i th unit coordinate vector, $\alpha_{i}=\frac{1}{A_{i i}}$, and $i \in\{1, \ldots, d\}$ is sampled i.i.d at each step according to $i \sim p_{i}$ where $p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)}$. Let $\|x\|_{A}^{2} \stackrel{\text { def }}{=} x^{\top} A x$.

First, prove that

$$
\begin{equation*}
\left\|w^{k+1}-w^{*}\right\|_{A}^{2}=\left\langle\left(I-\Pi_{i}^{\top}\right) A\left(I-\Pi_{i}\right)\left(w^{k}-w^{*}\right), w^{k}-w^{*}\right\rangle . \tag{24}
\end{equation*}
$$

Question 2.4: Let $r^{k} \stackrel{\text { def }}{=} A^{1 / 2}\left(w^{k}-w^{*}\right)$. Deduce from (24) that

$$
\begin{equation*}
\left\|r^{k+1}\right\|_{2}^{2}=\left\|r^{k}\right\|_{2}^{2}-\left\langle\frac{A^{1 / 2} e_{i} e_{i}^{\top} A^{1 / 2}}{A_{i i}} r^{k}, r^{k}\right\rangle . \tag{25}
\end{equation*}
$$

Question 2.5: Finally, prove the convergence of the iterates of CD (23) converge according to

$$
\begin{equation*}
\mathbb{E}\left[\left\|w^{k+1}-w^{*}\right\|_{A}^{2}\right] \leq\left(1-\frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\right) \mathbb{E}\left[\left\|w^{k}-w^{*}\right\|_{A}^{2}\right] \tag{26}
\end{equation*}
$$

thus (23) converges to the solution.
Hint: Since A is symmetric positive definite you can use that

$$
\lambda_{\min }(A)=\inf _{x \in \mathbb{R}^{d}, x \neq 0} \frac{x^{\top} A x}{\|x\|_{2}^{2}}
$$

You will need to use that $x^{\top} A x \geq \lambda_{\min }(A)\|x\|_{2}^{2}$ at some point.
Question 2.6: When is this stochastic gradient method (14) faster than the stochastic coordinate descent method of gradient descent? Note that the each iteration of SGD and CD costs $O(d)$ floating point operations while an iteration of the GD method costs $O\left(d^{2}\right)$ floating point operations (assuming that A has been previously calculated and stored). What happens if d is very big? What if $\|A\|_{F}^{2}$ is very large? Discuss this.

References

[1] R. M. Gower and P. Richtárik. "Stochastic Dual Ascent for Solving Linear Systems". In: arXiv:1512.06890 (2015).
[2] T. Strohmer and R. Vershynin. "A Randomized Kaczmarz Algorithm with Exponential Convergence". In: Journal of Fourier Analysis and Applications 15.2 (2009), pp. 262278.

(BONUS) Exercise List: Proving convergence of the Stochastic Gradient Descent for smooth and convex functions.

Robert M. Gower

February 10, 2019

1 Introduction

Consider the problem

$$
\begin{equation*}
w^{*} \in \arg \min _{w}\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}(w) \stackrel{\text { def }}{=} f(w)\right) \tag{1}
\end{equation*}
$$

where we assume that $f(w)$ is μ-strongly quasi-convex

$$
\begin{equation*}
f\left(w^{*}\right) \geq f(w)+\left\langle w^{*}-w, \nabla f(w)\right\rangle+\frac{\mu}{2}\left\|w-w^{*}\right\|^{2} \tag{2}
\end{equation*}
$$

and each f_{i} is convex and L_{i}-smooth

$$
\begin{equation*}
f_{i}(w+h) \leq f_{i}(w)+\left\langle\nabla f_{i}(w), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, n . \tag{3}
\end{equation*}
$$

Here we will provide a modern proof of the convergence of the SGD algorithm

$$
\begin{equation*}
w^{t+1}=w^{t}-\gamma^{t} \nabla f_{i_{t}}\left(w^{t}\right), \quad \text { where } i_{t} \sim \frac{1}{n} . \tag{4}
\end{equation*}
$$

The result we will prove is given in the following theorem.
Theorem 1.1. Assume f is μ-quasi-strongly convex and the f_{i} 's are convex and L_{i}-smooth. Let $L_{\text {max }}=\max _{i=1, \ldots, n} L_{i}$ and let

$$
\begin{equation*}
\sigma^{2} \quad \stackrel{\text { def }}{=} \sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{*}\right)\right\|^{2} . \tag{5}
\end{equation*}
$$

Choose $\gamma^{t}=\gamma \in\left(0, \frac{1}{2 L_{\text {max }}}\right]$ for all t. Then the iterates of SGD given by (4) satisfy:

$$
\begin{equation*}
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq(1-\gamma \mu)^{t}\left\|w^{0}-w^{*}\right\|^{2}+\frac{2 \gamma \sigma^{2}}{\mu} . \tag{6}
\end{equation*}
$$

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.

Ex. $\mathbf{1}$ - Let $\mathbb{E}_{t}[\cdot] \stackrel{\text { def }}{=} \mathbb{E}\left[\cdot \mid w^{t}\right]$ and consider the t th iteration of the SGD method (4). Show that

$$
\mathbb{E}_{t}\left[\nabla f_{i_{t}}\left(w^{t}\right)\right]=\nabla f\left(w^{t}\right)
$$

Ex. 2 - Let $\mathbb{E}_{t}[\cdot] \stackrel{\text { def }}{=} \mathbb{E}\left[\cdot \mid w^{t}\right]$ be the expectation conditioned on w^{t}. Using a step of SGD (4) show that

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|^{2}\right]=\left\|w^{t}-w^{*}\right\|^{2}-2 \gamma\left\langle w^{t}-w^{*}, \nabla f\left(w^{t}\right)\right\rangle+\gamma^{2} \sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{t}\right)\right\|^{2} \tag{7}
\end{equation*}
$$

Ex. 3 - Now we need to bound the term $\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}\left(w^{t}\right)\right\|^{2}$ to continue the proof. We break this into the following steps.

Part I

Using that each f_{i} is L_{i}-smooth and convex and using Lemma A. 1 in the appendix show that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2 n L_{i}}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq f(w)-f\left(w^{*}\right) \tag{9}
\end{equation*}
$$

Hint: Remember that $\nabla f\left(w^{*}\right)=0$.
Now let $L_{\text {max }}=\max _{i=1, \ldots, n} L_{i}$ and conlude that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}(w)-\nabla f_{i}\left(w^{*}\right)\right\|_{2}^{2} \leq 2 L_{\max }\left(f(w)-f\left(w^{*}\right)\right) \tag{10}
\end{equation*}
$$

Part II
Using (10) and Definition 5 show that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{n}\left\|\nabla f_{i}(w)\right\|^{2} \leq 4 L_{\max }\left(f(w)-f\left(w^{*}\right)\right)+2 \sigma^{2} \tag{11}
\end{equation*}
$$

Ex. 4 - Using (11) together with (7) and the strong quasi-convexity (2) of $f(w)$ show that

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left\|w^{t+1}-w^{*}\right\|^{2}\right] \leq(1-\mu \gamma)\left\|w^{t}-w^{*}\right\|^{2}+2 \gamma\left(2 \gamma L_{\max }-1\right)\left(f\left(w^{t}\right)-f\left(w^{*}\right)\right)+2 \sigma^{2} \gamma^{2} \tag{15}
\end{equation*}
$$

Ex. 5 - Using that $\gamma \in\left(0, \frac{1}{2 L_{\text {max }}}\right]$ conclude the proof by taking expectation again, and unrolling the recurrence.

Ex. 6 - BONUS importance sampling: Let $i_{t} \sim p_{i}$ in the SGD update (4), where $p_{i}>0$ are probabilities with $\sum_{i=1}^{n} p_{i}=1$. What should the p_{i} 's be so that SGD has the fastest convergence?

3 Decreasing step-sizes

Based on Theorem 1.1 we can introduce a decreasing stepsize.

Theorem 3.1 (Decreasing stepsizes). Let f be μ-strongly quasi-convex and each f_{i} be L_{i}-smooth and convex. Let $\mathcal{K} \stackrel{\text { def }}{=} L_{\max } / \mu$ and

$$
\gamma^{t}=\left\{\begin{array}{lll}
\frac{1}{2 L_{\max }} & \text { for } & t \leq 4\lceil\mathcal{K}\rceil \tag{18}\\
\frac{2 t+1}{(t+1)^{2} \mu} & \text { for } & t>4\lceil\mathcal{K}\rceil
\end{array}\right.
$$

If $t \geq 4\lceil\mathcal{K}\rceil$, then SGD iterates given by (4) satisfy:

$$
\begin{equation*}
\mathbb{E}\left\|w^{t}-w^{*}\right\|^{2} \leq \frac{\sigma^{2}}{\mu^{2}} \frac{8}{t}+\frac{16}{e^{2}} \frac{\lceil\mathcal{K}\rceil^{2}}{t^{2}}\left\|w^{0}-w^{*}\right\|^{2} \tag{19}
\end{equation*}
$$

Proof. Let $\gamma_{t} \stackrel{\text { def }}{=} \frac{2 t+1}{(t+1)^{2} \mu}$ and let t^{*} be an integer that satisfies $\gamma_{t^{*}} \leq \frac{1}{2 L_{\max }}$. In particular this holds for

$$
t^{*} \geq\lceil 4 \mathcal{K}-1\rceil
$$

Note that γ_{t} is decreasing in t and consequently $\gamma_{t} \leq \frac{1}{2 L_{\max }}$ for all $t \geq t^{*}$. This in turn guarantees that (6) holds for all $t \geq t^{*}$ with γ_{t} in place of γ, that is

$$
\begin{equation*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} \leq \frac{t^{2}}{(t+1)^{2}} \mathbb{E}\left\|r^{t}\right\|^{2}+\frac{2 \sigma^{2}}{\mu^{2}} \frac{(2 t+1)^{2}}{(t+1)^{4}} \tag{20}
\end{equation*}
$$

Multiplying both sides by $(t+1)^{2}$ we obtain

$$
\begin{aligned}
(t+1)^{2} \mathbb{E}\left\|r^{t+1}\right\|^{2} & \leq t^{2} \mathbb{E}\left\|r^{t}\right\|^{2}+\frac{2 \sigma^{2}}{\mu^{2}}\left(\frac{2 t+1}{t+1}\right)^{2} \\
& \leq t^{2} \mathbb{E}\left\|r^{t}\right\|^{2}+\frac{8 \sigma^{2}}{\mu^{2}}
\end{aligned}
$$

where the second inequality holds because $\frac{2 t+1}{t+1}<2$. Rearranging and summing from $j=t^{*} \ldots t$ we obtain:

$$
\begin{equation*}
\sum_{j=t^{*}}^{t}\left[(j+1)^{2} \mathbb{E}\left\|r^{j+1}\right\|^{2}-j^{2} \mathbb{E}\left\|r^{j}\right\|^{2}\right] \leq \sum_{j=t^{*}}^{t} \frac{8 \sigma^{2}}{\mu^{2}} \tag{21}
\end{equation*}
$$

Using telescopic cancellation gives

$$
(t+1)^{2} \mathbb{E}\left\|r^{t+1}\right\|^{2} \leq\left(t^{*}\right)^{2} \mathbb{E}\left\|r^{t^{*}}\right\|^{2}+\frac{8 \sigma^{2}\left(t-t^{*}\right)}{\mu^{2}}
$$

Dividing the above by $(t+1)^{2}$ gives

$$
\begin{equation*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} \leq \frac{\left(t^{*}\right)^{2}}{(t+1)^{2}} \mathbb{E}\left\|r^{t^{*}}\right\|^{2}+\frac{8 \sigma^{2}\left(t-t^{*}\right)}{\mu^{2}(t+1)^{2}} \tag{22}
\end{equation*}
$$

For $t \leq t^{*}$ we have that (6) holds, which combined with (22), gives

$$
\begin{align*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} & \leq \frac{\left(t^{*}\right)^{2}}{(t+1)^{2}}\left(1-\frac{\mu}{2 L_{\max }}\right)^{t^{*}}\left\|r^{0}\right\|^{2} \\
& +\frac{\sigma^{2}}{\mu^{2}(t+1)^{2}}\left(8\left(t-t^{*}\right)+\frac{\left(t^{*}\right)^{2}}{\mathcal{K}}\right) \tag{23}
\end{align*}
$$

Choosing t^{*} that minimizes the second line of the above gives $t^{*}=4\lceil\mathcal{K}\rceil$, which when inserted into (23) becomes

$$
\begin{align*}
\mathbb{E}\left\|r^{t+1}\right\|^{2} \leq & \frac{16\lceil\mathcal{K}\rceil^{2}}{(t+1)^{2}}\left(1-\frac{1}{2 \mathcal{K}}\right)^{4\lceil\mathcal{K}\rceil}\left\|r^{0}\right\|^{2} \\
& +\frac{\sigma^{2}}{\mu^{2}} \frac{8(t-2\lceil\mathcal{K}\rceil)}{(t+1)^{2}} \\
\leq & \frac{16\lceil\mathcal{K}\rceil^{2}}{e^{2}(t+1)^{2}}\left\|r^{0}\right\|^{2}+\frac{\sigma^{2}}{\mu^{2}} \frac{8}{t+1} \tag{24}
\end{align*}
$$

where we have used that $\left(1-\frac{1}{2 x}\right)^{4 x} \leq e^{-2}$ for all $x \geq 1$.

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the f_{i} 's being smooth and convex we have that f is also smooth and convex. In particular f is convex since it is a convex combination of the f_{i} 's. This gives us the following useful lemma.

Lemma A.1. If f is both L-smooth

$$
\begin{equation*}
f(z) \leq f(w)+\langle\nabla f(w), z-w\rangle+\frac{L}{2}\|z-w\|_{2}^{2} \tag{25}
\end{equation*}
$$

and convex

$$
\begin{equation*}
f(z) \geq f(y)+\langle\nabla f(y), z-y\rangle, \tag{26}
\end{equation*}
$$

then we have that

$$
\begin{equation*}
f(y)-f(w) \leq\langle\nabla f(y), y-w\rangle-\frac{1}{2 L}\|\nabla f(y)-\nabla f(w)\|_{2}^{2} . \tag{27}
\end{equation*}
$$

Proof. To prove (27), it follows that

$$
\begin{array}{rll}
f(y)-f(w) & f(y)-f(z)+f(z)-f(w) \\
& \stackrel{(26)+(25)}{\leq} & \langle\nabla f(y), y-z\rangle+\langle\nabla f(w), z-w\rangle+\frac{L}{2}\|z-w\|_{2}^{2} .
\end{array}
$$

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z, which gives

$$
\begin{equation*}
z=w-\frac{1}{L}(\nabla f(w)-\nabla f(y)) . \tag{28}
\end{equation*}
$$

Substituting this in gives

$$
\begin{aligned}
f(y)-f(w)= & \left\langle\nabla f(y), y-w+\frac{1}{L}(\nabla f(w)-\nabla f(y))\right\rangle \\
& -\frac{1}{L}\langle\nabla f(w), \nabla f(w)-\nabla f(y)\rangle+\frac{1}{2 L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2} \\
= & \langle\nabla f(y), y-w\rangle-\frac{1}{L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2}+\frac{1}{2 L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2} \\
= & \langle\nabla f(y), y-w\rangle-\frac{1}{2 L}\|\nabla f(w)-\nabla f(y)\|_{2}^{2} .
\end{aligned}
$$

[^0]: ${ }^{1}$ We need only consider a linear mapping as opposed to the more general affine mapping $x_{i} \mapsto w^{\top} x_{i}+\beta$, because the zero order term $\beta \in \mathbb{R}$ can be incorporated by defining a new feature vectors $\hat{x}_{i}=\left[x_{1}, 1\right]$ and new variable $\hat{w}=[w, \beta]$ so that $\hat{x}_{i}^{\top} \hat{w}=x_{i}^{\top} w+\beta$
 ${ }^{2}$ Excluding the issue of selection λ using something like crossvalidation https://en.wikipedia.org/ wiki/Cross-validation_(statistics)

