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1 Rate of convergence and complexity

All the algorithm we discuss in the course generate a sequence of random vectors xt that
converge to a desired x∗ in some sense. Because the xt’s are random we always prove
convergence in expectation. In particular, we focus on two forms of convergence, either
showing that the difference of function values converges

E
[
f(xt)− f(x∗)

]
−→ 0,

or the expected norm difference of the iterates converges

E
[
‖xt − x∗‖2

]
−→ 0.

Two important questions: 1) How fast is this convergence and 2) given an ε how many
iterations t are needed before E

[
f(xt)− f(x∗)

]
< ε or E

[
‖xt − x∗‖2

]
< ε.

Ex. 1 — Consider a sequence (αt)t ∈ R+ that converge to zero according to

αt ≤
C

t
,

where C > 0. Given an ε > 0, show that

t ≥ C

ε
⇒ αt < ε.

We refer to this result as a O(1/ε) iteration complexity.

Ex. 2 — Using that
1

1− ρ
log

(
1

ρ

)
≥ 1, (1)

prove the following lemma.
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Lemma 1.1. Consider the sequence (αk)k ∈ R+ of positive scalars that converges to
zero according to

αk ≤ ρk α0, (2)

where ρ ∈ [0, 1). For a given 1 > ε > 0 we have that

k ≥ 1

1− ρ
log

(
1

ε

)
⇒ αk ≤ ε α0. (3)

We refer to this as a O(log(1/ε)) iteration complexity.

Following the introduction, we can write αt def
= E

[
f(xt)− f(x∗)

]
or αt def

= E
[
‖xt − x∗‖2

]
.

The type of convergence (2) is known as linear convergence at a rate of ρk.
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Introduction

Consider the task of learning a rule that maps the feature vector x ∈ Rd to outputs y ∈ R.
Furthermore you are given a set of labelled observations (xi, yi) for i = 1, . . . , n. We
restrict ourselves to linear mappings. That is, we need to find w ∈ Rd such that

x>i w ≈ yi, for i = 1, . . . , n. (1)

That is the hypothesis function is parametrized by w and is given by hw : x 7→ w>x.1 To
choose a w such that each x>i w is close to yi, we use the squared loss `(y) = y2/2 and the
squared regularizor. That is, we minimize

w∗ = arg min
w

1

n

n∑
i=1

1

2
(x>i w − yi)2 +

λ

2
‖w‖22, (2)

where λ > 0 is the regularization parameter. We now have a complete training prob-
lem (2)2.

Using the matrix notation

X
def
= [x1, . . . , xn] ∈ Rd×n, and y = [y1, . . . , yn] ∈ Rn, (3)

we can re-write the objective function in (2) as

f(w)
def
=

1

2n
‖X>w − y‖22 +

λ

2
‖w‖22. (4)

First we introduce some necessary notation.

1We need only consider a linear mapping as opposed to the more general affine mapping xi 7→ w>xi +β,
because the zero order term β ∈ R can be incorporated by defining a new feature vectors x̂i = [x1, 1] and
new variable ŵ = [w, β] so that x̂>i ŵ = x>i w + β

2Excluding the issue of selection λ using something like crossvalidation https://en.wikipedia.org/

wiki/Cross-validation_(statistics)

1



Notation: For every x,w,∈ Rd let 〈x,w〉 def= x>y and let ‖x‖2 =
√
〈x, x〉. Let A ∈ Rd×d

be a matrix and let σmin(A) and σmax(A) be the smallest and largest singular values of A
defined by

σmin(A)
def
= min

x∈Rd, x 6=0

‖Ax‖2
‖x‖2

and σmax(A)
def
= max

x∈Rd, x 6=0

‖Ax‖2
‖x‖2

. (5)

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the
largest singular value of A can be defined instead as

σmax(A) = max
x∈Rd, x 6=0

〈Ax, x〉2
‖x‖22

= max
x∈Rd, x 6=0

‖Ax‖2
‖x‖2

. (6)

Therefore
〈Ax, x〉
‖x‖22

≤ σmax(A), ∀x ∈ Rd \ {0}. (7)

and
‖Ax‖2
‖x‖2

≤ σmax(A), ∀x ∈ Rd \ {0}. (8)

We will now solve the following ridge regression problem

w∗ = arg min
w∈Rd

(
1

2n
‖X>w − y‖22 +

λ

2
‖w‖22

def
= f(w)

)
, (9)

using stochastic gradient descent and stochastic coordinate descent.

Exercise 1 : Stochastic Gradient Descent (SGD)

Some more notation: Let ‖A‖2F
def
= Tr

(
A>A

)
denote the Frobenius norm of A. Let

A
def
= 1

nXX
> + λI ∈ Rd×d and b

def
= 1

nXy. (10)

We can exploit the separability of the objective function (2) to design a stochastic
gradient method. For this, first we re-write the problem Aw = b as different linear least
squares problem

ŵ∗ = arg min
w

1
2‖Aw−b‖

2
2 = arg min

w

d∑
i=1

1
2(Ai:w−bi)2

def
= arg min

w

d∑
i=1

pifi(w), (11)

where fi(w) = 1
2pi

(Ai:w − bi)2, Ai: denotes the ith row of A, bi denotes the ith element of

b and pi =
‖Ai:‖22
‖A‖2F

for i = 1, . . . , d. Note that
∑d

i=1 pi = 1 thus the pi’s are probabilities.
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From a given w0 ∈ Rd, consider the iterates

wt+1 = wt − α∇fj(wt), (12)

where

α =
1

‖A‖2F
, (13)

and j is a random index chosen from {1, . . . , d} sampled with probability pj . In other words,

P(j = i) = pi =
‖Ai:‖22
‖A‖2F

for all i ∈ {1, . . . , d}.

Question 1.1: Show that the solution ŵ∗ to (11) and the solution to w∗ to (9) are equal.

Question 1.2: Show that

∇fj(w) =
1

pj
A>j:Aj:(w − w∗) (14)

and that

Ej∼p [∇fj(w)]
def
=

d∑
i=1

pi∇fi(w) = A>A(w − w∗) ,

thus ∇fj(w) is an unbiased estimator of the full gradient of the objective function in (11).
This justifies applying the stochastic gradient method.

Question 1.3: Let Πj
def
=

A>
j:Aj:

‖Aj:‖22
, show that

ΠjΠj = Πj , (15)

and
(I −Πj)(I −Πj) = I −Πj . (16)

In other words, Πj is a projection operator which projects orthogonally onto Range (Aj:) .
Furthermore, if j ∼ pj verify that

E [Πj ] =
d∑
i=1

piΠi =
A>A

‖A‖2F
. (17)

Question 1.4: Show the following equality ruling the squared norm of the distance to
the solution

‖wt+1 − w∗‖22 = ‖wt − w∗‖22 −

〈
A>j:Aj:

‖Aj:‖22
(wt − w∗), wt − w∗

〉
. (18)
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Question 1.5: Using previous answer and analogous techniques from the course, show
that the iterates (12) converge according to

E
[
‖wt+1 − w∗‖22

]
≤

(
1− σmin(A)2

‖A‖2F

)
E
[
‖wt − w∗‖22

]
. (19)

Remark: This is an amazing and recent result [2], since it shows that SGD converges
exponentially fast despite the fact that the iterates (14) only require access to a single row
of A at a time! This result can be extended to solving any linear system Aw = b, including
the case where A rank deficient. Indeed, so long as there exists a solution to Aw = b, the

iterates (14) converge to the solution of least norm and at rate of
(

1− σ+
min(A)

2

‖A‖2F

)
where

σ+min(A) is the smallest nonzero singular value of A [1]. Thus this method can solve any
linear system.
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BONUS

Exercise 2: Stochastic Coordinate Descent (CD)

Consider the minimization problem

w∗ = arg min
x∈Rd

(
f(w)

def
=

1

2
w>Aw − w>b

)
, (20)

where A ∈ Rd×d is a symmetric positive definite matrix, and w, b ∈ Rd.

Question 2.1: First show that, using the notation (10), solving (20) is equivalent to
solving (9).

Question 2.2: Show that
∂f(w)

∂wi
= Ai:w − bi , (21)

where Ai: is the ith row of A. Furthermore note that w∗ = A−1b, thus

∂f(w)

∂wi
= e>i (Aw − b) = e>i A(w − w∗) . (22)

Question 2.3: Consider a step of the stochastic coordinate descent method

wk+1 = wk − αi
∂f(wk)

∂xi
ei, (23)

where ei ∈ Rd is the ith unit coordinate vector, αi =
1

Aii
, and i ∈ {1, . . . , d} is sampled

i.i.d at each step according to i ∼ pi where pi =
Aii

Tr (A)
. Let ‖x‖2A

def
= x>Ax.

First, prove that

‖wk+1 − w∗‖2A =
〈

(I −Π>i )A(I −Πi)(w
k − w∗), wk − w∗

〉
. (24)

Question 2.4: Let rk
def
= A1/2(wk − w∗). Deduce from (24) that

‖rk+1‖22 = ‖rk‖22 −

〈
A1/2eie

>
i A

1/2

Aii
rk, rk

〉
. (25)
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Question 2.5: Finally, prove the convergence of the iterates of CD (23) converge
according to

E
[
‖wk+1 − w∗‖2A

]
≤

(
1− λmin(A)

Tr (A)

)
E
[
‖wk − w∗‖2A

]
(26)

thus (23) converges to the solution.
Hint: Since A is symmetric positive definite you can use that

λmin(A) = inf
x∈Rd,x 6=0

x>Ax

‖x‖22
.

You will need to use that x>Ax ≥ λmin(A)‖x‖22 at some point.

Question 2.6: When is this stochastic gradient method (14) faster than the stochastic
coordinate descent method of gradient descent? Note that the each iteration of SGD and
CD costs O(d) floating point operations while an iteration of the GD method costs O(d2)
floating point operations (assuming that A has been previously calculated and stored).
What happens if d is very big? What if ‖A‖2F is very large? Discuss this.
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1 Introduction

Consider the problem

w∗ ∈ arg min
w

(
1

n

n∑
i=1

fi(w)
def
= f(w)

)
, (1)

where we assume that f(w) is µ–strongly quasi-convex

f(w∗) ≥ f(w) + 〈w∗ − w,∇f(w)〉+
µ

2
‖w − w∗‖2, (2)

and each fi is convex and Li–smooth

fi(w + h) ≤ fi(w) + 〈∇fi(w), h〉+
Li
2
‖h‖2, for i = 1, . . . , n. (3)

Here we will provide a modern proof of the convergence of the SGD algorithm

wt+1 = wt − γt∇fit(wt), where it ∼
1

n
. (4)

The result we will prove is given in the following theorem.

Theorem 1.1. Assume f is µ-quasi-strongly convex and the fi’s are convex and Li–smooth. Let
Lmax = maxi=1,...,n Li and let

σ2
def
=

n∑
i=1

1

n
‖∇fi(w∗)‖2. (5)

Choose γt = γ ∈ (0, 1
2Lmax

] for all t. Then the iterates of SGD given by (4) satisfy:

E‖wt − w∗‖2 ≤ (1− γµ)t ‖w0 − w∗‖2 + 2γσ2

µ . (6)

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.
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Ex. 1 — Let Et [·] def
= E

[
· |wt

]
and consider the tth iteration of the SGD method (4). Show that

Et
[
∇fit(wt)

]
= ∇f(wt).

Ex. 2 — Let Et [·] def
= E

[
· |wt

]
be the expectation conditioned on wt. Using a step of SGD (4)

show that

Et
[
‖wt+1 − w∗‖2

]
= ‖wt − w∗‖2 − 2γ

〈
wt − w∗,∇f(wt)

〉
+ γ2

n∑
i=1

1

n
‖∇fi(wt)‖2. (7)

Ex. 3 — Now we need to bound the term
∑n

i=1
1
n‖∇fi(w

t)‖2 to continue the proof. We break
this into the following steps.

Part I

Using that each fi is Li–smooth and convex and using Lemma A.1 in the appendix show that

n∑
i=1

1

2nLi
‖∇fi(w)−∇fi(w∗)‖22 ≤ f(w)− f(w∗). (9)

Hint : Remember that ∇f(w∗) = 0.
Now let Lmax = maxi=1,...,n Li and conlude that

n∑
i=1

1

n
‖∇fi(w)−∇fi(w∗)‖22 ≤ 2Lmax(f(w)− f(w∗)). (10)

Part II

Using (10) and Definition 5 show that

n∑
i=1

1

n
‖∇fi(w)‖2 ≤ 4Lmax(f(w)− f(w∗)) + 2σ2. (11)

Ex. 4 — Using (11) together with (7) and the strong quasi-convexity (2) of f(w) show that

Et
[
‖wt+1 − w∗‖2

]
≤ (1− µγ)‖wt − w∗‖2 + 2γ(2γLmax − 1)(f(wt)− f(w∗)) + 2σ2γ2. (15)

Ex. 5 — Using that γ ∈ (0, 1
2Lmax

] conclude the proof by taking expectation again, and unrolling
the recurrence.

Ex. 6 — BONUS importance sampling: Let it ∼ pi in the SGD update (4), where pi > 0 are
probabilities with

∑n
i=1 pi = 1. What should the pi’s be so that SGD has the fastest convergence?

3 Decreasing step-sizes

Based on Theorem 1.1 we can introduce a decreasing stepsize.

2



Theorem 3.1 (Decreasing stepsizes). Let f be µ–strongly quasi-convex and each fi be Li–smooth

and convex. Let K def
= Lmax/µ and

γt =


1

2Lmax
for t ≤ 4dKe

2t+1
(t+1)2µ

for t > 4dKe.
(18)

If t ≥ 4dKe, then SGD iterates given by (4) satisfy:

E‖wt − w∗‖2 ≤ σ2

µ2
8

t
+

16

e2
dKe2

t2
‖w0 − w∗‖2. (19)

Proof. Let γt
def
= 2t+1

(t+1)2µ
and let t∗ be an integer that satisfies γt∗ ≤ 1

2Lmax
. In particular this holds

for
t∗ ≥ d4K − 1e.

Note that γt is decreasing in t and consequently γt ≤ 1
2Lmax

for all t ≥ t∗. This in turn guarantees
that (6) holds for all t ≥ t∗ with γt in place of γ, that is

E‖rt+1‖2 ≤ t2

(t+ 1)2
E‖rt‖2 +

2σ2

µ2
(2t+ 1)2

(t+ 1)4
. (20)

Multiplying both sides by (t+ 1)2 we obtain

(t+ 1)2E‖rt+1‖2 ≤ t2E‖rt‖2 +
2σ2

µ2

(
2t+ 1

t+ 1

)2

≤ t2E‖rt‖2 +
8σ2

µ2
,

where the second inequality holds because 2t+1
t+1 < 2. Rearranging and summing from j = t∗ . . . t

we obtain:
t∑

j=t∗

[
(j + 1)2E‖rj+1‖2 − j2E‖rj‖2

]
≤

t∑
j=t∗

8σ2

µ2
. (21)

Using telescopic cancellation gives

(t+ 1)2E‖rt+1‖2 ≤ (t∗)2E‖rt∗‖2 +
8σ2(t− t∗)

µ2
.

Dividing the above by (t+ 1)2 gives

E‖rt+1‖2 ≤ (t∗)2

(t+ 1)2
E‖rt∗‖2 +

8σ2(t− t∗)
µ2(t+ 1)2

. (22)

For t ≤ t∗ we have that (6) holds, which combined with (22), gives

E‖rt+1‖2 ≤ (t∗)2

(t+ 1)2

(
1− µ

2Lmax

)t∗
‖r0‖2

+
σ2

µ2(t+ 1)2

(
8(t− t∗) +

(t∗)2

K

)
. (23)
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Choosing t∗ that minimizes the second line of the above gives t∗ = 4dKe, which when inserted
into (23) becomes

E‖rt+1‖2 ≤ 16dKe2

(t+ 1)2

(
1− 1

2K

)4dKe
‖r0‖2

+
σ2

µ2
8(t− 2dKe)

(t+ 1)2

≤ 16dKe2

e2(t+ 1)2
‖r0‖2 +

σ2

µ2
8

t+ 1
, (24)

where we have used that
(
1− 1

2x

)4x ≤ e−2 for all x ≥ 1.

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the fi’s being smooth and convex we have that f is also smooth and convex.
In particular f is convex since it is a convex combination of the fi’s. This gives us the following
useful lemma.

Lemma A.1. If f is both L–smooth

f(z) ≤ f(w) + 〈∇f(w), z − w〉+
L

2
‖z − w‖22 (25)

and convex
f(z) ≥ f(y) + 〈∇f(y), z − y〉 , (26)

then we have that

f(y)− f(w) ≤ 〈∇f(y), y − w〉 − 1

2L
‖∇f(y)−∇f(w)‖22. (27)

Proof. To prove (27), it follows that

f(y)− f(w) = f(y)− f(z) + f(z)− f(w)

(26)+(25)

≤ 〈∇f(y), y − z〉+ 〈∇f(w), z − w〉+
L

2
‖z − w‖22.

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z,
which gives

z = w − 1

L
(∇f(w)−∇f(y)). (28)

Substituting this in gives

f(y)− f(w) =

〈
∇f(y), y − w +

1

L
(∇f(w)−∇f(y))

〉
− 1

L
〈∇f(w),∇f(w)−∇f(y)〉+

1

2L
‖∇f(w)−∇f(y)‖22

= 〈∇f(y), y − w〉 − 1

L
‖∇f(w)−∇f(y)‖22 +

1

2L
‖∇f(w)−∇f(y)‖22

= 〈∇f(y), y − w〉 − 1

2L
‖∇f(w)−∇f(y)‖22.

4


