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Time to get familiarized with convexity, smoothness and strong convexity, and finish
the proof for gradient descent. Least-squares as a bonus special example.

Notation: For every x, y,∈ R
d let 〈x, y〉

def
= x⊤y and let ‖x‖2 =

√

〈x, x〉.

1 Quick review of eigenvalues of symmetric matrices

Let S be a real squared symmetric matrix of size d× d. Then, the spectral theorem states
that S can be decomposed as

S = UDU⊤,

where D = diag (λ1, ..., λd) is a diagonal matrix and U is such that UU⊤ = U⊤U = I. We
can further assume that λ1 ≤ λ2 ≤ · · · ≤ λd. Values λi are called the eigenvalues of S and
the columns of U are their associated eigenvectors. They are such that for all i ∈ {1, ..., d},

SUi = λiUi. (1)

The eigenvectors of S form an orthonormal basis of Rd, meaning that any x ∈ R
d, x can

be written as x = UU⊤x =
∑d

i=1
Ui(U

⊤
i x), where the (U⊤

i x) are the coefficients of x in
the eigenbasis. In particular, if we note λmin(S) and λmax(S) the smallest and highest
eigenvalues of S, they can be obtained as:

λmin(S) = min
x, ‖x‖2=1

x⊤Sx, λmax(S) = max
x, ‖x‖2=1

x⊤Sx.

2 Convexity

We say that a twice differentiable function f : Rd → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ R
d, λ ∈ [0, 1]. (2)

or equivalently
λmin

(

∇2f(x)
)

≥ 0, ∀x ∈ R
d. (3)
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We say that f is µ–strongly convex if

λmin

(

∇2f(x)
)

≥ µ, ∀x ∈ R
d. (4)

Ex. 1 — We say that ‖·‖ → R+ is a norm over R
d if it satisfies the following three

properties

1. Point separating: ‖x‖ = 0 ⇔ x = 0,∀x ∈ R
d.

2. Subadditive: ‖x+ y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ R
d

3. Homogeneous: ‖ax‖ = |a|‖x‖,∀x ∈ R
d, a ∈ R.

Part I

Prove that x 7→ ‖x‖ is a convex function.

Part II

For every convex function f : y ∈ R
m 7→ f(y), prove that g : x ∈ R

d 7→ f(Ax − b) is a
convex function, where A ∈ R

n×d and b ∈ R
n.

Part III

Let fi : R
d → R be convex for i = 1, . . . , n. Prove that

∑n
i=1

fi is convex.

Part IV

For given scalars yi ∈ R and vectors ai ∈ R
d for i = 1, . . . ,m prove that the logistic

regression function f(x) = 1
n

∑n
i=1

ln(1 + e−yi〈x,ai〉) is convex.

Part V

Let A ∈ R
n×d have full column rank. Prove that f(x) = 1

2
‖Ax−b‖22 is λmin(A

⊤A)–strongly
convex.

Part VI

Now suppose that the function f(x) is µ–strongly convex, that is, it satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22, ∀x, y ∈ R

d. (5)

Prove that f(x) satisfies the Polyak–Lojasiewicz condition, that is

‖∇f(x)‖22 ≥ 2µ(f(x)− f(x∗), ∀x. (6)
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3 Smoothness

We say that a convex function f : Rd → R is L–smooth if

∀x, y ∈ R
d, f(x) 6 f(y) +∇f(y)⊤(x− y) +

L

2
‖x− y‖22, (9)

or equivalently if f is twice differentiable then

λmax(∇
2f(x)) ≤ L, ∀x ∈ R

d. (10)

Ex. 2 — Part I

Prove that x 7→ 1
2
‖x‖2 is 1–smooth.

Part II

For every twice differentiable L–smooth function f : y ∈ R
n 7→ f(y), prove that g : x ∈

R
d 7→ f(Ax− b) is a smooth function, where A ∈ R

n×d and b ∈ R
n. Find the smoothness

constant of g.

Part III

Let fi : R
d → R be a twice differentiable and Li–smooth for i = 1, . . . , n. Prove that

1
n

∑n
i=1

fi is
(
∑n

i=1
Li

n

)

–smooth.

Part IV

For given scalars yi ∈ R and vectors ai ∈ R
d for i = 1, . . . , n prove that the logistic regression

function f(x) = 1
n

∑n
i=1 ln(1 + e−yi〈x,ai〉) is smooth. Find the smoothness constant!

Part V

Let A ∈ R
n×d be any matrix. Prove that 1

2
‖Ax− b‖22 is λmax(A

⊤A)–smooth.

Part VI

(BONUS) Let M > 0 be a positive constant. Let f(x) = 1
n

∑n
i=1

φi(a
⊤
i x) where φi : R → R

is a scalar function such that φ′′
i (t) ≤ M for all t ∈ R. Prove that f(x) is M

n
λmax(A

⊤A)–
smooth. With this result, can you find a better estimate of the smoothness constant of the
logistic regression loss?
Hint : Show that −∇2f(x) + M

n
A⊤A is positive semidefinite.

Part VII
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(Proof of convergence for strongly-convex smooth gradient descent)
(a) Consider wt = wt−1 −

1

L
∇f(wt−1) for f L-smooth. Show that

f(wt) ≤ f(wt−1)−
1

2L
‖∇f ′(wt−1)‖

2
2.

(b) Using the Polyak–Lojasiewicz condition, show that, for w∗ a global minimizer of f ,

f(wt) ≤ f(wt−1)−
µ

L

[

f(wt−1)− f(w∗)
]

.

(c) Show that f(wt)− f(w∗) ≤ (1− µ/L)t
[

f(w0)− f(w∗)
]

.

Part VIII

(BONUS) (Proof of convergence for smooth gradient descent)
(a) Show that, for w∗ a global minimizer of f , (w − w∗)

⊤∇f(w) ≥ f(w)− f(w∗).
(b) Consider wt = wt−1−

1
L
∇f(wt−1) for f L-smooth. Show that, for w∗ a global minimizer

of f ,

‖wt − w∗‖
2
2 = ‖wt−1 − w∗‖

2
2 +

1

L2
‖∇f(wt−1)‖

2 −
2

L

[

f(wt−1)− f(w∗)
]

.

(c) By linearly combining with f(wt) ≤ f(wt−1)−
1

2L
‖∇f ′(wt−1)‖

2
2, show that

t
[

f(wt)− f(w∗)
]

+
L

2
‖wt − w∗‖

2

is decreasing and conclude on the convergence of gradient descent.

Part IX

(BONUS) Co-coercivity. Let f be L-smooth, show that

〈∇f(y)−∇f(x), y − x〉 ≥
1

L
‖∇f(x)−∇f(y)‖22

Hint: Start by showing that f(y) − f(x) ≤ 〈∇f(y), y − x〉 − 1
2L

‖∇f(x) − ∇f(y)‖22, by
considering the lower-bound of f at x and the upper-bound of f at y, both taken at a
generic z.

4 Gradient descent

We will now solve the following ridge regression problem

w∗ = arg min
w∈Rd

(

1

2n
‖X⊤w − y‖22 +

λ

2
‖w‖22

def
= f(w)

)

, (12)
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using gradient descent.

Ex. 3 — Consider the Gradient descent method

wt+1 = wt − α∇f(wt), (13)

where

α =
1

λmax(A)
, (14)

is a fixed stepsize and

A
def
= 1

n
XX⊤ + λI. (15)

Part I

Show that the gradient ∇f(x) of (12) is given by

∇f(w) = Aw − b = A(w − w∗),

where w∗ is the solution to (12) and

b
def
= 1

n
Xy.

Now that we have calculated the gradient, re-write the iterates (13) using this gradient.

Part II

Show or convince yourself that A as defined in (15) is positive semi-definite, that is

〈Aw,w〉 ≥ 0, ∀w ∈ R
d, (16)

and that

λmax(I − αA) = 1− αλmin(A) = 1−
λmin(A)

λmax(A)
. (17)

Part III

Show that the iterates (13) converge to w∗ according to

‖wt+1 − w∗‖2 ≤

(

1−
λmin(A)

λmax(A)

)

‖wt − w∗‖2,

for all t. The number (1− λmin(A)/λmax(A)) is known as the rate of convergence.
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Hint 1: Subtract w∗ from both sides of (13) and use the results from the previous two
exercises.
Hint 2: Try and show that b = Aw∗!

Part IV

Let

κ(A)
def
=

λmax(A)

λmin(A)
,

which is known as the condition number of A. What happens to κ as λ → ∞ and λ → 0,
respectively? What does this imply about the speed at which gradient descent converges
to the solution?
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Part V

(BONUS) Let us consider the extreme case where λ = 0. Consider the coordinate change
ŵ = P−1w, where P ∈ R

d×d is invertible. With this coordinate change we can solve the
problem in ŵ given by

ŵ∗ = arg min
ŵ∈Rd

(

1

2n
‖X⊤Pŵ − y‖22 +

λ

2
‖Pŵ‖22

)

, (18)

then switch back the coordinate system to get the solution in w∗ given by

w∗ = Pŵ∗. (19)

If we use gradient descent to solve (18), at what rate does it converge? To get the fastest
rate possible, what should P be? Does the choice

P = diag(XX⊤)−1, (20)

make sense?
Remark: The matrix P is known as the preconditioner and the particular choice given
by (20) is a standard choice known as “feature scaling” and it is often used in machine
learning.
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